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Abstract
The integration of artificial intelligence (AI) and augmented realities into the 
medical field is being attempted by various researchers across the globe. As a 
matter of fact, most of the advanced technologies utilized by medical providers 
today have been borrowed and extrapolated from other industries. The 
introduction of AI into the field of hepatology and liver surgery is relatively a 
recent phenomenon. The purpose of this narrative review is to highlight the 
different AI concepts which are currently being tried to improve the care of 
patients with liver diseases. We end with summarizing emerging trends and 
major challenges in the future development of AI in hepatology and liver surgery.
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been borrowed and extrapolated from other industries. The introduction of artificial 
intelligence (AI) into the field of hepatology and liver surgery is relatively a recent 
phenomenon. The purpose of this narrative review is to highlight the different AI 
concepts which are currently being tried to improve the care of patients with liver 
diseases. We end with summarizing emerging trends and major challenges in the future 
development of AI in hepatology and liver surgery.
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1977-1990
URL: https://www.wjgnet.com/1948-5182/full/v13/i12/1977.htm
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INTRODUCTION
Artificial intelligence (AI) is gradually changing the way that medicine is being 
practiced across the world, with technological advancements in the field of imaging, 
navigation and robotic intervention. It is increasingly being used for risk stratification, 
genomics, imaging and diagnosis, precision medicine, and drug discovery. The 
introduction of AI in hepatology and liver surgery is more recent and it has a strong 
root in machine learning (ML)-based algorithms, imaging and navigation, with early 
techniques focused on feature detection and computer-assisted intervention for both 
pre-operative planning and intra-operative guidance. AI-based solutions can assist in 
timely detection of liver tumors, more precise diagnosis and predicting disease course 
as well as outcomes. Diseases affecting the liver are heterogeneous and complex in 
nature, caused by various etiological factors, such as genetics, sex, ethnicity, body 
mass index (commonly known as BMI), environmental exposures to toxins, and 
comorbid conditions like diabetes mellitus. AI-based approaches could be highly 
useful in analyzing these various types of complex data in hepatology practice and 
research.

Components of AI systems can be broadly classified into expert system, search 
algorithm, ML, and deep learning (DL)[1]. Among them, ML is the most commonly 
used term, which can be considered as a branch of AI in which computers learn from 
data, with emphasis on computational algorithms, and analyze tons of data within no 
time[1]. ML can be of supervised or unsupervised learning. Supervised learning can be 
defined as a kind of ML which helps in predicting a known outcome, based on inputs, 
in the presence of an expert ‘supervisor’[2]. While unsupervised learning is another 
type of ML, which can discover naturally occurring patterns without a pre-defined 
outcome, in the absence of an expert ‘supervisor’[2]. The artificial neural network 
(ANN) is a type of statistical system used to derive outputs, based on interactions of 
weighted inputs and outputs and it mimics the intricate architecture of neuronal 
networks in the brain[3]. One other subset of ML is DL, which uses automatic 
discovery of representations from raw data (representation learning) for detection or 
classification[4]. Convolutional neural network (CNN) is a kind of DL ANN which 
utilizes multiple building blocks, such as pooling layers and convolution layers, and 
performs feature extraction to yield final output[5]. CNNs can be considered as one of 
the most successful DL models, due to their exceptional capability for processing 
spatial information[6]. Another type of neural network, known as recurrent neural 
network, utilizes feedback connections and displays great accuracy in labelling and 
forecasting sequential data[7]. Radiomics is another method in AI that extracts 
innumerable features from radiographic images by using data-characterization 
algorithms[8]. These radiomic features have the potential to unearth many character-
istics of a disease that fail to be appreciated by the naked eye examination of a 
clinician. Radiomics can be coupled with AI, as it is capable of handling a massive 
amount of data in contrast to the traditional statistical methods[9]. Almost all AI 
techniques require a large dataset comprising laboratory and radiological findings, 
and outcome data. In the future, AI will definitely be useful in supporting clinical 
decisions, minimizing medical errors, and forecasting clinical outcomes. In this article, 
we will review the emerging role of AI in the management liver diseases, liver surgery 

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1948-5182/full/v13/i12/1977.htm
https://dx.doi.org/10.4254/wjh.v13.i12.1977


Veerankutty FH et al. AI in hepatology/liver surgery

WJH https://www.wjgnet.com 1979 December 27, 2021 Volume 13 Issue 12

and liver transplantation.

