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Abstract
Non-alcoholic fatty liver disease (NAFLD), the most common chronic liver 
disorder in Western countries, comprises steatosis to nonalcoholic steatohepatitis 
(NASH), with the latter having the potential to progress to cirrhosis. The 
transition from isolated steatosis to NASH is still poorly understood, but 
lipidomics approach revealed that the hepatic lipidome is extensively altered in 
the setting of steatosis and steatohepatitis and these alterations correlate with 
disease progression. Recent data suggest that both quantity and quality of the 
accumulated lipids are involved in pathogenesis of NAFLD. Changes in 
glycerophospholipid, sphingolipid, and fatty acid composition have been 
described in both liver biopsies and plasma of patients with NAFLD, implicating 
that specific lipid species are involved in oxidative stress, inflammation, and cell 
death. In this article, we summarize the findings of main human lipidomics 
studies in NAFLD and delineate the currently available information on the 
pathogenetic role of each lipid class in lipotoxicity and disease progression.

Key words: Lipidomics; Non-alcoholic fatty liver disease; Non-alcoholic steatohepatitis; 
Lipotoxicity; Fatty acids; Ceramides

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Lipidomics is a new rapidly growing field that allows the overall and detailed 
investigation of the whole lipid composition in a given biology matrix. Lipid profiling of 
liver biopsies of patients with non-alcoholic fatty liver disease (NAFLD) has previously 
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revealed several changes in glycerophospholipids and sphingolipids concentrations and 
alterations in fatty acid pattern compared to healthy control. However, findings from 
lipidomics studies in plasma samples are inconsistent. We review the main findings of 
lipidomics studies and the important pathophysiological role of specific lipid species in 
lipotoxicity and development of NAFLD.
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is one of the most common forms of chronic 
liver diseases in the Western countries, affecting approximately 25% of the general 
population[1]. NAFLD encompasses a wide spectrum of liver histological features, 
ranging from mild hepatic steatosis (non-alcoholic fatty liver, NAFL) to nonalcoholic 
steatohepatitis (NASH)[2]. The hallmark of NAFLD is the hepatic intracellular 
accumulation of lipids and the subsequent formation of lipid droplets in 
hepatocytes[3]. NASH, the more progressive form of the disease, is characterized by the 
presence of hepatic steatosis accompanied by lobular inflammation, hepatocellular 
damage, and fibrosis and associated with an increased risk of developing cirrhosis and 
hepatocellular carcinoma[4]. In fact, NASH-related cirrhosis is believed to become the 
leading cause of liver transplantation in the future[5].

NAFLD is commonly associated with insulin resistance and type 2 diabetes mellitus 
and is considered an independent risk factor for cardiovascular disease[6]. Obesity, 
physical inactivity, consumption of nutritionally imbalanced food, and unhealthy 
dietary and other lifestyle habits are also associated with NAFLD, and lifestyle 
modifications involving physical activity and diet have been shown to improve 
hepatic steatosis and liver fibrosis[6-8]. Although there has been remarkable progress in 
the elucidation of NAFLD pathogenesis, the pathophysiological pathways underlying 
lipotoxicity and transition of simple steatosis to NASH are still incompletely 
understood[9]. Recent lipidomic studies revealed marked changes in the fatty acid 
pattern and phospholipid composition in liver samples of NAFLD patients, suggesting 
that perturbations in lipid metabolism are a key factor in the pathogenesis and 
progression of NAFLD[10,11]. Furthermore, liver biopsy remains the only reliable but 
invasive method to diagnose NAFLD and differentiates NASH from simple steatosis. 
Thus, the non-invasive diagnosis of NASH is still an unmet need. Alterations 
occurring in plasma lipid molecules identified by lipidomic techniques which cannot 
be determined in every day clinical practice, may have utility as non-invasive 
biomarkers of disease progression[12].

The present review article focuses on the main findings of the alterations occurring 
in lipidome in NAFLD patients and the interpretation of pathophysiological role of 
several identified lipid classes in the development and progression of NAFLD.

PATHOGENESIS OF NAFLD AND ROLE OF LIPIDS
The pathogenesis of NAFLD is considered to be a multifactorial process and the 
underlying mechanisms involved in the progression of the disease are complex. 
Intrahepatic fat accumulation, the hallmark of the disease, is the result of increased 
uptake of fatty acids, increased de novo lipogenesis, and impairment in export and 
oxidation of fatty acids[3]. Obesity through expansion and dysfunction of adipose tissue 
and insulin resistance through subsequent reduction of adipose tissue lipolysis lead to 
increased efflux of free fatty acids[13]. Moreover, the hyperinsulinemia associated with 
insulin resistance promotes de novo fatty acid synthesis in the liver by activating the 
sterol regulatory element binding protein-1c (SREBP-1c), a transcriptional regulator of 
lipogenic genes[14]. These free fatty acids as well as those from dietary sources either 
undergo β-oxidation or are esterified with glycerol to form triglycerides. Then, 
triglycerides are stored in hepatocytes and form lipid droplets or are packaged and 
exported as very-low-density lipoprotein (VLDL)[3]. Thus, a dietary overload and 
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insulin resistance promote the hepatic fat accumulation, as observed in NAFLD[15].
Intracellular deposition of lipids in NAFLD and the subsequent increased demand 

