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Abstract
Activins are secreted proteins belonging to the TGF-β 
family of signaling molecules. Activin signals are crucial 
for differentiation and regulation of cell proliferation 
and apoptosis in multiple tissues. Signal transduc-
tion by activins relies mainly on the Smad pathway, 
although the importance of crosstalk with additional 
pathways is increasingly being recognized. Activin 
signals are kept in balance by antagonists at multiple 
levels of the signaling cascade. Among these, fol-
listatin and FLRG, two members of the emerging fam-
ily of follistatin-like proteins, can bind secreted activins 
with high affinity, thereby blocking their access to cell 
surface-anchored activin receptors. In the liver, activin 
A is a major negative regulator of hepatocyte prolifera-
tion and can induce apoptosis. The functions of other 
activins expressed by hepatocytes have yet to be more 
clearly defined. Deregulated expression of activins and 
follistatin has been implicated in hepatic diseases in-
cluding inflammation, fibrosis, liver failure and primary 
cancer. In particular, increased follistatin levels have 

been found in the circulation and in the tumor tissue 
of patients suffering from hepatocellular carcinoma as 
well as in animal models of liver cancer. It has been ar-
gued that up-regulation of follistatin protects neoplas-
tic hepatocytes from activin-mediated growth inhibition 
and apoptosis. The use of follistatin as biomarker for 
liver tumor development is impeded, however, due 
to the presence of elevated follistatin levels already 
during preceding stages of liver disease. The current 
article summarizes our evolving understanding of the 
multi-faceted activities of activins and follistatins in 
liver physiology and cancer.
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INTRODUCTION
The activin family 
Activins are cytokines belonging to the TGF-β family 
of  growth and differentiation factors[1] and were named 
according to their first identification as activators of  
follicle-stimulating hormone (FSH) release from pituitary 
cells[2,3]. Like TGF-β, activins are formed via the covalent 
dimerization of  two subunits[4]. So far, five different 
subunits participating in the formation of  activins have 
been identified. The subunits activin beta A, beta B, beta 
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C and beta E were found in humans as well as other 
mammalian species, while activin beta D has only been 
identified in Xenopus laevis[5]. The four mammalian 
beta subunits are each encoded by a single gene, called 
INHBA, INHBB, INHBC and INHBE respectively[6]. 
INHBC and INHBE are closely linked in several species 
and are thought to have arisen from tandem duplication 
of  an ancestral gene[7].

The different activin subunits can form homo- as 
well as heterodimers. A homodimer of  two beta A 
subunits is called activin A, while a heterodimer of  a 
beta A and a beta B subunit is called activin AB. The 
nomenclature for dimers of  the other subunits follows 
the same scheme. While activins AB and AC have been 
described under physiological conditions in vivo [8,9], 
we and others have demonstrated the formation of  
activins AE, BC and CE after ectopic expression of  
the respective cDNAs in various cell lines[10-12]. Activin 
subunits are synthesized as pro-proteins of  350 to 426 
amino acids[6]. The proteins are glycosylated in the 
pro-domain region, but addition of  the carbohydrate 
group seems to be dispensable for secretion. This is in 
contrast to the related inhibin alpha subunit, a member 
of  the TGF-β family and dimerization partner of  
activin subunits (see below)[13]. Dimers are created by 
intermolecular disulphide bond formation between the 
sixth of  nine conserved cysteines in the mature proteins. 
The other cysteines are involved in the formation of  
intramolecular disulphide bonds, creating the so-called 
cysteine knot, typical for members of  the TGF-β family 
and required for their biological activity[14].