AI IN LIVER DISEASES
Non-alcoholic fatty liver disease
Non-alcoholic fatty liver disease (NAFLD) is a growing epidemic globally, in part 
attributable to the increasing incidence of obesity and insulin resistance resulting in 
liver accumulation of free fatty acids and triglycerides. NAFLD patients are at higher 
risk of liver-related as well as cardiovascular-related mortality, and it is rapidly 
becoming the chief indication for liver transplantation[10,11]. Besides, NAFLD has 
been identified as a major risk factor for hepatocellular carcinoma (HCC)[12]. ML has 
been explored extensively for pattern recognition in NAFLD (Table 1). Timely identi-
fication of patients with NAFLD is paramount to arrest the disease progression to 
cirrhosis and related complications. Liver biopsy remains the gold standard for 
definitive diagnosis but it is invasive and inappropriate for screening. The develop-
ment of non-invasive advanced imaging, biochemical and genetic tests as well as AI 
techniques will undoubtedly offer clinicians a great deal of information in the near 
future that can be utilized for early diagnosis and targeted treatment options.

Imaging of liver with ultrasound (US) is considered as a keystone for the initial 
diagnosis of NAFLD as it is widely available and image acquisition is easy. Magnetic 
resonance imaging (MRI) with proton density fat fraction (PDFF) has been considered 
as the reference standard in the quantification of hepatic steatosis; however, this 
technique has its own limitations, like cost and limited availability[13]. Methods exist 
for sonographic diagnosis of NAFLD, but these are often qualitative. Han et al[14] 
attempted to develop and evaluate DL algorithms that use radiofrequency data for 
NAFLD assessment, with MRI-derived PDFF as the reference. The investigators 
analyzed data of 204 prospectively enrolled adult research participants. The image 
acquisition was conducted via a typical right intercostal approach, with a 1–4 MHz 
curved probe and time-gain compensation, with the addition of 10 radiofrequency 
frames acquired during a breath-hold in shallow expiration. They found that DL 
algorithms with radiofrequency US data are very precise for diagnosis of NAFLD and 
hepatic fat fraction quantification with fairly good correlation (Pearson r = 0.85) with 
MRI PDFF when other causes of steatosis are excluded[14]. In another study, Byra et al
[15] used CNN to automatically detect the amount of fat in liver from US images and 
showed high accuracy [area under the curve (AUC) of 0.98] compared to gold-
standard liver biopsy, thus showing that ML can help in overcoming the issue of inter-
operator variability as well.

ML-based algorithms were also used for early identification of patients with high 
risk for development of hepatic steatosis. Perveen et al[16] used a systematic ML-based 
decision-tree method to analyze data from electronic medical records in four Canadian 
populations and accurately predicted risk of development and progression of NAFLD. 
A similar application of ML to predict and screen for NAFLD in a Chinese population 
was carried out by Ma et al[17] and showed high accuracy, sensitivity and specificity. 
In a comparison study of different ML-based algorithms, the investigators found that 
all ML-based algorithms were found to be more efficient than the hepatic steatosis 
index (commonly known as HSI; F-measure 0.524) and the Fatty Liver Index 
(commonly known as FLI; F-measure, 0.318) and the Bayesian network model 
performed the best of 11 ML-based algorithms in the classification of patients with 
NAFLD (F-measure, 0.655).

ML-based algorithms have been deployed to analyze images from liver biopsy by 
using 47 unique liver biopsy images with manual annotations, performed by two 
pathologists. Vanderbeck et al[18] devised a classification algorithm. By utilizing a 
color analysis protocol, the algorithm was able to find out key features in biopsy 
specimens (macrosteatosis, portal veins, sinusoids and bile ducts) with good precision 
and high recall (> 82%)[18]. Similarly, Gawrieh et al[19] developed an AI-based tool to 
accurately quantify hepatic fibrosis and architectural pattern in liver biopsy 
specimens. These examples show that various ML tools may be chosen for application 
in appropriate situations for a specific problem.

Viral hepatitis
Progression to cirrhosis is an important event to be monitored in patients with 
hepatitis B virus (HBV) as well as hepatitis C virus (HCV) infections. Rates of 
progression to cirrhosis vary dramatically across individuals and not all patients 
progress to cirrhosis. Accurate risk stratification is essential to avoid excess monitoring 
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Table 1 Review of articles where artificial intelligence has been studied in the context of non-alcoholic liver disease

Ref. Dataset Number ML algorithms Problem Performance measures

Byra et al[15], 2018 Department of Internal Medicine, Hypertension 
and Vascular Diseases, Medical University of 
Warsaw, Poland

55 Deep CNN Automatically diagnose the amount of 
fat in the liver from US images

AUROC, Delong statistical test, lasso regression method, 
Spearman correlation coefficient, Meng test

