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Abstract
BACKGROUND 
Diethylnitrosamine (DEN) induces hepatic neoplastic lesions over a prolonged 
period.

AIM 
To investigate the promotive action of 2-acetylaminofluorene (2-AAF) when 
combined with DEN in order to develop a rat model for induction of pre-
cancerous lesion and investigate the molecular mechanism underlying the activity 
of 2-AAF.

METHODS 
The pre-precancerous lesions were initiated by intraperitoneal injection of DEN 
for three weeks consecutively, followed by one intraperitoneal injection of 2-AAF 
at three different doses (100, 200 and 300 mg/kg). Rats were separated into naïve, 
DEN, DEN + 100 mg 2-AAF, DEN + 200 mg 2-AAF, and DEN + 300 mg 2-AAF 
groups. Rats were sacrificed after 10 wk and 16 wk. Liver functions, level of 
alpha-fetoprotein, glutathione S-transferase-P and proliferating cell nuclear 
antigen staining of liver tissues were performed. The mRNA level of RAB11A, 
BAX, p53, and Cyclin E and epigenetic regulation by long-noncoding RNA 
(lncRNA) RP11-513I15.6, miR-1262 (microRNA), and miR-1298 were assessed in 
the sera and liver tissues of the rats.

RESULTS 
2-AAF administration significantly increased the percent area of the precancerous 
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foci and cell proliferation along with a significant decrease in RAB11A, BAX, and 
p53 mRNA, and the increase in Cyclin E mRNA was associated with a marked 
decrease in lncRNA RP11-513I15.6 expression with a significant increase in both 
miR-1262 and miR-1298.

CONCLUSION 
2-AFF promoted hepatic precancerous lesions initiated through DEN by 
decreasing autophagy, apoptosis, and tumor suppression genes, along with 
increased cell proliferation, in a time- and dose-dependent manner. These actions 
were mediated under the epigenetic regulation of lncRNA RP11-513I15.6/miR-
1262/miR-1298.

Key Words: Acetylaminofluorene; Hepatic precancerous lesion; Diethylnitrosamine; 
Autophagy; Apoptosis; MicroRNA

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: 2-Acetylaminofluorene epigenetically regulated the expression of long-
noncoding RNA RP11-513I15.6/miRNA-1262/miR-1298 (microRNA, miRNA) 
resulted in decrease in RAB11A, BAX, and p53 mRNA, and the increase in Cyclin E 
mRNA leading to increased hepatocyte proliferation and decreased apoptosis 
promoting hepatocellular promoted precancerous lesion in rat models.

Citation: Hasanin AH, Habib EK, El Gayar N, Matboli M. Promotive action of 2-
acetylaminofluorene on hepatic precancerous lesions initiated by diethylnitrosamine in rats: 
Molecular study. World J Hepatol 2021; 13(3): 328-342
URL: https://www.wjgnet.com/1948-5182/full/v13/i3/328.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i3.328

INTRODUCTION
Hepatocellular carcinoma (HCC) is the 6th common cancer and the 2nd leading cause of 
cancer mortality all over the world[1]. Its incidence is elevated, which is attributed to 
the rising proportion of individuals infected with hepatitis C virus[2]. The molecular 
pathogenesis of cancer and the underlying tumor biology has been progressing. 
Spontaneous animal models, induced models, transplantable models, transgenic 
models, and viral models were used to investigate the biological mechanism of HCC 
with respect to the liver-targeted key pathways[3]. Rodent has a short life span due to 
which the cellular transformation is observed from initiation to malignancy, thereby 
rendering it as a preferred model system[4]. However, modeling a malignant liver 
disease is challenging due to the urgent need for optimal models for preclinical 
studies.