Following dimerization, the protein is cleaved by pro-
protein convertases of  the subtilisin/kexin family in the 
ER and Golgi, producing a mature peptide chain of  115 
or 116 amino acids. While the biologically active protein 
is secreted as a dimer of  the mature peptides only, it has 
been suggested that the pro-region is required for correct 
folding, dimer formation and secretion[15]. Unprocessed, 
dimeric activin A was found to be biologically inactive[16]. 
Monomers have been reported to retain some affinity 
for the receptors of  dimeric activin A but do not cause 
activation[17]. In addition to dimerization with another 
beta subunit, activin beta A and activin beta B can form 
heterodimers with the inhibin alpha subunit, giving rise 
to inhibins A and B, both inhibiting FSH release[18]. 
It remains uncertain if  inhibin C exists, as there was 
evidence for the formation of  a dimer between activin 
beta C and inhibin alpha in some[19] but not all reports[10]. 

Activin signal transduction 
Like other members of  the TGF-β family, activins 
are believed to signal via single-pass transmembrane 
receptors with an intracellular Ser-Thr kinase domain. 
This has been proven for activins A, B and AB. Activin 
A first binds to dimers of  the type Ⅱ receptors ActR-
Ⅱ (aka ACVR2) or ActR-ⅡB (aka ACVR2B), leading 
to the (preferential) recruitment and phosphorylation 
of  dimers of  the type Ⅰ receptor ALK4 (aka ActR-

IB/ACVR1B)[20]. While binding to the same type Ⅱ 
receptors, activins B and AB preferentially recruit ALK7 
(ACVR1C) as type Ⅰ receptor[21]. Upon ligand binding, 
receptors are typically internalized[22]. It has been ques-
tioned however, if  this internalization is generally 
necessary for signal transduction[23]. As a consequence 
of  activation, receptor-regulated Smads (R-Smads) are 
recruited to the receptor complex and phosphorylated 
by the type Ⅰ receptor. This process is supported by 
accessory proteins like SARA and the motor protein 
kinesin-1. Depending on the identity of  the receptor, 
either Smad 2 and Smad 3 (ALK4, ALK5, ALK7) or 
Smad 1, Smad 5 and Smad 8 (ALK1, ALK2, ALK3, 
ALK6) are recruited and activated[4]. For TGF-β it 
has been shown that the ligand can recruit different 
type Ⅰ receptors, activating different subsets of  Smads 
depending on the cell type[24]. So far, activins have 
only been shown to signal through Smad 2 and Smad 
3[25]. R-Smads then form complexes with the common 
mediator Smad 4 and translocate to the nucleus where, 
together with cofactors, they are directly involved in 
regulation of  gene expression. 

In addition, recent evidence suggests Smad inde-
pendent signaling of  activin A via MAP kinases ERK 
1/2 and p38[26] as well as the phosphatidylinositol 
3'-kinase (PI3K)/Akt pathway[27]. Rho and JNK were 
also found to be stimulated by activin A[28]. 

ACTIVINS IN HEPATIC FUNCTION AND 
DYSFUNCTION
Beta A and beta B
Activin A represents the most extensively investigated 
activin. Multiple biological functions of  activin A in 
a variety of  cells and tissues have been described, 
including involvement in mesoderm induction[29], 
stem cell biology[30], reproductive biology[31], erythroid 
differentiation[32], systemic inflammation[33], cell death 
induction[34], wound healing[35], and fibrosis[36]. Knock-out 
mice for activin beta A show severe defects in craniofacial 
development and die shortly after birth[37]. Activin A 
potently inhibits mitogen-induced DNA synthesis in 
the liver and induces hepatocyte apoptosis in vivo and 
in vitro[38-40]. Activin beta A antisense oligonucleotides 
stimulated cell proliferation in the human hepatoma cell 
line HLF suggesting a growth inhibitory function of  
endogenous activin A[41]. In regenerating liver, activin 
beta A gene expression was reduced at time points when 
hepatocyte replication took place and was increased at 
time points when liver regeneration terminated[42]. Other 
studies, however, have described increased expression of  
beta A at earlier time points after partial hepatectomy[43,44]. 