Perveen et al[16], 2018 CPCSSN 667907 Decision tree Classification, NAFLD progression 
risk

Micro- and Macro-average of Precision, Recall and F-
measure, MCC, AUROC

Ma et al[17], 2018 First Affiliated Hospital, College of Medicine, 
Zhejiang University, China

10508 Several, Weka open source 
software

Classification, feature selection Accuracy, specificity, precision, recall (i.e. sensitivity), and the 
F-measure

Vanderbeck et al[18], 
2014

Medical College of Wisconsin, Milwaukee, United 
States

59 SVM Automated assessment of histological 
features of NAFLD

Precision rate, recall rate, and AUROC

Meffert et al[68], 2014 SHIP 4222 Boosting algorithm, discrimination 
and calibration plots

Scoring system for hepatic steatosis 
risk

Discrimination (AUROC) and calibration

Sowa et al[69], 2014 University Hospital Essen 82 Logistic regression, decision trees, 
SVM, RF

Distinguish NAFLD from ALD Sensitivity, specificity, and accuracy

Kuppili et al[70], 2017 Instituto Superior Tecnico, University of Lisbon, 
Portugal

63 Extreme Learning Machine- 
SLFFNN

Stratification of FLD disease in US 
liver images

AUROC, reliability and stability analysis

Sorino et al[71], 2020 MICOL cohort 2970 SVM Stratify NAFLD risk to reduce need 
for imaging

Accuracy, variance, calculated confidence limits (95%), the 
weight of each model (as a %) and the number of ultrasound 
examinations it could avoid

Wu et al[72], 2019 New Taipei City Municipal Hospital Banqiao 
Branch

577 ANN, NB, RF, LR Diagnosis and risk stratification in 
NAFLD

Accuracy, sensitivity, specificity

ALD: Alcoholic liver disease; ANN: Artificial neural network; AUROC: Area under the receiver operating characteristic; CNN: Convolutional neural network; CPCSSN: Canadian Primary Care Sentinel Surveillance Network; FLD: Fatty 
liver disease; LR: Logistic regression; MCC: Matthews correlation coefficient; MICOL: Multi-centre Italian study on cholelithiasis; ML: Machine learning; NAFLD: Non-alcoholic fatty liver disease; NB: Naïve Bayes; RF: Random forest; 
SHIP: Study of Health in Pomerania; SLFFNN: Single-layer feed-forward neural network; SVM: Support vector machine; US: Ultrasound.

of slow progressors as well as for appropriate monitoring of rapid progressors, for 
timely treatment. Availability of highly accurate risk prediction models would 
facilitate proactive identification of patients in need of more intensive monitoring and 
management. ML methods were used for genetic analyses of various HCV strains and 
was then applied to recognize relevant genetic markers related to fibrosis progression 
in HCV[20]. Shousha et al[21] combined data-mining strategies and ML algorithms 
(NN algorithms) using IL28B genotype and biochemical markers to predict advanced 
fibrosis in HCV patients, yielding a higher performance than both aspartate 
aminotransferase-to-platelet ratio index (commonly known as APRI) and fibrosis-4 
(commonly known as FIB-4).
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Primary sclerosing cholangitis
ML has been useful in patients with primary sclerosing cholangitis (PSC) throughout 
the disease course, from diagnosis to prediction of liver decompensation risk and post-
transplant survival. Ringe et al[22] showed that PSC-compatible cholangiographic 
changes on 3D-magnetic resonance cholangiopancreatography (commonly known as 
MRCP) can be detected by DL algorithms with high sensitivity (95%) and low mean 
absolute error (7%). The PSC Risk Estimation Tool (referred to as PREsTo), which was 
developed by Eaton et al[23] using a gradient boosting machine (commonly known as 
GBM) algorithm, has been validated in an international multicenter cohort to 
accurately predict risk of liver decompensation in these patients and has also been 
shown to be far more accurate than existing prediction systems. LT in PSC patients is a 
contentious issue in view of the association with inflammatory bowel disease and risk 
of colorectal neoplasia and cholangiocarcinoma. Due to limited organ availability, 
identifying individuals who are most likely to benefit from the procedure is of 
paramount importance in patient selection. Andres et al[24] analyzed data of 2769 PSC 
patients from the Scientific Registry of Transplant Recipients (referred to as SRTR) 
database using a novel multitime-point calibrated model for the prediction of 
individual survival after LT. The accuracy of the model in predicting long-term 
survival was shown to surpass the traditional Cox regression analysis, which 
completely fails at 10 years.

