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Abstract
AIM
To stably correct tyrosinaemia in proliferating livers of 
fumarylacetoacetate-hydrolase knockout (Fah -/-) mice 
by homologous-recombination-mediated targeted 
addition of the Fah  gene.

METHODS
C57BL/6 Fah∆exon5  mice served as an animal model 
for human tyrosinaemia type 1 in our study. The 
vector was created by amplifying human Fah cDNA 
including the TTR promoter from a lentivirus plasmid 
as described. The Fah  expression cassette was flanked 
by homologous arms (620 bp and 749 bp long) of 
the Rosa26  gene locus. Mice were injected with 2.1 
× 108 VP of this vector (rAAV8-ROSA26.HAL-TTR.Fah-
ROSA26.HAR ) via  the tail vein. Mice in the control 
group were injected with 2.1 × 108 VP of a similar 
vector but missing the homologous arms (rAAV8-TTR.
Fah ). Primary hepatocytes from Fah -/- recipient mice, 
treated with our vectors, were isolated and 1 × 106 

hepatocytes were transplanted into secondary Fah -/- 

recipient mice by injection into the spleen. Upon either 
vector application or hepatocyte transplantation NTBC 
treatment was stopped in recipient mice. 

RESULTS
Here, we report successful HR-mediated genome 
editing by integration of a Fah gene expression cassette 
into the “safe harbour locus” Rosa26  by recombinant 
AAV8. Both groups of mice showed long-term survival, 
weight gain and FAH positive clusters as determined by 
immunohistochemistry analysis of liver sections in the 
absence of NTBC treatment. In the group of C57BL/6 
Fah∆exon5  mice, which have been transplanted with 
hepatocytes from a mouse injected with rAAV8-ROSA26.
HAL-TTR.Fah-ROSA26.HAR  156 d before, 6 out of 6 
mice showed long-term survival, weight gain and FAH 
positive clusters without need for NTBC treatment. In 
contrast only 1 out 5 mice, who received hepatocytes 
from rAAV8-TTR.Fah  treated mice, survived and 
showed few and smaller FAH positive clusters. These 
results demonstrate that homologous recombination-
mediated Fah  gene transfer corrects the phenotype in 
a mouse model of human tyrosinaemia type 1 (Fah -/- 
mice) and is long lasting in a proliferating state of the 
liver as shown by withdrawal of NTBC treatment and 
serial transplantation of isolated hepatocytes from 
primary Fah -/- recipient mice into secondary Fah -/- 
recipient mice. This long term therapeutic efficacy 
is clearly superior to our control mice treated with 
episomal rAAV8 gene therapy approach. 
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CONCLUSION
HR-mediated rAAV8  gene therapy provides targeted 
transgene integration and phenotypic correction in 
Fah -/- mice with superior long-term efficacy compared 
to episomal rAAV8 therapy in proliferating livers. 

Key words: Gene therapy; AAV8; Liver based metabolic 
disease; Targeted integration; ROSA26; Paediatric liver 
disease

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Recombinant adeno-associated virus (rAAV) 
has been explored for gene delivery in various murine 
models of hereditary liver disease, but in young children 
transgene expression from AAV-epigenomes diminishes 
over time. We thus explored, whether homologous 
recombination-mediated targeted gene addition of the 
fumarylacetoacetate hydrolase (Fah) gene would stably 
correct tyrosinaemia in rapidly proliferating livers of 
Fah -/- mice. Here, we report successful homologous 
recombination-mediated genome editing of a Fah  gene 
expression cassette at the Rosa26 locus by rAAV8. We 
demonstrate that this approach corrects the phenotype 
and is long lasting in a proliferating state of the liver, 
as shown by serial transplantation.