Several hepatotoxic agents, such as carcinogen diethylnitrosamine (DEN), have been 
repeatedly administered to induce general liver disease and HCC over a prolonged 
period. DEN produces small foci of dysplastic hepatocytes via ethylation of various 
nucleophilic sites in deoxyribonucleic acid[5], resulting in cirrhosis and liver cancer 
within 18 wk as presented by mutations in β-catenin[6] and p53[7]. HCC induced by 
DEN activates the H-ras proto-oncogene[8]. Interestingly, variable time intervals, tumor 
promoters, DEN doses, and application routes were applied by various groups to 
induce hepatic precancerous lesions in a dose- and time-dependent manner. A two-
stage model was established using DEN as a genotoxic compound and phenobarbital 
to induce HCC[9]. Another two-step HCC model was established according to the Solt-
Farber protocol; herein, the initiation by DEN was followed by partial hepatectomy, 
leading to an elevated number of initiated cells[10].

2-Acetylaminofluorene (2-AAF) serves as a model carcinogen with genotoxic and 
epigenetic properties[11]. The present study proposed that genotoxic 2-AAF metabolites 
produce G to T transversion-initiated cells along with cirrhotic alteration due to 
chronic toxic effect on mitochondrial respiration[12]. Also, electron drainage by 2-AAF 
causes an uncoupling effect on oxidative phosphorylation[13].

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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Malik et al[14] reported a protocol for HCC induction in the liver without hepat-
ectomy, wherein male Wistar rats were injected with DEN intraperitoneally, and then, 
2-AAF repeatedly. This model showed oxidative stress, cell damage, and advanced 
HCC.

The present study aimed to investigate the development of precancerous lesions by 
DEN injection intraperitoneally (100 mg/kg body weight), followed by a single 
intraperitoneal (i.p.) injection of promoter 2-AAF at three different doses (100, 200 and 
300 mg/kg) at two intervals of 10 wk and 16 wk, respectively.

MATERIALS AND METHODS
Chemicals
DEN with ≥ 99% purity (CAT number 55-18-5) and 2-AAF with ≥ 98% purity (CAT 
number 53-96-3) were purchased from (Sigma-Aldrich, St. Louis, United States).

Experimental protocol
A total of 60 adult male Wistar rats (200-250 g) were used. The animals were 
maintained at 22-24 °C and twelve hours light/dark cycles and received standard rat 
chow and tap water. All animal experiments were carried out according to the 
National Institute of Health guide for dealing with laboratory animals (National 
Research Council (US) Institute for Laboratory Animal Research. No. 85-23, revised 
1996). The study was approved by Ain Shams University, Faculty of Medicine 
Institutional Animal Ethics Committee (approval No. 17585). The animals were 
acclimatized for 1 wk and weighed before each injection for accurate determination of 
the drug dosage.

Wister rats were randomly and equally divided into naïve, DEN, DEN + 100 mg 2-
AAF, DEN + 200 mg 2-AAF, and DEN + 300 mg 2-AAF groups. The four DEN groups 
were injected i.p. with 100 mg/kg per week for 3 wk, followed by 1 wk interval. Then, 
2-AAF was injected once intraperitoneally at 3 different doses for the 2-AAF three 
groups (100, 200 and 300 mg/kg). The naïve group was injected with 0.9% NaCl as 
described above. In each group, half of the animals were sacrificed at the end of week 
10 and the remaining at week 16 (Figure 1).

Specimen collection
Rats were anesthetized before withdrawing the retro-orbital blood samples; sera were 
collected by centrifugation at 1200 × g for 10 min. Subsequently, the rats were 
sacrificed, and liver samples collected. All the samples were maintained at -80 °C for 
further tests of liver function, and the level of alpha-fetoprotein (AFP) and RNA 
extraction in the liver samples were examined.

Tissue preparation for histological and immunohistochemical examinations
The liver specimens were collected from all animals in each group, with xation in 
10% neutral formaldehyde for 24 h, followed by dehydration, then embedded in 
parafn blocks. Then, 5 μm sections were subjected to hematoxylin-eosin (HE) staining 
to detect any histopathological changes. Images were captured using an Olympus 
BX50 Light microscope (Olympus, Japan).