Liver space occupying lesions and underlying liver disease
The application of ML toward image recognition has evolved into facial recognition 
software programs which are commonly used in smartphones. Employing this feature 
in healthcare, Park et al[7] were able to create an algorithm based on recurrent neural 
network to accurately predict visual field examination, thereby aiding in the diagnosis 
of optic neuropathies. Others have utilized similar ML tools in detection of lung 
nodules and cerebral aneurysms[25]. Recently, such computer-aided diagnosis/ 
detection has been used in hepatology as well. Hassan et al[26] used a stacked sparse 
auto encode system based on support vector machines to differentiate HCC, 
hemangioma and liver cysts from US images. This method was shown to have 97.2% 
accuracy, outperforming software based on other DL algorithms. A DL system was 
developed by Schmauch et al[27] to diagnose and categorize space occupying lesions 
in the liver into malignant or benign tumors. By means of a supervised training using a 
database of 367 US images together with the radiological reports, the resulting 
algorithm could detect and characterize the lesions with a mean receiver operating 
characteristic of 0.93 and 0.916, respectively[27]. Although this model needs validation, 
it could warn of possible malignant lesions and boost the diagnostic yield of US for 
liver lesions. Another study used the patient’s clinical data along with MRI sequences 
to devise an automated classification system cataloguing such hepatic lesions as cyst, 
adenoma, hemangioma, HCC and metastasis, with acceptable sensitivity and 
specificity rates[28]. A retrospective study analyzed the yield of an ANN, composed of 
three layers, for classifications of liver lesions by means of contrast-enhanced CT into 
five groups (A, classic HCC; B, malignant tumors apart from HCC; C, indeterminate 
masses, dysplastic nodules or early HCC and benign masses other than cysts or 
hemangiomas; D, hemangiomas; E, cysts)[29]. They obtained a high accuracy for the 
classification of hepatic lesions after supervised training using data from more than 
55000 images, particularly for the distinction between groups A-B and C-D[30].

Diagnosis of HCC is currently based on imaging, tumor markers and sometimes 
biopsy. However, several other routine tests, such as biomarkers of liver inflammation, 
liver function test and viral markers, can help in prediction of HCC risk. The contri-
bution of each variable toward accurate HCC prediction could be identified by data 
mining analysis of large volumes of data of patients with HCC and this in turn could 
help in the formation of a prediction model. This was attempted by Sato et al[31] when 
they analyzed data from 4242 patients at the University of Tokyo’s hospital liver clinic. 
The patients were divided into those who had HCC diagnosed at first presentation 
(who formed the HCC-positive group of 539 patients) and others who developed HCC 
in follow-up (who formed the HCC-negative group of 1043 patients) after eliminating 
those with insufficient data. The available data was analyzed, and the gradient 
boosting provided the highest predictive accuracy for the presence of HCC (87.34%) 
and produced an AUC of 0.940. By using a cut-off of 200 ng/mL for alpha-fetoprotein 
(AFP), 40 mAu/mL for Des-gamma carboxyprothrombin (DCP), and 15% for AFP-L3, 
the accuracies of AFP, DCP, and AFP-L3 for predicting HCC were 70.67% (AUC: 
0.766), 74.91% (AUC: 0.644), and 71.05% (AUC: 0.683), respectively[31]. Furthermore, 
an innovative model devised by Książek et al[31], used patient information, such as 
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viral status, occurrence of comorbidities and laboratory results to forecast the 
development of HCC. This is based on 23 quantitative and 26 qualitative features and 
has attained an 88.5% accuracy for this prediction model. When analyzing large data 
sets, ML models have proven superior over the classical statistical regression models. 
This framework of identifying optimal classifiers is the path towards fine-tuning 
personalized medicine.

Another important arena in the management of HCC is risk stratification for 
recurrence, which has been facilitated by the ability to digitize pathology slides. 
Saillard et al[32] showed that DL algorithms based on digitized slides were more 
accurate in predicting survival of HCC patients after liver resection compared to 
scores formed using various clinical, biological and pathological factors. Another DL 
model by Chaudhary et al[33] used data from The Cancer Genome Atlas to identify a 
subgroup of HCC patients with inactivation mutations in TP53 genes, frequent BIRC5 
expressions and stemness markers (KRT19 and EPCAM), and a high proportion of 
activated Akt and Wnt signaling pathways associated with aggressive tumors[33].