Junge N, Yuan Q, Huong Vu T, Krooss S, Bednarski C, 
Balakrishnan A, Cathomen T, Manns MP, Baumann U, Sharma 
AD, Ott M. Homologous recombination mediates stable Fah 
gene integration and phenotypic correction in tyrosinaemia 
mouse-model. World J Hepatol 2018; 10(2): 277-286  Available 
from: URL: http://www.wjgnet.com/1948-5182/full/v10/i2/277.
htm  DOI: http://dx.doi.org/10.4254/wjh.v10.i2.277

INTRODUCTION
Therapy for many liver-based metabolic diseases (LBMD) 
is limited to supportive measures and may entail 
significant side effects, such as organ failure, metabolic 
crisis, malignancy and impairment of quality of life. Until 
now, the only established curative treatment is liver 
organ transplantation (LTX). Although LTX for LBMDs 
has excellent long-term outcomes, the procedure is 
associated with significant morbidity and mortality and 
dependent on limited donor organ availability. Gene 
therapy could provide a minimally invasive therapeutic 
alternative to whole organ transplantation. 

Recombinant adeno-associated viruses (rAAV) have 
evolved as promising vehicles for gene therapy to date 
and shown to produce long-term therapeutic effects in 
many mouse models of inherited liver diseases as well 
as in patients with haemophilia B[1-3]. AAV of serotype 8 
has been shown to target mainly hepatocytes in the liver 
and is considered to be safe for clinical application[3-6]. 
Recombinant AAVs express the transgenes from epige-
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nomic circular DNA with only rare genomic integration 
events[7]. Insertional mutagenesis resulting from random 
vector integrations has been observed in only one 
study[8] and these results remain to be confirmed by 
other studies[9]. Notably, AAV gene therapy in 77 dogs 
did not cause tumour formation during an observation 
period of up to 10 years[10]. Nathwani et al[11] presented a 
study in non-human primates with no signs of insertional 
mutagenesis 5 years after AAV application. Further, 
serotype 8 shows lower seroprevalence of preformed 
antibodies in humans than other AAV serotypes[3,12] thus 
minimizing risk of significant immune response.

Epigenomic expression of the therapeutic transgene 
from rAAV is thought to gradually decline in tissues with 
high cell turnover. Therapeutic efficacy of AAV-mediated 
gene transfer would thus decrease in growing livers of 
newborns or in diseases with intrinsic stimuli causing 
hepatocyte turnover. In some studies, gene correction 
by homologous recombination of rAAV transduced 
therapeutic genes was shown to result in long-term 
cellular persistence. Although the feasibility of in vivo 
gene correction in mice has been demonstrated in 
several models, superior therapeutic efficacy of gene 
therapy by gene addition mediated by homologous 
recombination remains to be demonstrated. Therefore, 
we examined whether the application of a Fah 
expression cassette flanked by homologous arms for the 
ROSA 26 Locus improves the efficacy and persistence 
of Fah gene delivery by integration at the Rosa26 gene 
locus through homologous recombination in a mouse 
model of human tyrosinaemia type 1. We used C57BL/6 
Fah∆exon5 mice, which served as an animal model for human 
tyrosinaemia type 1[13]. Liver physiology and function in 
these animals can be maintained by providing water 
that is supplemented with the drug NTBC [2-(2-nitro-4-
fluoromethylbenzoyl)-1,3-cyclohexanedione]. Control 
mice die 20-45 d after deprivation of NTBC due to 
liver failure. In the absence of NTBC, gene corrected 
hepatocytes proliferate and repopulate the liver.

MATERIALS AND METHODS
Animal model
All mouse experiments were granted permission and 
were performed according to the guidelines of the 
Hannover Medical School, Germany and the local 
government. Mice were kept on standard laboratory 
chow and free access to drinking water. They were 
housed in a restricted access room with controlled 
temperature and a light/dark cycle. We used C57BL/6 
Fah∆exon5 mice, which served as an animal model for 
human tyrosinaemia type 1[13]. Tyrosinaemia type 1 is 
caused by genetic alterations of the gene coding for FAH. 
The mutated Fah gene produces an unstable protein, 
which results in deficiency of fumarylacetoacetate 
hydrolase activity. The mice were provided with water 
supplemented with 1 mg/100 mL of NTBC [2-(2-nitro-4-
(fluoromethyl) benzoyl) cyclohexane-1,3-dione] before 
performing experiments. Surgery was done under 

general anaesthesia with 2% isoflurane and 2 litres/min 
oxygen flow. 