Glutathione S transferase-placental immunohistochemistry
The sections were dewaxed using xylene, followed by hydration using ethanol 
gradient. The endogenous peroxidase activity was inhibited by hydrogen peroxide. 
Subsequently, the sections were washed with water and rinsed with phosphate-
buffered saline (PBS) before probing with glutathione S-transferase-P (GST-P) primary 
antibody (1:250; Abcam, cat.# AB106268, San Francesco, CA, United States) at 4 °C 
overnight. The GST-P-positive area stained brown. The morphometric analysis was 
carried out using Leica Q win V.3 software after capturing the images using a Leica 
DM2500 microscope (Leica, Wetzlar, Germany).

Proliferating cell nuclear antigen immunohistochemistry staining
The sections were prepared for proliferating cell nuclear antigen (PCNA) staining 
(1:400; Santa Cruz Biotechnology, Santa Cruz, CA, United States) for 2 h as described 
above. Irrespective of the location within the hepatic lobule of the staining intensity, 
the nuclei were scored as positive or negative. The PCNA labeling indices are 
represented as the expression of positively stained nuclei (10 fields/slide at × 400).
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Figure 1 Schematic of the study design. DEN: Diethylnitrosamine; 2-AAF: 2-Acetylaminofluorene.

AFP and liver function
The levels of alanine aminotransferase (ALT), AFP, total bilirubin, and direct bilirubin 
were analyzed quantitatively using a commercial ELISA kit on sera samples.

Molecular assay
Bioinformatics-based selection of molecular parameters to investigate the oncogenic 
mechanism of the chemicals used in the HCC model: The molecular biomarker panel 
was obtained in two steps: (1) A panel of key genes, such as Ras-related in brain11gene 
(RAB11A), p53, BAX and cell cycle-related gene Cyclin E1 according to Gene Atlas 
Data Base (https://www.ebi.ac.uk/gxa/home) and protein Atlas Data Base (
https://www.proteinatlas.org/) that play a major role in hepatic carcinogenesis, 
including autophagy, apoptotic genes, and cell cycle; and (2) lncRNA-RP11-513I15.6 
was selected using a database of long-noncoding RNA (lncRNA) that act as 
competitive endogenous RNA (ceRNAs) (http://gyanxet-beta.com/Lncedb/
index.php). This lncRNA acts as a master regulator of the target mRNAs by competing 
with miR (microRNA, miRNA)-1262 and miR-1298 binding with the genes mentioned 
above. The selected lncRNA and miRNA were based on the specificity to HCC, 
competing endogenous RNA score, and the number of target sites of mRNA. Finally, 
the pathway enrichment analysis by Diana database (http://www.microrna.gr/
miRPathv2) for both miR-1262 and miR-1298 revealed that these were linked to 
autophagy, cell cycle regulation, cell adhesion, and other pathways associated to 
carcinogenesis.

Total RNA extraction
Total RNA was extracted from sera samples by miRNEasy® RNA isolation kit (Qiagen, 
Düsseldorf, Germany). The RNA integrity and concentration were determined on an 
Ultraspec 1000 UV/visible spectrophotometer (Amersham Pharmacia Biotech, 
Cambridge, United Kingdom). The RNA purity was 1.8-2. Subsequently, the total 
RNA was reverse transcribed into complementary DNA by miScript II RT Kit (Qiagen, 
Düsseldorf, Germany) on a Hybaid thermal cycler (Thermo Electron, Waltham, MA, 
United States).

Real-time quantitative Polymerase Chain Reaction of the RNA panel
The expression of mRNA and lncRNA in the rat sera and liver tissues was measured 
by RT² SYBR Green ROX real-time quantitative polymerase chain reaction (qPCR) 
Mastermix and Quantitect SYBR Green Mastermix Kit (Qiagen, Düsseldorf, Germany), 
respectively. The specific primers were provided (Qiagen, Düsseldorf, Germany), 
using Step One Plus™ System (Applied Biosystems Inc., Foster City, CA, United 
States). B-actin (accession NM_001101) served as the endogenous control.