for metabolism of excess fatty acids lead to production of reactive oxygen species 
(ROS), elevation of oxidative or endoplasmic reticulum (ER) stress, and activation of 
Jun N-terminal kinase, all of which result in mitochondrial dysfunction and cell 
death[16]. Cell injury, in the setting of steatosis, is also largely attributed to activation of 
inflammatory pathways. Adipose tissue dysfunction leads to secretion of pro-
inflammatory cytokines and alters the production and secretion of adipokines, such as 
leptin and adiponectin that are involved in the modulation of inflammation and 
insulin resistance[15]. Hepatic inflammation in fatty liver is considered to be triggered 
by a variety of compounds, such as damage-associated molecular patterns (DAMPs) 
released from hepatocytes, gut-derived bacterial endotoxin, free fatty acids, and free 
cholesterol[17]. Cytokine-induced liver inflammation, the subsequent activation of 
Kupffer and hepatic stellate cells, and lipotoxicity induced by free fatty acids and other 
lipotoxic bioactive lipids are involved in chronic liver injury and are thought to be 
responsible for progression from NAFL to NASH and development of fibrosis[18].

Over the past decade, our knowledge regarding lipotoxicity has been greatly 
expanded and recent progress in lipidomics analyses has given new insights into lipid 
profiling and pathophysiological mechanisms involved in chronic inflammation and 
cell injury. Investigation of liver and serum lipidome in patients with NAFLD has 
disclosed that perturbations in lipid metabolism are a key factor for the development 
of NAFLD and that several complex lipid species, including sphingolipids and 
glycerophospholipids, are involved in lipotoxicity and the pathogenesis of NASH.

LIPIDOMICS STUDIES IN NAFLD
Lipidomics is defined as the detailed characterization of lipid molecular species and of 
their structure and biological role in a given matrix including cell, tissue, and 
biological fluid[19]. This relatively new research field is a subset of metabolomics and 
represents a powerful approach to obtain a comprehensive overview of whole lipid 
metabolism in a biological system or even in specific disease state[20]. Lipidomics 
includes the identification and characterization as well as the quantification of 
thousands of lipid molecular species in a biological matrix[21]. This rapidly growing 
advanced field incorporates analytical techniques that are utilized for lipid separation 
and detection, such as high-performance liquid chromatography (HPLC), electrospray 
ionization mass spectroscopy (ESI MS), and nuclear magnetic spectroscopy (NMR)[19,22].

The first lipidomics studies in NAFLD patients, as seen in Table 1, were conducted 
in liver biopsies and focused mainly on the analysis of fatty acid composition. Araya 
et al[10] was the first to report an increased n-6:n-3 ratio in liver lipids of NAFLD 
patients accompanied by a decrease of the long chain polyunsaturated fatty acid 
(PUFA) of n-3 and n-6 series in liver TAG, such as arachidonic, eicosapentaenoic, and 
docosahexanoic acid. A depletion of long chain n-3 and n-6 PUFA in NASH patients 
has also been reported by a later study, regardless of the dietary FA intake, suggesting 
that the biosynthetic pathways of these lipids are impaired[23]. Indeed, later studies on 
enzymatic activities confirmed the decreased activity of Δ5 desaturase, a key enzyme 
in essential n-3 and n-6 PUFA synthesis[24]. However, the first most comprehensive 
lipidomic study in liver biopsies, which included quantification of major lipid classes, 
was carried by Puri et al[11]. In this study, lipidomic analyses identified marked changes 
not only in the fatty acid composition but also in the total phospholipid content[11]. 
Alterations of phospholipid content in liver biopsies of NASH patients have also been 
reported by other studies, implicating that phospholipid synthesis is impaired in 
NASH and is associated with disease progression[24].

The research later focused on the study of the alterations occurring in plasma and 
serum samples of patients with NAFLD. In view of the fact that the liver is the key 
organ of metabolism and that plasma lipids under fasting conditions reflect mainly the 
lipids exported from the liver, changes in the circulating lipidome could be correlated 
with those in the liver during NAFLD progression. Interestingly, the changes observed 
in plasma fatty acid and phospholipid composition were discrepant from those 
reported in liver samples[25,26]. Moreover, as seen in Table 2, the findings of lipidomic 
studies conducted on plasma samples are inconsistent. According to Puri et al[26], no 
significant differences were observed in the plasma phospholipid subclasses of 
patients with NAFLD compared to healthy controls. However, recent studies report 
s tat is t ical ly  s ignif icant  changes in  plasma phosphatidylser ine (PS) ,  
phosphatidylethanolamine (PE), phosphatidyloinositol (PI), phosphatidylcholine (PC), 
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Table 1 Summary of main liver lipidomics studies in non-alcoholic fatty liver disease

Ref. Tissue Main findings in NAFLD patients compared to 
healthy controls

Main findings in NASH 
patients compared to NAFL 
patients

Puri et al[11], 2007 Liver Increased: DAG, TAG, total SFA, total PUFA; stepwise 
increase in the mean TAG/DAG ratio, FC/PC ratio and 
hepatic FC from normal livers to NAFL to NASH.  
Decreased: Total PC in both NAFL and NASH; AA in 
FFA, TAG, and PC in NASH; EPA and DHA in TAG in 
NASH.

The n-6:n-3 FFA ratio increased 
in NASH

Araya et al[10], 2004 Liver, adipose tissue (fatty acid 
composition)

Increased: n-6:n-3 ratio, n-6 LCPUFA in liver 
phospholipids, total MUFA.  
Decreased: Long-chain PUFA of the n-6 and n-3 series in 
liver TAG, AA/LA ratio, EPA + DHA)/ALA in liver 
TAG, n-3 LCPUFA in phospholipids, total PUFA, n-3 
PUFA, n-6 PUFA, AA, EPA, DHA.