After HCC resection, vascular microinvasion (VMI) is considered as one of the 
major predictive factors of recurrence. In a recent publication by Dong et al[34], 
radiomic algorithms based on US images were used to elaborate radiomic signatures 
with the potential to aid in the preoperative prediction of VMI and to classify patients 
with VMI into low risk (≤ 5 MVI in adjacent liver tissue and ≤ 1 cm from the tumor) 
and high-risk groups (> 5 MVI or MVI in liver tissue and > 1 cm from the tumor) with 
promising results. Moreover, researchers have validated CT-based ANN and deep 
CNN to predict survival of HCC patients[35,36]. Ji et al[35] designed a novel three-
feature radiomic signature of the contrast-enhanced CT image, where performance 
was enhanced by combining it with clinical features [concordance-index (c-index): 
0.63–0.69 vs 0.73–0.801]. Wang and colleagues[36] employed multiphase CT radiomics 
features along with clinical models to yield a combined model (AUC: 0.82).

Tsilimigras et al[37] attempted to identify the most important prognostic factors in 
the pre- and postoperative setting for each Barcelona Clinic Liver Cancer (BCLC) stage 
by using a ML method. The investigators used a Classification and Regression Tree 
(CART) model to analyze data drawn from an international multi-institutional 
database. The preoperative CART model selected AFP and Charlson comorbidity score 
as the first and second most important preoperative factors of overall survival among 
BCLC-0/A patients, whereas radiologic tumor burden score was the best predictor of 
overall survival among BCLC-B patients. The postoperative CART model showed the 
lymphovascular invasion as the best postoperative predictor of long-term survival 
among BCLC-0/A patients, whereas tumor burden score remained the best predictor 
of long-term outcomes among BCLC-B patients in the postoperative setting[37].

AI algorithms were also successfully employed to predict response to transarterial 
chemoembolization (commonly known as TACE) and radiofrequency ablation 
(commonly known as RFA)[38-42]. A fully automated ML algorithm was proposed by 
Morshid et al[38] using the clinical information and features of CT images and to 
forecast the response to the treatment by TACE. Using the combination of BCLC stage 
and quantitative imaging features, the investigators attained a prediction accuracy of 
74.2% against using just the BCLC stage alone. Liu et al[41] validated three AI-based 
predictive models (one deep and two ML), using radiomic features of contrast-enhance 
US scans. In that study, the DL model was found to be superior to the two other 
methods in assigning patients in the validation cohort to either objective-response to 
TACE or non-response, with a decent accuracy (AUC: 0.93)[41]. Wu et al[42] developed 
an ANN-based on 15 clinical features to predict 1-year and 2-year disease-free survival 
of patients who underwent CT-guided percutaneous RFA in early stages of HCC. The 
accuracy of the model was better when predicting 1-year disease-free survival than 2-
year disease-free survival, with an accuracy of 85.0% and 67.9%, respectively[42].

AI IN LIVER SURGERY
Surgery offers the best chance of cure for patients with liver tumors. However, surgical 
removal of liver tumors is challenging because of its complex anatomy and concerns 
about functional liver remnant. Accurate knowledge of liver anatomy is thus a key 
point for any successful hepatic resection or living donor LT (LDLT). Even a minor 
change in the surgical plan can have a dramatic impact on the surgical outcome. The 
anatomy is so complex that it is often difficult to reconstruct it mentally based on CT 
or MRI images alone. Over decades, intraoperative visualization of preoperative image 
data in hepatic surgery has been a hot research topic for computer scientists and 
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clinicians. The introduction of AI in liver surgery is more recent and it mainly focuses 
on imaging and navigation that make pre-operative planning and intra-operative 
guidance easier. 3D visualization techniques and 3D printing technology can 
significantly benefit the understanding and display of surgical anatomy. ML has been 
applied in various aspects of the 3D printing technique to improve the whole design 
and manufacturing workflow[43]. Virtual liver resection can be performed before 
actual surgery using 3D visualization techniques to assess the resectability of the lesion 
and calculate future liver remnant (FLR)[44]. In LDLT, 3D imaging can predict the 
requirement for vascular reconstruction based on the vascular anatomy of the donor 
liver, resulting in improved safety and outcome of LDLT[44]. The application of 3D 
printing technology in liver surgery has been evaluated in a few studies. In pediatric 
LDLT, 3D-printed liver models have been found useful in evaluating discrepancies in 
size between small pediatric recipients and adult liver grafts[45]. Nevertheless, there 
are still many issues (like cost and time of manufacturing) that must be addressed 
before 3D printing can become more accepted and widespread. ML could be exploited 
to solve these problems by streamlining the 3D modelling process through rapid 
medical image segmentation and improved patient selection and image acquisition
[46].