The miRNA expression in the sera and liver tissue was investigated according to the 
protocol of miScript SYBR Green kit Qiagen (Düsseldorf, Germany). RNU-6 served as 
the endogenous control. The specific PCR primers were synthesized by Qiagen 
(Düsseldorf, Germay).

The PCR program was according to the following cycles: Denaturation at 95 °C for 
15 min followed by forty cycles of denaturation for 10 s at 94 °C, then annealing for 30 
s at 55 °C, and finally extension for 34 s at 70 °C. Each reaction was done in duplicate.

The threshold cycle (Ct) value of each sample was calculated using the 
StepOnePlus™ software v2.2.2 (Applied Biosystems). Ct value > 36 was considered 

https://www.ebi.ac.uk/gxa/home
https://www.proteinatlas.org/
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negative. The specificities of the amplicons were confirmed using the melting curve 
analysis software of Applied Biosystems. The expression of the target molecules was 
measured using the 2-ΔΔCt method[15]. The expression of the target gene was normalized 
against that of the housekeeping gene for the samples and compared to the reference 
sample.

Statistical analysis
The values are expressed as means ± SD. The statistical differences among all groups 
were assessed using one-way ANOVA, and Tukey’s test. P < 0.05 was considered to be 
statistically significant. The statistical analyses were done using Graphpad Prism, 
version 5.0. (2007: San Diego, United States).

RESULTS
The naïve groups at weeks 10 and 16 that did not show significant differences were 
pooled as a single group.

Histological and immunohistochemical examination
The liver sections of the naïve control group stained with HE revealed normal 
architecture of hepatic lobules, central veins, and portal triads. Neither localized lesion 
nor alternating pre precancerous foci or dysplastic nodules were observed throughout 
the experimental period (Figure 2A-D).

The histopathology of the liver sections of different groups with DEN either alone 
or when combined with 2-AAF showed the development of multistage hepatocellular 
pre precancerous lesions. An apparent increase in the incidence, number, and size of 
the lesions was observed as a result of increased dose and duration of the usage of 
DEN and 2-AAF. The liver specimens of rats sacrificed at week 10 showed small early 
and well-differentiated foci of cellular alteration after injection of DEN solely 
(Figure 2E), while varying numbers of multiple aggregations of small nodules were 
present after administration of both DEN + 2-AAF (Figure 2F-H). The simultaneous 
occurrence of multiple nodules reflected either the dissemination of hepatocytes with 
cellular atypia from a single primary lesion to form satellite nodules or the 
synchronous development of several other independent lesions. The localized lesions 
of foci of cellular alteration did not compress the surrounding hepatic parenchyma but 
merged with it imperceptibly. However, lack of or minimal disruption of hepatic 
lobular architecture was observed.

The histological analysis of these pre- precancerous lesions varied greatly from 
week 10-16 with respect to different stages of differentiation and growth patterns. The 
lesions observed by the end of week 16 were large and less differentiated (Figure 2I-P). 
Multiple dysplastic nodules were scattered, compressing the surrounding liver 
parenchyma and occupying most of the examined fields. These dysplastic nodules 
were uniform lesions and discriminated from the surrounding liver tissue based on 
their morphology, cytoplasmic staining, size of the nucleus, and presence of cellular 
atypia. The nodular cells did not show sinusoidal spaces and were large with clear 
cytoplasm.

The immunohistochemically-stained liver sections with the GST-P antibody 
revealed the presence of multiple GST-P-positive areas in all groups after 
administration of DEN + 2-AAF. Moreover, small positive areas of cellular foci were 
noted in the group treated with DEN and sacrificed at week 10 (Figure 3A). Multiple 
GST-P-positive areas, variable in size, were scattered in-between negatively stained 
hepatocytes among groups treated with DEN + 2-AFF and sacrificed at week 10 
(Figure 3B-D). The number and size of the GST-P-positive areas were markedly 
increased in groups that received DEN + 2-AFF and sacrificed at week 16, especially 
those that received high doses showed large positive hyperplastic nodules occupying 
most of the examined fields (Figure 3E-H). The % surface area of GST-P-positive 
hepatic lesions was measured among different groups and statistically analyzed 
(Figure 3I).