The n-6:n-3 ratio increased in 
NASH

Allard et al[23], 2008 Liver, red blood cells (fatty acid 
composition)

Increased: MUFAs, palmitoleic acid (16:1 n9), and oleic 
acid (18:1 n9) in NASH compared to control group.  
Decreased: Total n-3 PUFA, long-chain n-3 (EPA + 
DHA) and long-chain n - 6 (AA) PUFA in NASH 
compared to control; RBC-FA composition similar 
among the three groups.

Decreased: Total n- 6-PUFA in 
NASH compared to NAFL

Chiappini et al[24], 2017 Liver Increased: C14:0, C16:0, C16:1n-7, C18:1n-7, C18:1n-9, 
and C18:2n-6 in NASH.  
Decreased: Total SM, PI, PS, PE, PC in NASH.

Lipid signature of NASH (32 
lipids).  
Decreased: AA, EPA, and DHA; 
total Cer.

NAFLD: Non-alcoholic fatty liver disease; NAFL: Nonalcoholic fatty liver; NASH: Nonalcoholic steatohepatitis; DAG: Diacylglycerol; TAG: 
Triacylglycerol; SFA: Saturated Fatty acids; PUFA: Polyunsaturated fatty acids; FC: Free cholesterol; PC: Phosphatidylcholine; FFA : Free fatty acids; 
LCPUFA: Long chain polyunsaturated fatty acid; MUFA: Monounsaturated fatty acid; RBC-FA: Red blood cell-fatty acids; SM: Sphingomyelin; PI: 
Phosphatidylinositol; PS: Phosphatidylserine; PE: Phosphatidylethanolamine; EPA: Eicosapentaenoic acid (C20:5n-3); DHA: Docosahexanoic acid (C22:6n-
3); AA: Arachidonic acid (C20:4n-6); LA: Linoleic acid (C18:2n-6); ALA: α-linolenic acid (C18:3n-3); Cer: Ceramides.

and sphingomyelin contents among healthy subjects and NAFL and NASH 
patients[25,27].

Due to discrepancy between the findings in plasma lipidomic analyses and the need 
to discover novel non-invasive biomarkers to distinguish NASH from NAFL, several 
studies for lipidomics analysis were performed in both plasma and liver biopsy 
samples[28,29]. A total of 48 common analytes with an overlap in both tissues were 
identified in a comprehensive lipidomic study conducted both in liver and plasma 
samples of patients with NAFLD. These analytes were mainly sphingolipid species, 
such as dihydroceramides, 1-deoxydihydroceramides, and longer chain ceramides, 
suggesting that perturbation of sphingolipid metabolism is involved in the 
pathogenesis of NAFLD[28].

The alterations occurring in each lipid class as well as the possible mechanisms 
underlying these changes in NAFLD will be discussed below.

GLYCEROPHOSPHOLIPIDS
Glycerophospholipids are major components of cellular membranes and a source of 
physiologically active compounds. They serve as signaling molecules and as anchors 
for proteins in cell membranes.

Phosphatidylcholine (PC) is one of the most abundant phospholipids in mammals 
and a major component of cellular membrane lipids. PC levels were reported to be 
decreased in the liver samples of patients with NAFLD[11,24]. However, there are 
conflicting data concerning the changes occurring in serum PC[25-27].

From a metabolic point of view, in most mammalian cells, PC is produced de novo 
from dietary choline via the cytidine 5’-diphosphate CDP-choline pathway[30]. In 
hepatocytes, up to 30% of PC comes from the conversion of phosphatidylethanolamine 
(PE) to PC, a reaction which is catalyzed by the enzyme phosphatidylethanolamine N-
methyltransferase (PEMT)[31]. The synthesis of PE occurs via a CDP-ethanolamine 
pathway and via decarboxylation of phosphatidylserine (PS). Up to now, a few 
number of lipidomic studies mentioned alterations in PE in NAFLD patients. Liver PE 
content was found to be decreased among subjects with NASH, but in another study 
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Table 2 Summary of main lipidomics studies in plasma and serum in non-alcoholic fatty liver disease

Ref. Tissue Main findings in NAFLD patients compared to healthy control Main findings in NASH patients compared to 
NAFL patients

Puri et al[26], 2009 Plasma Increased: DAG, TAG, MUFA, dihomo-gamma-linolenic acid, palmitoleic acid, oleic acid, palmitoleic acid to 
palmitic acid ratio in NAFLD; stepwise increase in lipoxygenase (LOX) metabolites 5-HETE, 8-HETE, and 15-HETE 
from healthy controls to NAFL to NASH; 11-HETE in NASH compared with controls.  
Decreased: LA; total plasmalogen levels in NASH compared with controls.

Zheng et al[81], 2012 Plasma phospholipids fatty acid 
composition

Increased: Dihomo-gamma-linolenic acid (C20: 3n-6), total SFA in phospholipids.  
Decreased: Eicosanoic acid (C20: 0), cis-11-octadecenoic acid (C18: 1n-7), DHA in PL.

Loomba et al[89], 2015 plasma eicosanoid lipidomic profile Increased: 15-HETE, 5,6-diHETrE.  
Decreased: 12,13-diHOME.