Beside its effects on DNA synthesis and cell growth, 
activin A also regulates restoration of  liver architecture after 
partial hepatectomy by stimulating collagen production 
in hepatic stellate cells (HSC) and tubulogenesis of  sinu-
soidal endothelial cells[45,46]. Stimulation of  HSC may also 
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contribute to liver fibrosis and several investigations have 
found elevated levels of  activin beta A in fibrotic and 
cirrhotic rat livers[47-50]. In hepatocytes, activin A was also 
demonstrated to stimulate the expression of  connective 
tissue growth factor (CCTF/CCN2), an important 
regulator of  liver fibrosis[51]. Elevated levels of  circulating 
activin A were found in patients with acute liver failure, 
chronic viral hepatitis, alcohol induced liver cirrhosis and 
hepatocellular carcinoma (HCC)[52-57]. Elevated serum 
activin A was also reported in a study with patients 
suffering from non-alcoholic fatty liver disease (NAFLD), 
with particularly high levels in the subgroup with non-
alcoholic steatohepatitis (NASH)[58]. These patients also 
had an increased activin beta A/follistatin mRNA ratio 
in liver tissue. In the same study activin A was shown 
in Huh7 hepatoma cells to promote collagen Ⅲ and 
TGF-β 1 expression, matrix metalloproteinase (MMP) 
activity, induce mitochondrial beta-oxidation and down-
regulate fatty acid synthase (FAS) activity. Together these 
findings suggest an involvement of  activin A not only 
in fibrosis but also in lipid accumulation. A study from 
our group in contrast, has found reduced expression of  
activin beta A transcripts in tumor tissue from chemically-
induced rat liver tumors[59]. In addition to a pro-apoptotic 
and a pro-fibrotic effect, activin A has also been linked 
to hepatic neoangiogenesis via stimulation of  VEGF 
expression in human hepatoma cells[60]. With respect to 
hepatic differentiation, it has been shown that a gradient 
of  activin/TGF-β signaling controls differentiation 
of  hepatoblasts into hepatocytes and biliary cells in 
the mouse, with high signaling activity required for 
development into biliary cells[61]. The contributing activin/
TGF-β ligands, however, have not been fully identified. 
Several studies have used activin A as part of  protocols 
to differentiate human embryonic stem cells (hESC) into 
hepatocyte-like cells[62-65]. 

Like activin beta A, the beta B subunit is expressed 
in multiple tissues and organs[11,66]. Knock-out mice for 
beta B are viable but show defects in eyelid development 
and female reproduction[67]. When the coding region 
of  the mature peptide of  the beta A subunit gene was 
replaced with the corresponding region of  the beta 
B subunit, the developmental defects of  the beta A 
knock-out mice were only partially rescued indicating 
differences in receptor activation or downstream 
signals[68]. In the liver, the function of  the beta B subunit 
is not well characterized. One reason for this might 
be the low expression level in normal rat liver, where 
we observed the beta B subunit to be the only activin 
subunit undetectable by RNAse protection assay[11]. By 
immunohistochemistry, however, weak staining of  beta 
B was detected in hepatocytes of  normal rat livers and 
in connective tissue septa in fibrotic livers[47]. Activin 
beta B mRNA was induced in stellate cells of  CCl4 
treated rat livers[47] and exposure to the peroxisome 
proliferator di-n-butyl phthalate led to a transient surge 
of  beta B mRNA expression 6 h after treatment[69]. With 
respect to biological activities, recombinant activin B, 

in contrast to activins A and AB, did not inhibit EGF 
induced DNA synthesis in primary rat hepatocytes[70]. 
In contrast to the rat, beta A and beta B transcripts are 
expressed to similar levels in human liver (Rodgarkia-
Dara, unpublished observation). Ectopic expression of  
ALK7, the preferred type two receptor for activins B 
and AB induced apoptosis in hepatoma cell lines in a 
Smad and MAPK- dependent manner[71]. Both activin 
B and ALK7 have been linked to obesity and diabetes, 
two well-known risk factors for HCC, via participation in 
regulatory circuits in adipose tissue and the pancreas[72-74]. 