The immunohistochemical analysis showed an elevated expression of PCNA in 
groups that received DEN + 2-AAF as compared to those treated with DEN alone. The 
higher the dose of 2-AAF combined with DEN and longer the duration, higher the 
expression rate. Strikingly, significant differences were detected between DEN/2-AAF 
200 and 300 as compared to DEN/2-AAF 100 at weeks 10 and 16, respectively 
(Figure 4 and Table 1).
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Table 1 Expression rate of hepatocytes positive for proliferating cell nuclear antigen was calculated as number of positive field 
expression in 10 fields per rat liver tissue

Group 10 wk duration 16 wk duration

DEN + ++

DEN + 100 AAF + ++

DEN + 200 AAF ++ +++

DEN + 300 AAF ++ +++

+: Positive expression found in 1-3 fields; ++: Positive expression found in 4-6 fields; +++: Positive expression found in 7-10 field. DEN: Diethylnitrosamine; 
AAF: Acetylaminofluorene.

Figure 2 Histological and immunohistochemical examination. A-D: Images of liver sections of naive group. Hematoxylin-eosin (HE) stained sections 
show normal hepatic architecture, portal triad, central vein and radiating cords of hepatocytes (H) with blood sinusoids (S) present in between (A and B). 
Immunohistochemically-stained section with anti-glutathione S transferase-P demonstrating negative reaction (C). Immunohistochemically-stained section with 
proliferating cell nuclear antigen antibodies (D); E-H: HE images of liver sections of rats that received diethylnitrosamine (DEN) and different doses of 2-
acetylaminofluorene (2-AAF) and were sacrificed at week 10. Show multiple foci of cellular alteration of different sizes (dotted shapes), not compressing the 
surrounding hepatic parenchyma. DEN group (E), DEN+ 2-AAF 100 mg group (F), DEN + 2-AAF 200 mg group (G) and DEN + 2-AAF 300 mg group (H); I-P: HE liver 
sections of rats that received DEN and different doses of 2-AAF sacrificed at week 16, show larger, well discriminated, less differentiated dysplastic nodules 
compressing the surrounding liver tissue with disruption of hepatic lobular architecture were observed. DEN group (I and J), DEN + 100 mg 2AAF group (K and L), 
DEN + 200 mg 2AAF group (M and N), DEN + 300 mg 2AAF group (O and P). A, C, E-H × 40; D, J, L, N and P × 100; I, K, M and O × 40, B × 400.

Effect on liver function and AFP
Table 2 showed that by the end of weeks 10 and 16, liver function tests (ALT, albumin, 
T-bilirubin, D-bilirubin) and AFP had a significant decline after DEN and 2-AAF were 
administered at three doses as compared to the naïve group. 2-AAF addition to DEN 
significantly increased the level of AFP as compared to DEN alone with significant 
differences between 2-AAF doses at the two time points in a dose-dependent manner.
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Table 2 Effect of diethylnitrosamine and 2-acetylaminofluorene on alpha-fetoprotein and liver function

AFP ALT Total bilirubin Direct bilirubin Albumin

Naïve 22.8 ± 1.13 33.3 ± 6.83 0.30 ± 0.18 0.27 ± 0.14 3.77 ± 0.23

Week 10

DEN 89.2 ± 28.8d 63.0 ± 27.5d 1.44 ± 0.45d 1.03 ± 0.14d 2.49 ± 0.15d

DEN + 100 AAF 116 ± 52.1d 78.3 ± 17.8d 2.07 ± 0.44d,e 1.40 ± 0.39d 2.83 ± 0.19d

DEN + 200 AAF 223 ± 124b,d 82.7 ± 12.7d 2.73 ± 0.23a,d,e 1.67 ± 0.19a,d,e 2.73 ± 0.14d