Automated hepatic volumetry
It is widely accepted that accurate assessment of volume of FLR can reduce post-
hepatectomy liver failure. Hepatocytes in the remnant liver after resection must 
overcome necrosis and regenerate sufficiently to preserve synthetic function which 
requires an adequate volume of functional FLR. Widely followed limits of FLR for safe 
resection range between 20% and 30% for normal liver and 30% and 40% in those with 
underlying liver disease. Several imaging modalities have been experimented in liver 
volume assessment, including even conventional US and 3D US[47,48]. However, 
contrast-enhanced CT scan is globally accepted for FLR assessment, pre-transplant LD 
evaluation and for assessment of response to FLR volume induction. The first 
described method of liver volume assessment based on manually tracing the entire 
liver was time-consuming but precise. Recently, semi-automatic and automatic 
segmentation techniques using mathematical model,s such as the ones reported by 
Suzuki et al[49] and Nakayama et al[50], have shown good accuracy. A CNN-based 
algorithm has been developed by Wang et al[51] to fully automate liver volume 
assessment from CT as well as MRI. A similar algorithm developed by Winkel et al[52] 
has shown good accuracy, speed and good agreement with manual segmentation. The 
criticism of fully automatic segmentation is that it often can be unsuccessful for some 
CT images that are low in contrast or have missing edges due to similar intensity of 
adjacent organs or machine artifact.

Surgical navigation systems
Surgical navigation systems have been playing a crucial role in neurosurgery and 
spinal surgery for many years; yet, they have not become established as standard in 
liver surgery. This is largely due to the technical challenge of navigating a moving 
organ. The surgical navigation system must be able to measure the intraoperative 
alterations in position and shape of the liver due to respiration and surgical manipu-
lation, in order to adapt the preoperative navigation data to the current situation. 
Techniques like augmented virtuality (referred to as AV), augmented reality (referred 
to as AR) and mixed reality can be used to synchronize 3D reconstructed images with 
real-time surgery and can offer a safe and reliable surgical navigation method. 
Accurate surgical navigation can better guide laparoscopic surgeons to perform 
hepatectomy and improve the safety of surgery. In a preliminary trial, Phutane et al
[53] demonstrated that AR-based hepatectomy for HCC could help detect intrahepatic 
tumors, decide the transection plane, and locate the hepatic veins, which can result in 
improved safety of operation by reducing bleeding and duration of surgery. The 
laparoscopic hepatectomy navigation system (LHNS) is a multimodal assistant system 
presented by Zhang et al[54] which consists of a fusion model of CT-based 3D models 
with indocyanine green (commonly known as ICG) fluorescence images. LHNS was 
used for real-time visualization of the relationship between liver lesions and 
intrahepatic anatomical structures. Using LHNS, the optimal cutting plane for the liver 
resection can be planned preoperatively. The system consisted of preoperative model 
segmentation, intraoperative laparoscopic stereo surface reconstruction, intraoperative 
laparoscopic posture tracking modules and intraoperative registration. Authors 
retrospectively compared the clinical outcomes of patients who underwent the laparo-
scopic hepatectomy using the LHNS (LHNS group) with patients who underwent the 
procedure without LHNS guidance (non-LHNS group). They found that the LHNS 
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group had significantly less blood loss, less intraoperative blood transfusion rate and a 
shorter postoperative hospital stay than the non-LHNS group. There was no 
significant difference in operative time and the overall complication rate between the 
two groups. The LHNS system was also helpful to clearly delineate the liver 
transection line in most cases[54]. Ntourakis et al[55] reported in a pilot study that AR 
helped in detecting missing lesions after chemotherapy for CRLM and obtaining a 
margin negative resection status without any local recurrence at a median follow-up of 
22 mo. Application of AR in robotic hepatectomy can enhance the ability of the 
surgeon to achieve a safe tumor resection with adequate peritumoral margin[56,57].

AI to predict postoperative morbidity
AI algorithms are also being used to predict postoperative morbidity and recurrence of 
tumor after surgery. Post-hepatectomy liver failure is a worrisome complication after 
major liver resection for HCC and is the chief cause of postoperative mortality. Early 
identification and timely intervention are vital to avoid the mortality associated with 
it. Mai et al[58] attempted to validate an ANN model to forecast severe post-
hepatectomy liver failure in patients with HCC who underwent partial hepatectomy 
(353 patients). They found that the predictive performance of the ANN model for 
severe post-hepatectomy liver failure surpassed the traditional logistic regression 
model and normally used scoring systems[58].