Increased: 11,12-diHETrE, dhk PGD2, and 20-
COOH AA.  
Decreased:

Walle et al[80], 2016 Serum (fatty acid composition) Increased: Palmitoleic acid in CE in individuals with NAFLD.  
Decreased: LA and total n-6 fatty acids in TAG in individuals with NASH.

Increased: SFA in TAG were higher in subjects 
with NASH, myristic acid in CE and TAG, Stearic 
acid in TAG.  
Decreased:

Tiwari-Heckler et al[27], 
2018

Serum Increased: PC and SM in NAFL and NASH.  
Decreased: Lysophospatidylethanolamine in NAFL and NASH individuals.

Increased: PE in patients with NASH.

Ma et al[27], 2016 Plasma Increased: PS and PI in NAFL and NASH, DHA and AA in PS in NAFL and NASH.

NAFLD: Non-alcoholic fatty liver disease; NAFL: nonalcoholic fatty liver; NASH: Nonalcoholic steatohepatitis; DAG: Diacylglycerol; TAG: Triacylglycerol; SFA: Saturated Fatty acids; MUFA: Monounsaturated fatty acids; PC: 
Phosphatidylcholine; HETE: Hydroxyeicosatetraenoic acid; 5,6-diHETrE : 5,6 dihydroxy- eicosatrienoic acid; 12,13-diHOME: 12,13-dihydroxy-9- octadecenoic acid; CE: Cholesteryl ester; PE: Phosphatidylethanolamine; LA: Linoleic acid 
(C18:2n-6); DHA: 11,12-diHETrE: 11,12-dihydroxy- eicosatrienoic acid; dhk PGD2: 13,14-dihydro-15-keto prostaglandin D2; 20-COOH AA: 20-carboxy arachidonic acid; SM: Sphingomyelin; PE: Phosphatidylethanolamine; PS: 
Phosphatidylserine; PI: Phosphatidylinositol.

serum PE levels were increased in these patients[24,27].
The ratio of PC/PE in the liver reflects the activity of PEMT[32]. In a shotgun MS-

based targeted lipidomic analysis, researchers observed a statistically significant 
decrease of the hepatic PC/PE ratio in NAFLD patients[32]. Similarly, a low PC/PE 
ratio was also reported in red blood cell membrane of NAFLD patients and is 
considered as a biomarker of NAFLD. Additionally, a loss-of-function polymorphism 
in the PEMT gene seems to be associated with susceptibility in NAFLD[33]. However, 
when this parameter was calculated in plasma of NAFLD patients, no significant 
differences were observed among the healthy controls and NAFL and NASH patients, 
suggesting that compensatory mechanisms are activated in an attempt to maintain the 
plasma PC/PE ratio[25].

The low hepatic PC levels and the altered hepatic PC/PE ratio seem to have major 
implications in the development of NAFLD, but the pathophysiology of the lipid-
induced processes is not fully understood. PC is the only phospholipid molecule that 
is known to regulate the assembly and secretion of lipoproteins[34]. Low hepatic levels 
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of PC, due to its synthesis impairment, have been found to impair the VLDL secretion 
and reduce significantly the levels of circulating VLDL lipoproteins. A dysfunction of 
VLDL secretion results in hepatic accumulation of TGs, as observed in many animal 
model studies[35,36]. Moreover, low PC levels have been previously described to activate 
sterol regulatory element-binding protein 1 (SREBP1)[37]. The activation of SREBP1, as 
mentioned above, leads to upregulation of lipogenic gene expression, thus resulting in 
increased de novo lipogenesis and formation of lipid droplets in hepatocytes.

From a structural point of view, disturbances in the proportion of PC and PE 
possibly affect the structure of the phospholipid bilayer of cell membrane. PC has a 
cylindrical shape and is distributed mainly in the outer monolayer of plasma 
membrane. On the contrary, PE is described as conical, and is located mostly in the 
inner monolayer[38]. A low PC/PE ratio possibly leads to rearrangement of PE in the 
outer monolayer, resulting in a loss of membrane integrity and increased permeability 
to pro-inflammatory molecules such as cytokines. Thus, the release of cellular 
contents, such as calcium, accompanied by an increase in influx of cytokines, initiates 
the inflammation in NAFLD[39].

As far as the rest of the glycerophospholipids is concerned, only a small number of 
lipidomics studies have previously reported statistically significant changes of their 
abundance in NAFLD[11,24,25]. Likewise, the findings from lipidomics studies conducted 
on liver samples were inconsistent with those from plasma samples of NAFLD 
patients.

Chiappini et al[24] found that the levels of PS and PI were decreased in liver biopsy 
samples of patients with NASH compared with control individuals, whereas in a 
recent lipidomic study, no statistically significant differences were found in hepatic PS 
and PI among the control group, patients with NAFL, and those with NASH[24,29]. On 
the contrary, plasma PS and PI were found to be increased in NAFL and NASH 
compared with the control, while another study reported only an increase of serum PI 
in NASH patients compared to patients with simple steatosis[25,40]. Tiwari-Heckler 
et al[27], on the other hand, reported no significant changes in the amount of circulating 
PI among controls, NAFL patients, and NASH patients, but it is worth noting that in 
this study liver biopsy was not performed in all included subjects. These 
glycerophospholipids are also components of cellular membrane and are associated 
with cellular signaling and cellular apoptosis[41,42]. Given the important role of these 
lipids, differences observed in their hepatic or plasma levels may be involved in the 
development and progression of NAFLD.