Beta C and beta E
In contrast to beta A and beta B, whose expression level 
is the highest in reproductive organs, the liver is the organ 
where the beta C and the beta E subunit reach by far 
their highest expression levels. The activin beta C subunit 
was cloned from liver cDNA and demonstrated to be 
predominantly expressed in hepatocytes by Northern 
blot analysis and RNAse protection assays[11,44,75,76]. 
By immunohistochemistry, significant activin beta C 
expression has been detected in cells from additional 
organs, including the prostate, ovary, testes, and pituitary 
gland[10,77]. After partial hepatectomy, a transient down-
regulation of  activin beta C expression was observed by 
several studies[42,44,78,79]. We have found reduced activin 
beta C expression in HepG2 and Hep3B hepatoma 
cells versus normal liver tissue[80] and a drop of  beta C 
expression was also described in rat hepatocytes during 
primary culture with and without EGF treatment[44]. 
In contrast, increased activin beta C expression was 
reported in rat liver during the development of  CCl4-
induced cirrhosis[48,81] and in response to treatment with 
the peroxisome proliferator bi-n-butyl phthalate[69]. The 
functions of  the activin beta C subunit are controversial. 
Activin beta C knock-out mice developed normally and 
liver regeneration after partial hepatectomy proceeded 
similar in knock-out animals and wild-type littermates[82]. 
Studies from our group showed that ectopic expression 
of  activin beta C induced apoptosis in human (HepG2, 
Hep3B) and rat (H4IIEC3) hepatoma cells and delayed 
liver regeneration in mice[80,83]. In contrast, in AML12 
cells, an immortalized mouse hepatocyte cell line, and 
in primary rat hepatocytes activin beta C increased 
DNA synthesis[84]. Adenovirus-mediated expression of  
activin beta C accelerated liver regeneration after partial 
hepatectomy in rats[85] and association of  activin beta C 
immunoreactivity with mitotic hepatocytes was observed 
in regenerating liver after partial hepatectomy[42]. Activin 
C does not activate activin A-responsive promoters and 
it was suggested that the beta C subunit down-regulates 
the levels of  bioactive activin A via the formation of  
signaling-incompetent activin AC heterodimers in PC3 
human prostate cancer cells[9,86]. In a recent study from 
the same group, it was shown that homodimeric activin 
C inhibited activin A-induced Smad2 phosphorylation 
and growth inhibition, and that activin beta C transgenic 
mice develop prostate, testis and liver pathologies 
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suggestive of  an activin A antagonistic effect[87]. In 
line with these observations, elevated beta C immuno-
reactivity was found in human prostate, testis and liver 
cancers[87].

Like beta C, also the beta E subunit is highly 
expressed in the liver, but has been detected at lower 
levels in several other tissues as well[7,11,88,89]. In the liver 
of  the developing mouse, activin beta E expression could 
not be detected until the very late stages of  embryonic 
development and peaked at birth[82]. The biological 
functions and molecular interaction partners of  activin 
beta E remain largely unknown. Like beta C, beta E 
knock-out (as well as beta C, beta E double knock-out) 
mice developed normally and showed no impairment of  
liver function or regeneration[82]. In vitro, overexpression 
of  activin beta E in the human hepatoma cell lines 
HepG2 and Hep3B, as well as in the murine hepatocyte 
cell line AML12, caused decreased proliferation and 
induced apoptosis[12,80]. In vivo, transient overexpression 
of  activin beta E inhibited regenerative DNA synthesis 
in mouse liver[83], while mice constitutively overexpressing 
the protein showed impaired growth of  pancreatic 
exocrine cells[90]. Following partial hepatectomy, activin 
beta E mRNA increased rapidly and decreased to near-
basal levels after 48 h[82]. We observed a diurnal variation 
of  beta E mRNA depending on food consumption in 
the rat liver and a surge of  beta E expression in response 
to bacterial lipopolysaccharide (LPS) stimulation was 
also  described[1,89]. Additionally, beta E expression was 
found and confirmed to be elevated in HepG2 cells 
as a consequence of  phospholipidosis, a lipid storage 
disorder[91,92]. Expression of  activin beta E was also 
significantly increased in the lung following airway 
inflammation[93] and in brains of  rats infected with Borna 
disease virus[94]. Interestingly, a neuronal component has 
also been implied by recent work describing reduced 
anxiety-related behavior in mice overexpressing activin 
beta E[95]. Overexpression of  the tumor suppressor 
RASSF1A stimulated expression of  beta E, while knock-
down of  endogenous RASSF1A in nasopharyngeal 