DEN + 300 AAF 305 ± 126d,e 98.0 ± 10.7d,e 3.13 ± 0.36b,d,e 2.13 ± 0.61d,e 3.15 ± 0.38c,d,e

Week 16

DEN 159 ± 32.2d 94.1 ± 6.4d 2.13 ± 0.55d 1.60 ± 0.39d 2.0 ± 0.62d

DEN + 100 AAF 290 ± 241d 104 ± 31.9d 2.23 ± 0.36d 2.25 ± 0.63d 2.57 ± 0.37d

DEN + 200 AAF 815 ± 143a,d,f 128 ± 36.9d 4.10 ± 0.39a,d,f 2.53 ± 0.63a,d,f 2.17 ± 0.29d

DEN + 300 AAF 1059 ± 360b,d,f 210 ± 63.2b,c,d,f 4.47 ± 0.99b,d,f 3.10 ± 0.39d,f 2.13 ± 0.67b,c,d,f

Values are mean ± SD; number of animals = 6 rats/each group.
aP < 0.05 when DEN + 200 acetylaminofluorene (AAF) is compared to the DEN + 100 AAF.
bP < 0.05 when DEN + 300 AAF is compared to the DEN + 100 AAF.
cP < 0.05 when DEN + 300 AAF is compared to the DEN + 200 AAF.
dP < 0.05 compared to the naïve group.
eP < 0.05 compared to the diethylnitrosamine (DEN) group at week 10 group.
fP < 0.05 compared to the DEN at week 16 group. One-way ANOVA followed by Tukey's multiple comparison test. DEN: Diethylnitrosamine; 2-AAF: 2-
Acetylaminofluorene; AFP: Alpha-fetoprotein; ALT: Alanine aminotransferase.

Effect of DEN/2-AAF on the expression of RAB11A, BAX, p53, Cyclin E mRNA 
among the rat groups
The fold-changes in the relative quantification (RQ) of RAB11A mRNA in rats' liver 
tissues and sera showed a significant decrease as compared to naïve rats in all groups 
at both weeks 10 and 16. Compared to DEN alone, a significant decrease was noted in 
the RQ of RAB11A mRNA in DEN/2-AAF 200 and 300 in sera and tissues at weeks 10 
and 16 as compared to the significant change in DEN/2-AAF 100 in tissue at week 10. 
Moreover, only a significant decrease was detected in DEN/2-AAF 300 as compared to 
DEN/2-AAF 100 in serum at week 10 (Figure 5A).

Compared to the naïve group, rats that received DEN solely or when combined to 2-
AAF for 10 wk or 16 wk showed a significant decrease in the level of BAX mRNA in 
both liver tissues and sera. 2-AAF addition to DEN significantly decreased the 
expression of BAX mRNA as compared to DEN alone, except for 2-AAF at a dose of 
100mg, in the serum at week 10. Only DEN/2-AAF 300 showed a significant decrease 
as compared to DEN/2-AAF 100 at week 10 in the liver tissues. The serum BAX 
mRNA level exhibited insignificant differences among the three DEN/2-AAF groups 
at both weeks 10 and 16 (Figure 5B).

Furthermore, compared to the naïve group, all groups that received DEN alone or 
combined with 2-AAF, a significant decrease was detected in the rat liver tissue and 
sera p53 mRNA. All 2-AAF groups showed a significant decrease over DEN alone 
except for 2-AAF 100 in the liver tissues at week 10. However, insignificant differences 
were noted among the three groups DEN/2-AAF 100, 200 and 300 at both weeks 10 
and 16 in both liver tissues and sera (Figure 5C).