Cloning of AAV plasmids
For cloning of the rAAV8-ROSA26.HAL-TTR.Fah-ROSA26.
HAR plasmid, 620 and 749 bp Rosa26 gene locus 
homologous arms flanking the Fah expression cassette 
were subcloned into a pBlue-Script II plasmid. The entire 
transgene was further subcloned into the AAV backbone 
plasmid for virus generation. For the Fah expression 
cassette, we amplified hFah cDNA, including the TTR 
promoter, from a lentivirus plasmid described earlier 
from our group[14] by PCR (Phusion® High-Fidelity PCR 
Kit, Thermo scientific).

For cloning the rAAV8-TTR.Fah expression cassette, 
we created a similar plasmid with the same transgene 
cassette but not flanked by the homologous arms. 

Preparation of adeno-associated virus serotype 8 vector
The adeno-associated virus serotype 8 (AAV8) vectors 
(Figure 1A), rAAV8-ROSA26.HAL-TTR.Fah-ROSA26HAR 
and rAAV8-TTR.Fah, were prepared as described 
previously[15]. The titre was determined by qRT-PCR 
using primers spanning the region of the TTR promoter, 
as published before[16].

AAV8 vector administration into Fah-/- mice
Mice were injected with 2.1 × 108 VP rAAV8-ROSA26.
HAL-TTR.Fah-ROSA26HAR via the tail vein. Mice in the 
control group were injected with 2.1 × 108 VP rAAV8-
TTR.Fah. Viruses were diluted in sorbitol to a total 
volume of 220 µL for injection. Non-treated control 
mice were injected with 0.9% sodium chloride. We 
used one control mouse group (n = 3) for the first 
generation experiment. Subsequently, the mice were 
monitored and weighed daily until they reached stable 
conditions or gained body weight. After 45 to 47 d, a 1/3 
hepatectomy was conducted to analyse the presence 
of FAH protein-positive cell clusters. Tissues were fixed 
in 4% paraformaldehyde or snap frozen for subsequent 
analyses. 

Serial transplantation of hepatocytes from virus-injected 
mice
Primary hepatocytes from primary Fah-/- recipient 
mice were isolated with the two-step collagenase 
(Roche) perfusion method, as described previously[4]. 
Hepatocytes (1 × 106) were transplanted into secondary 
Fah-/- recipient mice by injection into the spleen. Control 
mice were injected with sodium chloride into the spleen. 
We used one control mouse group (n = 3) for the 
second generation experiment. 

Immunohistochemistry
Tissues were embedded in paraffin (ROTH) and cut 
in 2-µm-thick slices. Immunohistochemistry was 
carried out as described previously[17]. Briefly, after 
deparaffinization and blocking for endogenous H2O2, 
the slides were incubated in 1 x target retrieval solution 
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(Qiagen) according to the protocol of the vendor. Two 
primers were designed, A and B. A was located in the 
Rosa26 locus of recipient mouse 5’ to the donor gene. 
B was located in the Fah sequence of the donor DNA. 
Primer sequences were A: 5’-GGAGAGAGGCATTCAT 
GGGAGTGGAAAGTTAAGC-3’ and B: 5’-GCAGCATGG 
TCCAGTACATGTGCTTAAAGTTAGACC-3’. The expected 
length of the PCR amplicon was 1107 bp. PCR 
amplification was conducted with the Phusion® PCR Kit 
(New England BioLabs), and 200 ng of liver genomic 
DNA was used. The amplification was carried out under 
the following conditions: one cycle for 190 s at 98 ℃, 
followed by 50 cycles for 10 s at 98 ℃ and 90 s at 
72 ℃, finished by one cycle for 10 min at 72 ℃. The 
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(Dako) at 98 ℃ for 20 min. For FAH (primary antibody, 
Abcam, ab81087) staining, tissues were blocked with 
the Avidin/Biotin blocking kit (Vector laboratories). 
Goat serum (Abcam) or rabbit serum (Abcam) was 
then used for blocking. Biotinylated goat anti-rabbit 
and rabbit anti-goat secondary antibodies (Vectastain, 
Vector laboratories) were used. Colour development 
was conducted using AEC substrate chromogen (Dako). 
Counterstaining was performed using haematoxylin 
(Merck Millipore, Germany). 