Lysophosphatidylocholine (LPC) is a biologically active lipid and is considered an 
important mediator of hepatic lipotoxicity[43]. In liver biopsies from patients with 
NASH, LPC was found to be increased and this elevation seems to follow the disease 
severity[11,44]. However, several plasma and serum lipidomic studies failed to detect any 
statistically significant changes in the LPC content in patients with NAFL or 
NASH[25-27]. Interestingly, a recent study in biopsy proven patients with NAFLD found 
that plasma LPC species were decreased in patients with NASH[45]. Furthermore, 
another study reported that LPC diminished in patients with NAFLD[46]. This finding 
combined with an increase of TGs with low carbon number and double-bond content 
and a decrease of ether phospholipids has been proposed as a useful biomarker 
capable of estimating the percentage of liver fat in patients with NAFLD.

LPC is generated from PC by the action of secretory or lipoprotein-bound 
phospholipase A2 (PLA2). Also, LPC in plasma originates by the activity of lecithin-
cholesterol acyltransferase (LCAT) as well as the activity of endothelial lipase. Hepatic 
secretion is also considered as a source of plasma LPC[47]. The increased hepatic LPC 
content could be attributable to an increase in hepatic biosynthesis or to an increase of 
total LPCs transported back to the liver by albumin or alpha 1-acid glycoprotein 
(AGP)[48]. As concerns the LPC levels in plasma, an impairment either on LCAT 
activity or PLA2 activity, as well as an increased turnover of LPC to PC or 
lysophosphatidic acid and sphingosine-1-phosphate are probable causes of diminished 
LPC levels in plasma. In fact, lipoprotein associated phospholipase A2 levels were 
found to be decreased in patients with NAFLD, whereas LCAT activity was higher in 
subjects with NAFLD, as inferred from a Fatty Liver Index > 60[49,50]. Moreover, a study 
in mice reported lower levels of palmitoyl-, stearoyl-, and oleoyl-LPCs in NASH 
compared to animals with NAFL, suggesting that the activity of lyso-PC 
acyltransferase, that catalyzes the recycle of LPCs to PC, is elevated in NASH[51].

LPC as a bioactive molecule, seems to be involved in the pathogenesis of NAFLD 
and the transition from simple steatosis to NASH. LPC affects the whole liver lipid 
metabolism and has been found to downregulate genes involved in fatty acid 
oxidation and upregulate genes involved in cholesterol biosynthesis[52]. Furthermore, 
LPC has been demonstrated in vitro to trigger apoptosis of hepatocytes, probably 
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through disruption of mitochondrial integrity, whereas inhibitors of phospholipase A2 
were shown to decrease palmitate-induced lipotoxicity and cell apoptosis[52,53]. Lastly, 
lipotoxicity induced by LPC could be mediated by release of proinflammatory and 
pro-fibrogenic molecules from hepatocytes or the enhanced turnover of LPC to 
profibrogenic lysophosphatidic acid[54].

Plasmalogens are a class of glycerophospholipids carrying a vinyl ether bond in sn-1 
and an ester bond in sn-2 position of their glycerol backbone. The biosynthesis of 
plasmalogens is a complex multistep process that takes place in peroxisomes and the 
endoplasmic reticulum[55]. Circulating plasma plasmalogens levels have been 
previously found to be decreased in patients with NASH and were negatively 
associated with obesity[26,56]. Furthermore, a depletion of total ether phospholipids has 
also been found in patients with NAFLD[46]. Lipidomic studies in liver biopsies of 
patients with NAFLD, however, failed to detect any changes in plasmalogen levels, 
probably due to their significantly lower liver concentrations compared to the rest of 
glycerophospholipids[57]. The liver contains low amounts of plasmalogens, although 
the enzymes involved in their synthesis are active in this tissue. This reduction might 
be attributable to their synthesis in the liver, and subsequent transport by lipoproteins 
to other tissues[57]. More interestingly, lipidomic analyses in NAFLD patients carrying 
the GG-genotype of PNPLA3, who are at a higher risk for more advanced disease and 
fibrosis, revealed lower levels of total plasma plasmalogens compared to subjects with 
CC- and CG-allele[27].

Plasmalogens represent a key structural component of the cell membrane and may 
be involved in ion transport and cholesterol efflux. They have been described as 
signaling molecules and may also serve as precursors for eicosanoid biosynthesis[58]. 
Several studies have shown that plasmalogens, by virtue of their vinyl ether, function 
as endogenous antioxidants[59]. The deficiency in plasmalogens, which has been 
reported in plasma of NASH patients, could be attributed to oxidative stress-induced 
peroxisome damage and subsequent impairment of plasmalogen biosynthesis[55]. In 
fact, a recent study reported that endogenous hepatic plasmalogens, through a PPARa-
dependent mechanism, prevent the development of hepatic steatosis and NASH in 
mice[60].

SPHINGOLIPIDS
Sphingolipids are a special group of phospholipids which contain a sphingosine 
backbone. Even though sphingolipids are very low in abundance compared with 
glycerophospholipids, they are considered important structural components of cell 
membrane[61,62]. They are involved in the arrangement of membrane lipid domains and 
cell signaling of major biological processes, such as cell survival and immune 
responses[62]. Lipidomic studies revealed changes in levels of sphingomyelin (SM), 
ceramides, and diydroceramides in plasma and liver biopsies of patients with NAFL 
and NASH, implicating that alterations in sphingolipid metabolism are associated 
with the development and severity of NAFLD[24,28,45].