The Cyclin E mRNA in the rat liver tissues showed a significant increase between 
DEN/2-AAF 200 and 300 as compared to DEN/2-AAF 100 at week 10. In addition, a 
significant increase was noted between DEN/2-AAF 300 and DEN/2-AAF100, 200. 
Furthermore, rats that received DEN either alone or combined with 2-AAF showed a 
significant increase in the serum Cyclin E mRNA level as compared to the naïve 
group. All rats that received 2-AAF exhibited a significant increase in Cyclin E mRNA 
over DEN alone, except for 2-AAF 100, in the rat sera at week 10. Also, a significant 
increase was observed in DEN/2-AAF 200 and 300 over DEN/2-AAF 100 in the liver 
tissues at week 10. In addition, a significant increase occurred in 2-AAF 300 over 2-
AAF 100 and 200 in the tissues at week 16. A significant increase was noted in 2-AAF 
300 over both 2-AAF 100 and 200 at week 10 and in 2-AAF 300 over 2-AAF 100 at week 
16 in rat sera (Figure 5D).
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Figure 3 Histological and immunohistochemical examination. A-H: Images of rats' liver sections immunohistochemically-stained with glutathione S 
transferase-P (GST-P) antibody, show multiple GST-P-positive hepatic foci and nodules (brown stained collection of cells) of different sizes scatter in-between 
negatively stained hepatic parenchyma. Rats sacrificed at week 10 (A-D), rats sacrificed at week 16 (E-H) [A and E: diethylnitrosamine (DEN) group; B and F: DEN + 
100mg 2-acetylaminofluorene (2-AAF) group; C and G: DEN + 200 mg 2-AAF group; D and H: DEN + 300 mg 2-AAF (× 40)]; I: shows the effect of DEN and 2-AAF at 
different doses on GSTP foci % area in the liver. Values are mean ± SE; number of animals = 6 rats/each group. aP < 0.05 compared to naïve group; bP < 0.05 
compared to DEN group at week 10, cP < 0.05 compared to DEN at week 16 group. One-way ANOVA followed by Tukey's multiple comparison test. DEN: 
Diethylnitrosamine; 2-AAF: 2-Acetylaminofluorene; GST-P: Glutathione S transferase-P.

Figure 4 Images of rats' liver sections stained immunohistochemically with proliferating cell nuclear antigen. Positive immune-reactive nucleus 
(brown dots) scatter in-between negatively stained liver tissue of rats who received diethylnitrosamine (DEN) and different doses of 2-acetylaminofluorene (2-AAF). A-
D: Rats sacrificed at week 10; E-H: Rats sacrificed at week 16 (A and E: DEN group; B and F: DEN + 100 mg 2AAF group; C and G: DEN + 200 mg 2AAF group; D 
and H: DEN + 300 mg 2AAF; magnification × 100).

Finally, 2-AAF administration resulted in a significant increase in the level of Cyclin 
E mRNA with a concomitant decrease in RAB11A, p53, and BAX mRNA expression in 
the liver tissues and sera as compared to DEN alone. Also, significant differences were 
reported for 2-AAF 300 as compared to the other 2 doses, especially in the level of 
Cyclin E mRNA.
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Figure 5 Effect of diethylnitrosamine and 2-acetylaminofluorene at different doses. A: Relative quantification (RQ) of RAB11A mRNA; B: RQ of BAX 
mRNA; C: RQ of p53 mRNA; D: RQ of Cyclin E mRNA in the liver and serum in rats. Values are mean ± SE; number of animals = 6 rats/each group. aP < 0.05 
compared to the naïve group; bP < 0.05 compared to the diethylnitrosamine (DEN) group at week 10 group; cP < 0.05 compared to the DEN at week 16 group; dP < 
0.05 when DEN 200 + acetylaminofluorene (AAF) is compared to the DEN 100 + AAF; eP < 0.05 when DEN 300 + AAF is compared to the DEN 100 + AAF; fP < 0.05 
when DEN 300 + AAF is compared to the DEN 200 + AAF. One-way ANOVA followed by Tukey's multiple comparison test. DEN: Diethylnitrosamine; 2-AAF: 2-
Acetylaminofluorene.

Effect of DEN/2-AAF on the expression of lncRNA-RP11-513I15.6, miR-1262, and 
miR-1298 among the rat groups
The levels of lncRNA-RP11-513I15.6, miRNA-1262, and miR-1298 were assessed in the 
liver tissues and sera of all groups at the end of weeks 10 and 16. One-way ANOVA 
and Tukey’s multiple comparison test showed significant differential expression in RQ 
among the studied groups.