Integration PCR
Genomic liver DNA was extracted from snap-frozen 
liver tissue with the DNeasy Blood and Tissue Kit 

pAAV-TTR.Fah (6914 bp)

ITR Fah cDNA TTR recognation site ITR

ITR R26 HAL Fah cDNA TTR R26 HAR ITR

pAAV ROSA26.HAL-TTR.Fah-ROSA26HAR (8299 bp)

recognation site

Injection of rAAV8-ROSA26.HAL-TTR.Fah-ROSA26HAR
(2.1 × 108 VP) into tail vein of 4 mice and rAAV8-TTR.Fah
(2.1 × 108 VP) into tail vein of 5 control mice

NTBC off Weight 
evaluation

sacrificed + 
analyzed

Weight 
evaluation

Weight 
evaluation

sacrificed + 
analyzed

No NTBC

No NTBC

1/3 partial hepatectomy day 

45 in all, tissue analyzed

1 mouse/group for 

hepatocyte donation

injection of 1 million hepatocytes/
mouse intrasplenecally, group 1 
n  = 6, control group n  = 5

First generation

Partial hepatectomy

2nd generation

A

B

Figure 1  Flowchart of treating mice. A: Vector map for rAAV8-ROSA26.HAL-TTR.Fah-ROSA26HAR and for rAAV8-TTR.Fah. Fah cDNA is driven by the TTR 
promotor and for rAAV8-ROSA26.HAL-TTR.Fah-ROSA26HAR located between the homologous arms of the Rosa26 locus. The vector was cloned into an AAV 
backbone; B: Scheme for the in vivo experiments. First-generation mice (C57BL/6 FAH∆exon5 strain) were injected with rAAV8-ROSA26.HAL-TTR.Fah-ROSA26HAR 
(group 1, n = 4) or rAAV8-TTR.Fah (control group, n = 5). The NTBC treatment was stopped, and after 45 d, a partial hepatectomy was performed. In each group, one 
mouse was used as the donor for hepatocyte transplantation into C57BL/6 Fah∆exon5 mice. These recipients were the second generation of mice in our study. NTBC 
treatment was discontinued after hepatocyte transplantation. TTR: Transthyretin promoter (liver specific); R26 HAL: Homologous arm left for target locus in Rosa26; 
HAR: Homologous arm right for target locus in Rosa26; ITR: Inverted terminal repeat.
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PCR product was analysed utilizing gel electrophoresis 
on a 1% agarose gel (Biozym) for 50 min at 90 V.

qRT-PCR for FAH expression
RNA was isolated from snap frozen liver tissue of 
sacrificed mice. RNA was isolated with RNeasy® mini Kit 
(Qiagen) and QIAshredder® according to manufacturer 
instructions. After DNase treatment cDNA writing 
was performed (iScript™ reverse transcriptase 
supermix, BIO-RAD). SYBR green qRT-PCR (Qiagen 
QuantiTect Sybr green®) was performed at Stratagene 
Mx3000P (Aligent) with following primer (forward 
primer AGAATGCGCTGTTGCCAAA, reverse primer 

GGAAGCTCGGCCATGGTAT) spanning exon 5-6 and beta 
actin as housekeeping gene.