AI IN LIVER TRANSPLANTATION
Liver transplantation is a complex process that involves analysis of numerous 
variables related to both donor and recipient and expert decisions that are essential for 
long-term graft and patient survival. The high number of variables involved often 
makes the decision-making process difficult. In such a circumstance, ML techniques 
play an important role, with the ability to build accurate models for liver graft 
survival.

Organ allocation and donor-recipient matching
In a liver transplantation program, the major bottleneck in delivery of care now is 
organ availability. The United Network for Organ Sharing (commonly known as 
UNOS) survey has identified about a 20% drop-out of patients listed for liver 
transplantation[59]. Attempts to reduce this dropout rate by utilization of extended 
criteria donors (older donors, donors with fatty liver, donation after cardiac death 
donors) have resulted in inferior post-transplant outcomes and decreased utilization 
due to an increase in discarded grafts. This problem is expected to worsen in the 
coming years as growth in the general population is projected to overtake growth in 
the donor pool, thus potentially exacerbating the organ shortage and further 
increasing the waiting time for transplant. Such insights demonstrate the precious 
nature of each liver graft and the paramount importance of appropriate organ 
allocation to reduce waiting list mortality as well as to promote efficient utilization of 
available organs. A first attempt at guiding organ allocation using donor information 
was the quantitative donor risk index by Feng et al[60], which used a Cox regression 
model to predict graft failure using donor characteristics alone. The widely validated 
model for end-stage liver disease (MELD) score, which is the keystone of current 
allocation policy in the United States and worldwide, is based on the “sickest-first” 
principle, utilizing recipient information alone. Undoubtedly, a method which utilizes 
donor as well as recipient characteristics for appropriate pairing would ideally reduce 
waiting list mortality and organ wastage with good post-transplant survival. Many 
strategies, including ML, are being tried to reduce the discrepancy between the 
number of potential liver graft recipients and the number of organs available. This was 
attempted by Pérez-Ortiz et al[61] using ordinal regression and the support vector 
machine to arrive at a model that could be used in conjunction with the MELD score to 
allocate the organ to one of the first patients on the waiting list (according to MELD 
score) who would have a higher survival possibility. This can circumvent flaws in 
MELD score-based allocation and also eliminates futile transplants. The Optimized 
Prediction of Mortality (commonly known as OPOM) model developed by Bertsimas 
et al[62] employing ML optimal classification tree model in comparison with MELD-
based allocation using Liver Simulated Allocation Model (commonly known as LSAM) 
has been shown to reduce waiting list mortality on average by 417.96 deaths every 
year. OPOM has been found to adhere more accurately to the “sickest-first” principle 
and utilizes more variables than the MELD and MELD-Na scores. Another neural 
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network-derived algorithm is the MPENSGA 2 developed by Cruz-Ramírez et al[63] 
which seeks to complement MELD-based allocation and improve its efficiency.

In 2014, a donor–recipient matching model was presented by Briceño et al[64] which 
can make the clinical decision-making easier in liver transplantation. The investigators 
used two ANN models: One was to enhance the probability of graft survival, and the 
other was to reduce the probability of graft loss. They analyzed variables of 64 donors 
and recipients from a set of 1003 LTs from a multicenter study. The chief aim was to 
devise an innovative decision-making system that can optimize the principles of 
fairness, efficiency and equity in allocating liver graft. They found that ANN models 
were significantly more accurate than already validated scores of graft survival 
[MELD, Delta MELD, donor-risk index (DRI), Survival Outcomes Following Liver 
Transplant (SOFT), the preallocation (P)-SOFT and balance-of-risk (BAR)][64]. 
Wingfield et al[65], from the United Kingdom, published the first ever systematic 
review of AI computing techniques being used in liver transplantation to predict 
individual patient graft survival. They concluded that AI techniques can provide high 
accuracy in predicting graft survival based on donors and recipient variables; 
additionally, compared with the standard techniques, AI methods had the benefits of 
being dynamic and able to be trained and validated within every population. Table 2 
provides a concise review of recently published studies where AI-based algorithms 
have been applied to liver transplantation.

Challenges and prospects
It is evident from the above-mentioned studies that ML is going to be a powerful 
weapon in the armamentarium of the hepatologist and liver surgeon, with applic-
ations ranging from screening to postoperative follow-up. Given the recent advances 
in AI and the lack of any precedence, the Hippocratic philosophy of ‘do no harm’ 
should be at the forefront of any decision to integrate it into the clinical practice. There 
are some ethical and legal issues to be addressed before widespread adoption of AI 
into clinical practice. Data privacy and cyber security are the main ethical concerns. 
Next is the issue of accountability. For example, if a ML tool gives a wrong diagnosis 
or incorrectly assesses the hepatic volume, resulting in post-hepatectomy liver failure, 
whom should be held responsible?