SM is the most abundant sphingolipid and its plasma levels have been previously 
reported to correlate with body mass index (BMI)[56,61]. In NAFLD, the results from 
lipid profiling of liver and plasma are inconsistent. SM was found to be decreased in 
liver biopsies of patients with biopsy proven NASH[24], but Puri et al[11] reported a non-
statistically significant increase of this sphingolipid in patients with NASH. In other 
lipidomic studies, in which the control group was also morbidly obese, no significant 
differences were observed in the total sphingomyelin levels among the control, NAFL, 
and NASH groups[25,29,40]. Tiwari-Heckler et al[27], however, reported an increase of total 
serum SM in NAFL and NASH patients compared to healthy controls. Moreover, 
individual sphingomyelin species, specifically SM (36:3), (d18:2/16:0), (d18:2/14:0), 
(d18:1/18:0), (d18:1/16:0), (d18:1/12:0), and (d18:0/16:0), were found to be increased 
in serum of patients with NAFLD compared to healthy subjects[63], whereas Zhou 
et al[45] reported that circulating sphingomyelin cluster with representatives SM 
(d18:1/24:1), SM (d18:1/16:0), SM (d18:1/22:0), SM (d18:1/24:0), SM (d18:1/18:0), SM 
(d18:1/20:0), SM (d18:1/23:0), SM (d18:0/16:0), and SM (d18:0/20:4) was decreased in 
NASH patients compared to non-NASH subjects. Although there is no consensus on 
whether SM increases or decreases along with disease severity, studies in transgenic 
mice lacking the sphingomyelin synthase gene, revealed a strong association between 
liver SM levels and insulin resistance[64]. Further studies are needed to assess the 
relationship between SM metabolism and progression of NAFLD.

Numerous studies suggest that ceramide is a major contributing factor to insulin 
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resistance[65]. Ceramides and ceramide-derived sphingolipids are structural 
constituents of cell membranes, which also possess cell-signaling properties. Even 
though ceramide synthesis occurs in many organs, the liver is a key site for ceramide 
synthesis and in fact data from several studies suggest that sphingolipids, such as SM 
and ceramides, are found in higher quantity in the liver compared to other tissues[65,66]. 
Moreover, ceramide levels have been reported to be increased in the plasma of 
patients with prediabetes and ceramides were also increased in plasma and liver 
biopsies of patients with NAFLD[28,40,67].

Ceramide synthesis can occur through three different pathways: (1) A de novo 
pathway that includes four sequential reactions with serine palmitoyl-CoA transferase 
(SPT) representing the rate-limiting enzyme of this pathway; (2) Through hydrolysis of 
SM catalyzed by sphingomyelinase (SMase); and (3) A salvage pathway[68]. De novo 
synthesis has been described to be stimulated by a diet rich in saturated fat[69]. 
Furthermore, increased hepatic free fatty acid influx, inflammation induced by TNFα 
and IL1, and oxidative stress can all increase the activity of SPT and activate de novo 
synthesis of ceramides[68,70]. All these three conditions are involved in the 
etiopathogenesis of NAFLD and represent important regulators of de novo ceramide 
synthesis[3]. Aside from the activation of de novo synthesis, inflammation increases 
ceramides by up-regulating the activity of sphingomyelinase[71]. Adiponectin, an 
adipokine involved in NAFLD pathophysiology, affects also the ceramide production. 
Adiponectin via receptors appears to upregulate the expression of ceramidase, the 
enzyme that converts ceramides to sphingosine-1-phosphate (S1P). Patients with 
NAFLD exhibit lower adiponectin levels than healthy subjects and this seems to 
contribute to the already increased concentration of ceramides[72].

Ceramides, through their function as signaling molecules, have several 
physiological effects that contribute to the pathogenesis of steatosis and 
steatohepatitis. In particular, ceramides have been previously reported to decrease 
insulin sensitivity in skeletal muscle and hepatocytes[65]. In fact, a previous animal 
study reported that administration of inhibitors of ceramide biosynthesis resulted in a 
significant improvement of insulin resistance[70]. While increase of inflammatory 
cytokines leads to increased ceramide production, it is likely that ceramides through 
feedback mechanisms lead to increased production of cytokines and induce further 
processes of inflammation[65]. In addition, ceramides are involved in increased 
oxidative stress, mitochondrial dysfunction, and cell apoptosis[65,73]. Finally, there is 
evidence that ceramides may regulate the synthesis of HDL lipoproteins and thereby 
affect the reverse cholesterol transport. In a study in Western diet rat models, 
administration of myriosine - an inhibitor of ceramide biosynthesis – not only 
improved insulin resistance and steatosis, but also increased ApoAI production rate 
and consequently the production rate of HDL lipoprotein[74].

NEUTRAL LIPIDS
As far as neutral lipid classes are concerned, a limited number of studies have been 
conducted to investigate whether quantitative changes in their content are observed in 
patients with NAFLD. Triacylglycerols (TG), as expected, were found to be increased 
in liver biopsies of patients with NAFLD, whereas no statistically significant 
differences were observed in free fatty acid (FFA) hepatic content[11,29]. Diacylglycerols 
(DG) were also increased in the liver and interestingly, the ratio of TG/DG was 
increased in a stepwise manner from NAFL to NASH, suggesting that diacylglycerol 
acyl transferase (DGAT) is possibly involved in the pathogenesis of NAFLD[11]. In fact, 
inhibitors of DGAT-2 decreased hepatic steatosis, ballooning, and fibrosis in mice[75]. 
Moreover, recently this study was extended in phase 1 clinical trial in humans and 
steatosis and clinical markers of liver function were improved[76].