RESULTS
Long-term functional correction of the Fah gene defect 
by homologous recombination at the ROSA26 Locus in 
mice
We confirmed the correct design of our plasmids (Figure 
1A) by sequencing and by evaluating FAH-Expression in 
Hepa1.6 cells by RT qPCR. For our experiments we used 
Fah-/- mice that contain a disruptive insertion in exon 5 of 
the Fah gene[13]. 
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Figure 2  Mice treated with rAAV8-ROSA26.HAL-TTR.Fah-ROSA26HAR. A: Weight graph and survival for first-generation mice (n = 4) injected with rAAV8-
ROSA26.HAL-TTR.Fah-ROSA26HAR and 3 untreated controls (injected with sodium chloride). Continuous line = rAAV8-ROSA26.HAL-TTR.Fah-ROSA26HAR 
mice, broken line = controls (same control mice as displayed at Figure 3A). Body weight is displayed as percentage of body weight at the time of virus injection or 
sodium chloride injection (controls). The timeline (x-axis) is displayed in days beginning with the day of virus/sodium chloride injection as day zero; B: FAH staining 
of liver tissue from controls (mice with sodium chloride injection) after death (100 × magnification); C: FAH staining of liver tissue from partial hepatectomy in mouse 
injected with rAAV8-ROSA26.HAL-TTR.Fah-ROSA26HAR (100 × magnification); D: Weight graph and survival for second-generation mice (continuous line), which 
were transplanted with one million hepatocytes from mice primarily injected with rAAV8-ROSA26.HAL-TTR.Fah-ROSA26HAR and controls (same control mice as 
displayed at Figure 3D) without hepatocyte transplantation (broken line). Body weight is displayed as percentage of body weight at time of hepatocyte transplantation. 
The timeline (x-axis) is displayed in days, beginning with the day of hepatocyte transplantation as day zero; E: FAH staining of liver tissue from a partial hepatectomy 
from a second-generation mouse, which received one million hepatocytes from mice primarily injected with rAAV8-ROSA26.HAL-TTR.Fah-ROSA26HAR (100 × 
magnification). 1/3PH: One third partial hepatectomy; HcTx: Hepatocyte transplantation.
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We prepared a high titre AAV8 vector suspension 
using the aforementioned AAV vector plasmids.

Next, we injected 4 mice with rAAV8-ROSA26.
HAL-TTR.Fah-ROSA26HAR via the tail vein (Figure 
1B). To stimulate the proliferation of FAH-expressing 
hepatocytes, protective NTBC-treatment was dis-
continued immediately after injection. Whereas control 
mice (injected with saline) died before 45 d, all mice 
injected with rAAV8-ROSA26.HAL-TTR.Fah-ROSA26HAR 
survived beyond 45 d after injection (Figure 2A). On 
the 45th-47th days, 1/3 of the liver was removed and 
analysed for the presence of FAH cell clusters by 
immunohistochemistry. All animals injected with rAAV8-
ROSA26.HAL-TTR.Fah-ROSA26HAR showed robust 
repopulation of the liver as indicated by survival, weight 
gain (Figure 2A) and multiple large FAH protein positive 
cell clusters in immunohistochemistry analyses (Figure 
2C). Importantly, these mice survived without NTBC 
until the end of the study (day 288; Figure 2A). 

Due to high selection pressure for gene corrected 
hepatocytes in the Fah-/- model, phenotypic correction 
of the enzyme deficiency as result of diluted, but still 
sufficient, FAH protein expression from epigenomic 
AAV DNA could not be excluded in the first generation. 
To test whether homologous sequences facilitated 
targeted integration and increased therapeutic efficacy, 
we isolated primary hepatocytes from one recipient 
mouse after recovery from partial hepatectomy and 
transplanted 1 x 106 cells each into the spleens of the 
secondary Fah-/- recipient mice (Figure 1B). All recipient 
animals (6/6) that were transplanted with hepatocytes 
from repopulated Fah-/- mouse showed liver 
repopulation and survived long-term in the absence of 
NTBC (Figure 2D and E).

Missing long-term in vivo correction of Fah in the 
absence of homologous sequences after hepatocyte 
transplantation.
To establish unequivocally that homologous recom-
bination is indeed capable of long-term stable correction 
of Fah deficiency and superior to non-homologous, 
episomal gene therapy, we generated a control group 
with five mice, who were injected with rAAV8-TTR.Fah. 
All five primary recipient mice survived with weight 
gain (Figure 3A) and showed clusters of FAH-positive 
cells at partial hepatectomy on day 45 (Figure 3C). To 
show inferiority of this episomal approach we further 
increased the proliferation conditions by transplanting 
hepatocytes (1 × 106 cells for each recipient) from 
one first generation recipient mouse into 5 secondary 
Fah-/- recipient mice in this group also. Only one of the 
five secondary recipient mice (hepatocyte recipients) 
survived NTBC withdrawal and showed few and small 
FAH-positive cell clusters (Figure 3D and E). Hence, 
these results suggest that in the absence of homologous 
arms, the observed FAH-positive clusters in the primary 
recipient Fah-/- mice mostly resulted from epigenomic 
AAVs or an unexplained mechanism of integration/
anchorage on cellular DNA, which was lost upon trans-

plantation into secondary Fah-/- recipient mice.