epithelial cells resulted in beta E downregulation[96]. 
Finally, in gene chip analysis, mRNA levels from INHBE 
were found to be altered in HepG2 in response to 
hypoxia[97]. One possible mode of  action for activin beta 
E was described by Chow et al[96], who demonstrated that 
the expression of  Inhibitor of  DNA binding 2 (Id2) 
protein is down-regulated in response to overexpression 
of  activin beta E. Id2 is a known target of  TGF-β and 
a potential oncogene[98]. Large scale analysis identified 
mutations in the INHBE gene in breast cancer[99]. An 
evaluation of  single nucleotide polymorphisms (SNPs) 
in genes coding for activins in testicular cancer showed 
a correlation for the risk of  disease and mutations in 
INHBA but not in INHBB, INHBC or INHBE[100].

FOLLISTATINS AND THEIR ROLE IN AC-
TIVIN ANTAGONISM AND LIVER DIS-
EASE
Follistatin was discovered as antagonist of  activin activity 
with respect to FSH release from pituitary cells[101]. 
Sequence analysis of  follistatin revealed no homology 
to the TGF-β family, but the presence of  three domains 
with a similar architecture, namely 10 cysteines spaced 
in a conserved fashion resulting in a characteristic 
pattern of  intramolecular disulphide bond formation[102]. 
Accordingly, this domain was termed follistatin domain 
and bears resemblance to the Kazal domain of  serine 
proteinase inhibitors. Follistatin domains have been 
identified in a number of  additional extracellular 
proteins and some of  these have been filed as follistatin-
related proteins or follistatin-like proteins[103-105] (Figure 1). 
The connection of  follistatin and follistatin-like proteins 
with activin signaling and their involvement in hepatic 
functions is discussed below. Additional regulation of  
activin signal transduction takes place at the receptor 
level by co-receptors, such as cripto, nodal, betaglycan, or 
BAMBI and intracellularly, for instance by the inhibitory 
Smad 6 and 7, and has been reviewed elsewhere[106,107]. 
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SP      FS      FS    FS

SP       FS            EF      EF VWFC

SP       IGFBP          FS          Ig

SP    FS  FS

SP        FS        EF        Ig    Ig

SP        FS        EF        EF       Ig             Ig

344 aa      Follistatin P19883

308 aa      Fstl1/FRP Q12841

282 aa      IGFBP7/(Fstl2) Q16270

263 aa      Fstl3/FLRG O95633

842 aa      Fstl4  Q6MZW2

847 aa      Fstl5  Q8N475

Figure 1  Number and arrangement of follistatin/Kazal-like domains in follistatin-like proteins. SP: Signal peptide; FS: Follistatin/Kazal-like domain; EF: EF-
hand domain; VWFC: von Willebrand factor type C repeat; IGFBP: IGF-binding protein N-terminal domain; Ig: Immunoglobulin-like domain. Text to the right shows the 
number of amino acids (aa), most common name(s) and Uniprot accession number. 