Several studies have demonstrated that cholesterol homeostasis is disturbed in 
NAFLD[77,78]. Hepatic free cholesterol accumulation has been correlated with disease 
progression from simple steatosis to NASH without an increase in cholesterol 
esters[11], whereas the findings about esterified cholesterol are contradictory[11,29]. Free 
cholesterol is considered a cytotoxic lipid that is involved in hepatotoxicity by 
disrupting membrane integrity and inducing oxidative stress, mitochondrial 
dysfunction, and apoptosis[79]. Thus, the observed increase of free cholesterol might 
contribute to liver injury and disease progression.
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FATTY ACIDS
Numerous studies have demonstrated that the fatty acid composition of lipids is 
altered in patients with simple steatosis and NASH. Total saturated fatty acids were 
found to be increased in liver biopsies of patients with NAFLD[11]. Especially, an 
increase in individual saturated fatty acids such as myristic acid and palmitic acid was 
found in liver samples of patients with NASH[24]. Walle et al[80] conducted a 
comprehensive study in serum fatty acid composition and reported an increase in total 
saturated fatty acids in triacyglycerols in NASH patients compared to patients with 
simple steatosis. Furthermore, serum levels of myristic acid in cholesterol esters and 
triacyglycerols and those of stearic acid in triacylgylerols were found to be increased in 
patients with NASH[80]. Total saturated fatty acids were reported also to be increased in 
plasma phospholipids in patients with NAFLD[81]. The increased de novo lipogenesis 
occurring in NAFLD as well a diet enriched in those types of fatty acids might be the 
main cause for the increase of saturated fatty acids in the liver and serum of patients 
with NAFLD[82]. In addition, saturated fatty acids exhibit pro-apoptotic properties and 
also, are involved in the pathogenesis of steatosis. The increase of saturated fatty acids 
in hepatocytes results in endoplasmatic reticulum stress, increased caspase activation, 
and hepatocellular apoptosis[83].

Total monounsaturated fatty acids were also found to be increased in the liver and 
plasma of NAFLD patients[10,23,26,29]. In some cases, this increase was driven by 
palmitoleic acid and oleic acid[23,26]. These individual fatty acids are generated by the 
enzyme stearoyl-Coa desaturase (SCD1) from saturated fatty acids. The increase of 
monounsaturated fatty acids could be attributable to increased de novo lipogenesis 
activity and increased activity of SCD1[84]. In fact, Chiappini et al[24] demonstrated that 
the gene expression of SCD1 was significantly increased in NASH patients in 
accordance with the increase of oleic and palmitoleic acid. Monounsaturated fatty 
acids are considered to contribute to the development of steatosis, but are more 
efficient in incorporating into hepatocyte triglycerides, thus they are less lipotoxic than 
saturated fatty acids. A potential protective role of monounsaturated fatty acids 
against lipotoxicity has also been suggested through the promotion of triglycerides 
accumulation in hepatocytes[85].

The most common finding in lipidomic studies is the decrease of long chain PUFA. 
Specifically, a decrease in eicosapentaenoic acid, docosahexanoic acid, and arachidonic 
acid was reported in several lipidomic studies performed in the liver and plasma of 
patients with NAFLD[10,11,23,25]. The depletion of these n-3 and n-6 PUFA may be 
attributed to either a dietary deficiency or impaired biosynthesis. The generation of 
these PUFA is a multistep process in which several elongase and desaturases enzyme 
are involved. In NASH patients, the activities of fatty acid desaturase 1 (FADS1) and 
fatty acid elongase 6 (ELOVL6) were decreased[24]. Furthermore, the decreased activity 
of FADS1 is considered a key pathogenetic factor in the progression of simple steatosis 
to NASH. Another interesting finding is the increased n-6/n-3 ratio observed in liver 
biopsies of patients with NASH[10,11]. PUFA, especially n-3, are involved several 
biological processes and exhibit a protective role against lipotoxicity and insulin 
resistance[86]. Restoration of hepatic n-3 content improved steatosis and insulin 
resistance and decreased lipid peroxidation and necroinflammation in a mouse model 
of steatohepatitis[86]. Moreover, PUFA interact with transcription factors and modulate 
the expression of genes involved in lipid metabolism and fibrogenesis[87,88].

PUFA serve also as precursors for the synthesis of proinflammatory eicosanoids and 
specialized pro-resolving mediators (SPMs). The biosynthesis of these lipid species 
involves several enzymes such as cyclooxygenases and lipoxygenases. Puri et al[26] 
reported a stepwise increase of lipoxygenase metabolites of arachidonic acid in plasma 
from control to NAFL and NASH, whereas no significant differences were observed in 
the plasma cyclooxygenase products of arachidonic acid among the study groups. 
Specifically, the lipoxygenase metabolites 5-HETE, 8-HETE, 11-HETE, and 15-HETE 
were found to be increased in plasma of patients with NASH[26]. Later, Loomba et al[89] 
investigated the plasma lipidomic profile of eicosanoid in patients with NAFLD and 
reported a significant increase of arachidonic acid-derived metabolites 11,12-diHETrE, 
dhk PGD2, and 20-COOH AA in plasma of patients with NASH compared to subjects 
with NAFL.