Successful targeted integration of Fah cDNA at the 
Rosa26 locus
So far, our results revealed that mice injected with 
rAAV8-ROSA26.HAL-TTR.Fah-ROSA26HAR had 
robust liver repopulation and improved survival after 
secondary transplantation. However, it is important 
to prove that homologous arms facilitated targeted 
integration/gene addition of Fah cDNA into the Rosa26 
locus. We therefore examined targeted integration by 
genomic PCR amplifying portions of the Rosa26 gene 
locus and the Fah transgene cassette. Indeed, we found 
an expected band of 1071 bp in mice injected with 
rAAV8-ROSA26.HAL-TTR.Fah-ROSA26HAR (Figure 4) 
but not in mice injected with rAAV8-TTR.Fah. Our data 
thus indicate that homologous arms facilitated targeted 
integration at a frequency sufficient for increased 
therapeutic outcome and phenotypic correction in Fah-/- 

mice. This is further confirmed by Sybr green qRT-PCR 
results. These showed a clearly higher expression of 
FAH in mice treated with rAAV8-ROSA26.HAL-TTR.Fah-
ROSA26HAR compared to mice treated with rAAV8-
TTR.Fah alone (Figure 5).

In summary, we can conclude that in the first genera-
tion we could not detect a difference for survival, weight 
gain and FAH positive cell cluster between mice injected 
with rAAV8-ROSA26.HAL-TTR.Fah-ROSA26HAR or 
rAAV8-TTR.Fah but in secondary generation (recipients 
of 1 x 106 hepatocytes from first generation) we could 
detect a clear improved survival for the group with 
homologous arms in the vector. In this group 6 out of 
6 mice survived and in the other group 1 out 5 mice 
survived. Furthermore the detection FAH positive cell 
clusters showed the same distribution.

DISCUSSION
In in vitro and in vivo studies[18,19], the AAV vector is used 
as the vector of choice for gene correction approaches 
by homologous recombination; one important reason is 
its single-stranded nature. Reports on gene correction 
or gene addition by homologous recombination for 
liver-based metabolic diseases are rare and have 
shown correction frequencies[20] too low for phenotypic 
correction, except for the study of Paulk et al[19]. However, 
they used a mouse model with a point mutation for Fah 
gene; therefore, their approach was a gene correction. 
Here, we provide proof of concept for in vivo targeted 
gene addition mediated by homologous recombination 
in a liver-based metabolic disease. Our findings demon-
strate that in a state of extensive hepatocyte proliferation, 
targeted integration by homologous recombination was 
superior to gene therapy based on episomal AAV gene 
therapy. 

Primary recipient mice that were injected with 
rAAV8-ROSA26.HAL-TTR.Fah-ROSA26HAR or rAAV8-
TTR.Fah survived and showed phenotypic rescue 
after NTBC withdrawal. Notably, livers of mice from 
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both groups showed clear FAH-positive cell clusters in 
immunohistochemistry. We determined the presence 
of FAH positive areas in the both groups of primary 
recipients. We did not find significant differences in 
FAH positivity indicating similar number of FAH positive 
hepatocytes in both groups of mice. So far, cell clusters 
have always been explained by clonal expansion of 
corrected hepatocytes, which would implicate the 
necessity of vector integration. In the tyrosinemia mouse 
model Fah corrected hepatocytes have a strong selective 
advantage so they grow clonally, form nodules and can 
repopulate the entire liver at least[21,22]. Therefore, it is 