Follistatin
The biological activities described for follistatin seem 
to depend largely on its interaction with activins and 
other members of  the TGF-β family. Follistatin, which 
is expressed in most organs expressing activins[66,108], 
binds mature secreted activin A with high affinity[109-111]. 
Complex formation with follistatin completely abolished 
receptor binding of  activin A, thus blocking activin 
signaling[110,112]. Two follistatin molecules embrace one 
activin dimer and bury one-third of  its residues and its 
receptor binding sites[113]. Alternative splicing and protein 
processing of  a single follistatin gene results in secretion 
of  three major isoforms containing 288, 303, and 315 
amino acids[109]. Of  the three follistatin domains present 
in all follistatin isoforms[114], the first two, but not the 
third, are necessary for activin A binding[111,115]. Follistatin 
288 binds to heparan sulfates, whereas this binding 
is blocked by an acidic tail in follistatin 315[109]. In 
addition to binding activins A, B, AB, and E, follistatin 
was also shown to bind and antagonize myostatin 
as well as BMPs 2, 4, 6, and 7 [88,116-119]. Follistatin 
administration by intraportal infusion or adenovirus-
mediated overexpression caused DNA synthesis and 
liver growth in the rat, presumably by antagonizing 
tonic inhibition of  hepatocyte proliferation by activin 
A[120,121]. Following partial hepatectomy, follistatin 
expression was up-regulated after 24-48 h, the time 
period in which hepatocyte replication was increased[42]. 
Administration of  exogenous follistatin after partial 
hepatectomy accelerated liver regeneration but led to 
impaired restoration of  normal tissue architecture and 
compromised liver function[122-124]. Administration of  
follistatin in CCl4-treated rats attenuated the formation 
of  liver fibrosis[125]. These results likely reflect the ability 
of  follistatin to antagonize both growth-inhibitory and 
pro-fibrotic activities of  activin A. 

In mouse and rat models of  chemically induced 
liver tumors, we found follistatin expression to be up-
regulated in about 60% of  tumor tissue samples[59,126]. 
Moreover, we demonstrated that administration of  
follistatin stimulated DNA synthesis in preneoplastic rat 
hepatocytes in an ex vivo system, whereas hepatoma cell 
lines were unresponsive to exogenous follistatin possibly 
due to autocrine production of  follistatin or other activin 
antagonists[59,126-128]. Knock-out mice for parkin, an E3 
ubiquitin ligase implicated in Parkinson’s disease and 
frequently deleted in HCC and hepatoma cell lines[129], 
develop liver tumors in a follistatin upregulation-
dependent fashion[130]. In human HCC elevated follistatin 
levels were found in the tumor tissue and the circulation 
of  patients[53,59,131]. However, follistatin had no benefit 
as surveillance biomarker for HCC development in 
patients with alcoholic and non-alcoholic liver disease 
(ALD and NAFLD) due to the already elevated levels 
in the underlying liver pathologies[131]. Whether or not, 
interaction of  follistatin with TGF-β family members 
other than activins (myostatin, BMP, GDFs) or with 
angiogenin[132] plays a role in liver tumorigenesis remains 
to be explored.

Follistatin-like proteins
Follistatin-like 1 (fstl1, also called follistatin-related 
protein, FRP or Tsc-36) contains only a single follistatin 
domain and no activin-binding activity has been reported. 
In fact, the interaction partners of  fstl1 on a molecular 
level have not been identified and its function is far from 
clear. Fstl1 itself  was identified as a TGF-β inducible 
gene[133] and has been implicated in inflammation and 
cardioprotection[134-136]. It has been suggested to act as 
a potential tumor suppressor in epithelial cancers[137-140] 
but is over-expressed in astrocytic brain tumors[141]. 
Considering hepatoma cells, we recently demonstrated 
that the expression of  fstl1 is low in HepG2 cells, which 
show an epithelial morphology/proteome pattern and 
high in Hep3B cells with fibroblastoid characteristics. 
These observations suggest fstl1 as potential indicator of  
epithelial-mesenchymal transition (EMT)[142].