AI is going to be a major player in organ allocation, donor-recipient matching, and 
even in optimizing immunosuppressant doses[66,67]. AI can be employed via 
smartphones to remotely monitor patient health. However, like any other evolving 
technology, AI is not without shortcomings. The ability of ML to analyze large 
volumes of data is responsible for its most important handicap. Quality of the output 
is inexorably linked to the quality of input data. This is the case with conventional 
biostatistical methods as well. Hence, high-quality data collection is essential for the 
development of AI systems as data sets are the lifeblood of algorithms and statistical 
modelling on which AI systems are trained. So, it is the duty of all physicians to come 
forward to help drive these innovations rather than passively waiting for the 
technology to become useful in their practice. Hepatologists and liver surgeons should 
seek opportunities to partner with data scientists to capture novel forms of clinical 
data and help generate meaningful interpretations of that data. Moreover, the accuracy 
of any AI system can be affected by factors such as study design, data integration 
strategy, selection of ML model and the relevance of the selected ML model to the 
particular study setting. Hence, physicians must have clearly defined, clinically 
relevant questions that require AI technology as the analysis tool. Early work in ML 
has focused on individual areas, such as radiomics or genomics, but future work 
should be aimed more towards amalgamating these to form a comprehensive care 
plan of the patient.

CONCLUSION
To conclude, as the incorporation of AI into the management of liver diseases seems 
inevitable, training of clinicians in interpreting and applying it into the routine practice 
is of paramount importance. If appropriately designed and implemented, AI has the 
potential to revolutionize the way hepatology and liver surgery is taught and 
practiced, with the promise of a future optimized for high-quality patient care.
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Table 2 Review of recently published studies where artificial intelligence-based algorithms have been applied to liver transplantation

Ref. Dataset Number ML algorithms Problem Performance 
measures

Bertsimas et al
[62], 2019

STAR dataset - OCT Predict 3 mo waitlist mortality-
OPOM

ROC curve

Cruz-Ramírez et al
[63], 2013

Spanish multi-center 
study

- Radial basis function 
NN

Improve donor-recipient matching 
using rule-based 
allocation—MPENSGA 2 
algorithm

Accuracy, minimum 
sensitivity, ROC curve, 
RMSE, Cohen’s kappa

Briceño et al[64], 
2014

Spanish multi-center 
study

1003 Neural Net 
Evolutionary 
Programming

Improve equity in donor-recipient 
matching

Multiple regression 
analysis, simple logistic 
regression analysis, ROC 
curve

Ayllón et al[73], 
2018

King’s College 
Hospital,United 
Kingdom + MADR-E, 
Spain

1437 ANN Classification, end-point (3 mo, 1 
yr)

ROC curve

Wadhwani et al
[74], 2019

UNOS 1482 RF Classification, end-point (3 yr) Chi-square test, t-test, 
Wilcoxon rank sum test

Dorado-Moreno et 
al[75], 2017

King’s College Hospital, 
United Kingdom + 
MADR-E, Spain

1492 Ordinal ANN Ordinal classification, fourclasses MAE and the MZE, 
accuracy, GMS, AMAE

Guijo-Rubio et al
[76], 2019

UNOS 39095 Cox, SVM, GB Survival time C-index, ROC curve, 
concordance index ipcw

Lee et al[77], 2018 Seoul National University 
Hospital

1211 Several ML methods 
compared, GBM found 
to be best

Prediction of AKI after liver 
transplant

ROC curve, accuracy

Lau et al[78], 2017 Austin Hospital, 
Melbourne, Australia

180 RF, ANN, logistic 
regression

Predict 30-d risk of graft failure ROC curve

AKI: Acute kidney injury; AMAE: Average mean absolute error; ANN: Artificial neural network; c-index: Concordance index; GB: Gradient boosting; 
GBM: Gradient boosting machine; GMS: Geometric mean of the sensitivities; MADR-E: Model for Allocation of Donor and Recipient in España; MAE: 
Mean absolute error; MPENSG-A: Memetic Pareto evolutionary non-dominated sorting genetic algorithm; ML: Machine learning; MZE: Mean zero-one 
error; NN: Neural network; OCT: Optimal classification tree; OPOM: Optimized prediction of mortality; RF: Random forest; RMSE: Root mean squared 
error; ROC: Receiver operating characteristic; STAR: Standard Transplant Analysis and Research; SVM: Support vector machine; UNOS: United Network 
for Organ Sharing.
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