reasonable that a small number of hepatocytes with 
random integrations or another unexplained mechanism 
such as of integration/anchorage on cellular DNA 
proliferate preferentially and repopulate the diseased 
liver, leading to FAH-positive cell clusters. A human liver 
contains approximately 300 billion hepatocytes, which 
means, in case of 10% transduction efficiency with an 
integration rate of 0.1%, a single individual will have 
approximately 30 million hepatocytes with at least one 
integration event[23]. Therefore, one can assume that the 
phenotypic correction in these mice can be explained 
by the selective proliferation advantage of a small 
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Figure 3  Mice treated with rAAV8-TTR.Fah. A: Weight graph and survival for first-generation mice injected with rAAV8-TTR.Fah (n = 5) and 3 untreated controls 
(injected with sodium chloride). Continuous line = rAAV8-TTR.Fah mice, broken line = controls (same control mice as displayed at Figure 2A). Body weight is 
displayed as percentage of body weight at the time of virus injection or sodium chloride injection (controls). The timeline (x-axis) is displayed in days beginning 
with the day of virus/sodium chloride injection as day zero; B: FAH staining of liver tissue from controls (mouse with sodium chloride injection) after death (100 × 
magnification); C: FAH staining of liver tissue from a partial hepatectomy from a mouse injected with rAAV8-TTR.Fah (100 × magnification); D: Weight graph and 
survival for second-generation mice (continuous line), which were transplanted with one million hepatocytes from mice primarily injected with rAAV8-TTR.Fah and 
controls (same control mice as displayed at Figure 2D) without hepatocyte transplantation (broken line). Body weight is displayed as percentage of body weight at 
time of hepatocyte transplantation. The timeline (x-axis) is displayed in days, beginning with the day of hepatocyte transplantation as day zero; E: FAH staining of liver 
tissue from a partial hepatectomy in a second-generation mouse, which received one million hepatocytes from mice primarily injected with rAAV8-TTR.Fah (100 × 
magnification); F: FAH staining of liver tissue from a partial hepatectomy from the single second-generation mouse that showed cluster and weight gain.
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number of hepatocytes with successfully integrated Fah 
cassettes. A spontaneous reversion of the genetic defect, 
as the underlying cause for phenotypic correction and 
FAH-positive cell clusters, as described in humans[24], is 
not possible in the Fahexon5 mouse model[25]. 

Therefore we increased the proliferation conditions 
by hepatocyte transplantation from one first generation 
recipient per group into secondary Fah-/- recipient mice (1 
x 106 hepatocytes for each secondary recipient mouse). 
In this experiment, the advantage of homologous 
recombination became clearly visible, since phenotypic 
correction could be achieved in all mice (6/6). In the 
rAAV8-TTR.Fah group, only 1/5 mice survived. In 
accordance with these results, 6/6 mice co-injected 
with rAAV8-ROSA26.HAL-TTR.Fah-ROSA26HAR showed 
clear FAH-positive cell clusters in livers, whereas only 
1/5 mice injected with rAAV8-R26.Fah had FAH-positive 
clusters. Furthermore Sybr green qRT-PCR showed 
higher FAH expression in liver tissue of ROSA26.HAL-
TTR.Fah-ROSA26HAR-mice than in rAAV8-R26.Fah-
mice.

Partial hepatectomy and serial transplantation together 
are supposed to have triggered at least 30 rounds of 
cell doubling for the hepatocytes[26], nevertheless we 
could not find any tumour formation in any of our mice. 
This is in line with other studies showing a good safety 
profile for rAAV8 gene therapy[5]. Our proof of concept 
approach demonstrated that the targeted integration/
addition of a therapeutic gene allows for safer (compared 
to random integration) and more efficient (compared 
to epigenomic) gene therapy, especially for gene 
therapy of liver-based metabolic diseases in paediatric 
patients, since the Rosa26 locus exists in mice[27,28] as 
well as in humans[29]. In contrast to the assumption that 
homologous recombination alone is not sufficient for 
a long-lasting phenotypic correction of a liver-based 
metabolic disease, we could show the opposite with this 
study, at least for diseases with selection advantage for 

corrected hepatocytes, like tyrosinaemia type 1. Further 
potential target diseases with selection advantage 
could be Wilson disease or bile-acid transporter defects. 
Continuing studies should evaluate the efficiency of 
this approach in liver-based metabolic diseases without 
selection advantage such as Crigler Najjar Syndrome. 

In summary, we demonstrate that targeted in vivo 
integration of a Fah expression cassette mediated by 
homologous arms is a highly efficient approach to stably 
correct a metabolic liver disease in an FAH mouse model 
with extensive hepatocyte proliferation. Since many 
metabolic disorders must already be treated in children 
with fast-dividing hepatocytes, targeted transgene 
integration is an important step to safe and long-lasting 
gene therapy in the developing liver.