The term follistatin-like 2 (fstl2) is only rarely used. 
It refers to a protein described to have IGF- (insulin-
like growth factor) as well as activin-binding activity and 
sequence homology with follistatin[143,144]. This protein 
was also termed mac25 and angiomodulin but is better 
known as IGFBP7 (IGF binding protein 7) or IGFBP-
rP1 (IGF binding protein-related protein 1)[145]. It has 
been suggested to act as tumor suppressor, because its 
expression is reduced in neoplastic tissues of  different 
cancer types including liver tumors from SV40T/t antigen 
transgenic mice[146]. However, the biological relevance of  
IGFBP7 binding to activin is still unclear. In the course 
of  evolution fish went through whole genome duplication 
and the term fstl2 has also been used (synonymously 
with fstl1b) to denote the second zebrafish orthologue of  
mammalian fstl1.

Among the follistatin like proteins follistatin-like 3 
(fstl3), encoded by follistatin-related gene (FLRG), has 
the highest overall similarity with follistatin and shares its 
ability to bind TGF-β family proteins, but contains only 
two instead of  three follistatin domains[147]. The FLRG 
gene was originally identified as a target of  chromosomal 
rearrangement in leukemia[148]. The highest tissue 
expression of  FLRG was found in placenta, whereas 
highest follistatin expression was found in ovary, testis, 
and pituitary[147,149]. In HepG2 hepatoma cells, expression 
of  both FLRG and follistatin was induced in response 
to activin A treatment suggesting that they participate 
in a feedback loop to restrict activin A signals[150]. FLRG 
knock-out mice developed increased pancreatic islet 
number and size, beta cell hyperplasia, decreased visceral 
fat mass, and hepatic steatosis. This is in line with a 
physiological role of  fstl3 in antagonizing activin and 
myostatin activity in the pancreas, adipose tissue and 
liver[151]. Elevated expression of  FLRG has been linked 
to breast cancer[152] and we have found increased FLRG 
transcript levels in chemically induced rat liver tumors 
but not in human liver tumor specimens[59].

Recently follistatin-like 4 and 5 were identified as 
two additional follistatin-related proteins[153], but their 
expression pattern and function have yet to be worked 
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out. In addition to the follistatin-like proteins, SPARC, 
agrin, tomoregulin and others contain one or more 
follistatin domains, but none of  these have so far been 
connected to activin signal transduction[103,104]. 

CONCLUSION
Despite the apparent gaps in our knowledge, it is be-
coming increasingly clear that tightly regulated activin 
signals are of  fundamental importance for the main-
tenance of  liver architecture and cellular homeostasis. 
While still much has to be learned, especially about the 
less explored members of  the activin and follistatin 
families, the pace of  progress has appreciably sped up 
in recent years. Deregulated expression of  activin A 
and/or follistatin has been consistently observed in liver 
cancer in human patients and in a growing number of  
animal models, and was shown to causally contribute to 
the inflammatory and fibrotic conditions that promote 
carcinogenesis (Figure 2). The picture that emerges is 
that inflammation-associated elevated activin A levels 
contribute to fibrotic tissue remodelling and cell death 
of  normal hepatocytes, whereas preneoplastic and 
neoplastic hepatocytes become resistant to activin 
A-induced growth control, at least in part through 
overexpression of  follistatin. Conditional and liver cell 
type-specific knock-out of  activin beta A and follistatin 
in mouse hepatocarcinogenesis models could shed 
further light on the contribution of  the activin-follistatin 
axis to liver cancer development. For the two activin 
subunits with predominant expression in hepatocytes, 
namely beta C and beta E, as well as for fstl1, 4 and 5 
future efforts should be directed at elucidating their 
molecular interaction with cell surface receptors or 
secreted proteins as a prerequisite to better understand 
their biological activities. Although the complexity of  the 
system may sometimes seem daunting, the hope is well 
founded that in the not-too-far future, the increasing 
knowledge on activins and follistatins will translate 
into improved diagnostic or therapeutic opportunities 
for patients suffering from chronic liver disease and  
HCC. 
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