LIMITATIONS OF PLASMA LIPIDOMICS STUDIES IN NAFLD
The findings of lipidomics studies conducted in plasma or serum of patients with 
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NAFLD, as mentioned before, are inconsistent. Lack of consistency is observed also 
between findings from plasma and liver studies. Interestingly, the discrepancies 
between liver and plasma findings regard mainly glycerophospholipid composition 
rather than fatty acid composition. In general, liver lipidomics studies revealed a 
decrease in glycerophospholipid species, such as PC, PE, PS, and PI, in NAFL patients 
and in some cases this alteration was profound only in the setting of NASH. On the 
contrary, most plasma lipidomic studies failed to detect depletion of these lipids and 
in some cases plasma glycerophospholipids were found to be increased in patients 
with NAFLD compared to the control group. Plasma glycerophospholipids are carried 
and distributed in lipoprotein classes. Plasma PC and PE are mainly distributed in 
HDL lipoprotein and 50% of hepatic PC is derived from circulation probably though 
hepatic uptake of HDL-PC[90,91]. Hence, low hepatic glycerophospholipid content, in an 
attempt to maintain adequate levels of these lipids, could lead to activation of 
unknown compensatory processes resulting in increased delivery of HDL-associated 
phospholipids and subsequent increase in plasma levels.

Moreover, findings regarding SM content in the liver and plasma are also 
inconsistent. Approximately 50% of plasma SM is found in LDL and 40% in HDL, and 
it is worth noticing that plasma SM levels correlate with BMI[56,90]. Differences in 
lipidomics study design including the selection of obese study population as a control 
group could explain the discordant findings. Furthermore, alteration in SM content in 
lipoprotein particles due to dietary factors, obesity, and unknown compensatory 
mechanism could be responsible for the differences observed in liver and plasma 
studies regarding sphingolipid species.

Further lipidomic studies focused on phospholipid content of lipoproteins in 
NAFLD patients should address this issue and delineate the changes observed in the 
setting of NAFLD.

NONINVASIVE DIAGNOSIS OF NASH THROUGH LIPIDOMICS
At present, the diagnosis of NAFLD and the distinction of NASH from simple steatosis 
require liver biopsy and histological assessment. Nevertheless, liver biopsy is an 
invasive, costly, and time-consuming procedure. Hence, there is a growing interest in 
developing noninvasive methods for differential diagnosis of NASH and evaluation of 
treatment outcomes. Lipidomic studies carried out in liver biopsies of patients with 
NAFL and NASH patients reported alterations of hepatic lipid profile and several 
studies investigated if these changes were also observed in plasma or serum. Plasma 
lipidomic studies reported changes in the concentration of several lipids between 
patients with NASH and NAFL, but as highlighted above the results are inconsistent. 
As seen in Table 2, saturated fatty acids in TGs, such as myristic acid and stearic acid, 
were found to be increased in patients with NASH compared to subjects with 
NAFL[80]. Moreover, plasma eicosanoid lipidomics analyses revealed a significant 
increase of arachidonic acid-derived metabolites (11,12-diHETrE, dhk PGD2, and 20-
COOH AA) in patients with NASH compared to subjects with NAFL and researchers 
suggested that these eicosanoids may have a utility as biomarkers for the noninvasive 
diagnosis of NASH[89]. Lipoxygenase metabolites 5-HETE, 8-HETE, 11-HETE, and 15-
HETE were also found to be increased in plasma of patients with NASH and these 
metabolites seem promising predictive biomarkers of NASH[26].

Gorden et al[28] investigated the alterations of liver and plasma lipidomic profiles in 
patients with NAFLD categorized in three subgroups of disease progression. The 
study population included healthy subjects, patients with simple steatosis, patients 
with NASH, and subjects with cirrhosis. Lipidomic analyses in combination with 
aqueous metabolites analyses led to identification of 48 common analytes, which 
presented variation across disease stage and an overlap in both tissues. These analytes 
were sphingolipid species, such as dihydroceramides, 1-deoxydihydroceramides, and 
longer chain ceramides, implicating that sphingolipid metabolism is impaired and 
additionally involved in disease progression and transition of simple steatosis to 
NASH. Furthermore, Gorden et al[28] identified a panel of 20 plasma lipids that can be 
used to distinguish NASH from simple steatosis. This panel included 
dihydrosphingolipids, ether phospatidylicholines, and other individual species. 
However, the number of patients that participated in this study is relatively small and 
validation of these findings in larger cohort of patients is needed[28]. Later, Zhou and 
his team developed an MS-based model and diagnostic score for NASH with an area 
under the receiver operating characteristic of 0.86. The NASH ClinLipMet score 
included AST, fasting glucose, glutamate, isoleucine, glycine, lysophospatidylcholine 
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16:0, and phospoethanolamine 40:6 along with PNPLA3 genotype. This score needs 
also external validation[45].

CONCLUSION
Recent advances in lipidomics technology have made it possible to profile lipidome of 
liver tissues and plasma in NAFLD and compare the findings among the different 
stages of disease. Lipidomic profiling accompanied by experimental studies using 
pharmacological reagents to alter synthesis or metabolism of certain lipids, has given 
additional insights into mechanisms governing lipotoxicity and disease progression. In 
this review, the most interesting findings of lipodomics analyses are summarized and 
the interpretation of these findings in the pathogenesis of NAFLD is discussed. The 
inconsistencies observed between the findings of plasma and liver lipidomics studies 
in NAFLD have also been underlined and future studies will need to address this 
issue. Moreover, even if a small number of studies identified specific lipids or a panel 
of lipids as biomarkers of disease progression, these findings need further external 
validation from a large cohort of patients.
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