ARTICLE HIGHLIGHTS
Research background
We describe an important proof of concept in the field of AAV gene therapy for 
liver based metabolic diseases (LBMD). First gene therapy studies in humans 
are done (Hemophilia B) or very ready to start (Crigler-Najjar Syndrome); even 
an EMA approved drug for AAV gene therapy (Glybera) exists already. But all 
these approaches have a major weakness, the missing permanence of the 
gene therapy effect, especially in young children. But they are the main target 
group for gene therapy in LBMD, since early therapy could avoid irreversible 
damage to the organs of the patient. In these patients the advantage of 
recombinant AAV gene therapy, the almost missing integration into the host 
genome turns into a disadvantage since donor cDNA will be lost during cell turn 
over. 

Research motivation
Targeted integration into safe harbors like the ROSA26 locus could overcome 
the problem of diminishing donor-cDNA in rAAV gene therapy. There are 
studies, showing proof of concept for targeted integration with nucleases like 
zinc fingers or CRISP/CAS9, but these approaches contain also new potential 
sources of side effects. However in our study only natural appearing cellular 
repair mechanism has been used to generate a targeted integration. 

Research objectives
Up to know it was assumed that the efficiency of gene addition by targeted 
integration into a safe harbor mediated by homologous recombination would 
be to low for phenotypic correction of liver based metabolic diseases (LBMD) in 
growing livers. But we could show in a disease model for LBMD with selection 
advantage of corrected hepatocytes that this is not the case. This could be 

1071 bp
specific for
integrated
Fah cDNA

rAAV8-TTR.Fah NTC rAAV8-ROSA26.HAL-
TTR.Fah-ROSA26.HAR

Figure 4  Integration PCR gel electrophoresis. A representative gel picture 
from the analyses of genomic liver DNA, that was extracted from snap-frozen 
liver tissue harvested between 60-70 d after hepatocyte transplantation. 
Primers were located in the Rosa26 locus and in the FAH sequence of the 
donor DNA. Product could only be amplified if targeted integration occurred. 
The expected length of the PCR amplicon was 1107 bp. The PCR product was 
analysed utilizing agarose gel electrophoresis.
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transferred to other diseases like the group of familial intrahepatic cholestasis 
or Wilson disease or even to diseases with less selection advantage.

Research methods
C57BL/6 Fah∆exon5 mice served as an animal model for human tyrosinaemia type 
1 in our study. We treated these mice with a rAAV Vector containing human Fah 
cDNA, a liver specific promotor (TTR) and homologous arms for ROSA26 locus. 
We compared this group to mice treated with a vector without homologous 
arms. Hepatocyte proliferation was induced by partial hepatectomy and serial 
hepatocyte transplantation. Survival of mice without NTBC and existence of 
FAH positive cell cluster at immunohistochemistry staining on liver tissue of the 
mice were the main endpoints.

Research results
We could show for the first time proof of concept for phenotypic correction of a 
LBMD in a mouse model under conditions of extensive hepatocyte proliferation 
with rAAV mediated gene addition by targeted integration at a safe harbor 
without the use of nucleases or gene repair. Further studies have to show if 
this concept is transferable to LBMD with less section advantage of corrected 
hepatocytes.

Research conclusions 
Our study shows that phenotypic correction of a LBMD by rAAV gene therapy 
under conditions of extensive hepatocyte proliferation is possible with 
homologous recombination (HR) alone and does not necessarily have the need 
for nucleases. In conclusion we showed that HR-mediated rAAV8 gene therapy 
provides targeted transgene integration and phenotypic correction in Fah-/- 
mice with superior long-term efficacy compared to episomal rAAV8 therapy in 
proliferating livers. In opposite to approaches with the aim of point mutation 
repair on genes of LBMD our system with gene addition into a safe harbour can 
be easily transferred to other LBMDs and is not mutation specific.

Research perspectives 
Our results are an important step into the solution of a main clinical problem 
for gene therapy of LBMD, since mostly this therapy is mandatory in growing 
children, where episomal gene therapy is not lasting. In opposite to studies with 
nucleases our study focus on a natural mechanism for targeted integration which 
avoids potential side effects of nucleases. A very important question for following 
studies would be if these results could also be observed in LBMD with less 
selection advantage for corrected hepatocytes (e.g., Crigler-Najjar Syndrom).
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