Compared to the naïve group, the RQ of lncRNA-RP11-513I15.6 in rat liver tissues 
and sera in DEN and DEN/2-AAF groups showed a significant decrease at both weeks 
10 and 16. A significant decrease was noted in the 2-AAF groups as compared to DEN 
alone, except for 2-AAF 100 mg, in the liver in week 10 and 2-AAF 100 mg in the sera 
at week 16. At week 10, a significant difference was observed between DEN/2-AAF 
200 and DEN/2-AAF 300 than DEN/2-AAF100 mg in liver tissues. At week 16, a 
significant difference was noted in DEN/2-AAF 300 over DEN/2-AAF 100 mg in liver 
tissues, while the differences between the three groups either on week 10 or 16 were 
insignificant (Table 3).

miR-1262 exhibited a significant increase in the rats who received either DEN alone 
or in combination with 2-AFF as compared to the naïve group. Compared to DEN 
alone, all 2-AAF groups showed a significant increase except for 2-AAF 100 at week 10 
in both liver tissues and sera. At week 10, 2-AAF 300 mg showed a significant 
difference over 2-AAF 100 mg and 200 mg in liver tissues. Moreover, at week 16, a 
considerable difference was observed between 2-AAF 200 mg and 300 mg over 
DEN/2-AAF 100 mg. At the serum level, significant differences were detected in 
DEN/2-AAF 300 mg over DEN/2-AAF 100 mg in both weeks 10 or 16 (Table 3).

Compared to the naïve group, all groups that received DEN or DEN in combination 
with 2-AAF showed a remarkable increase in the level of miR-1298. Compared to DEN 
alone, all groups that received 2-AFF showed a significant increase in the level of miR-
1298, except for 2-AFF 100 mg, at week 10 in both liver tissues and sera. At week 10 in 
liver tissues, DEN/2-AAF 200 mg and 300 mg showed a significant increase over 
DEN/2-AAF 100 mg, while at week 16, a significant difference was detected in 
DEN/2-AAF 300 mg over both DEN/2-AAF 100 mg and 200 mg. At week 10, 
significant differences were noted in DEN/2-AAF 300 over DEN/2-AAF 100 mg and 
200 mg in the sera, and at week 16, a significant increase was observed in DEN/2-AAF 
300 mg over DEN/2-AAF 100 mg (Table 3).

Finally, 2-AAF administration exhibited a significant increase in miR-1298 and miR-
1262 with a concomitant decrease in lncRNA-RP11-513I15.6 expression in the liver 
tissues and sera over DEN alone; also, significant differences were observed in 2-AFF 



Hasanin AH et al. 2-AAF promoted hepatic precancerous lesions

WJH https://www.wjgnet.com 338 March 27, 2021 Volume 13 Issue 3

Table 3 Effect of diethylnitrosamine and 2-acetylaminofluorene on relative quantification of lncRNA-RP11-513I15.6 (long-noncoding 
RNA), relative quantification of miR-1262 and relative quantification of miR-1298 (microRNA)

RQ of lncRNA-RP11-513I15.6 RQ of miR-1262 RQ of miR-1298

Liver Serum Liver Serum Liver Serum

Naïve 2.33 ± 0.31 1.86 ± 0.41 0.38 ± 0.09 0.26 ± 0.34 0.77 ± 0.26 0.1 ± 0.04

Week 10

DEN 1.31 ± 0.36d 0.99 ± 0.15d 1.63 ± 0.28d 1.40 ± 0.13d 1.55 ± 0.37d 1.08 ± 0.11d

DEN + 100 AAF 1.03 ± 0.2d 0.63 ± 0.13d,e 2.26 ± 0.54d 2.23 ± 0.19d 1.85 ± 0.12d 1.48 ± 0.56d

DEN + 200 AAF 0.58 ± 0.12a,d,e 0.44 ± 0.05d,e 2.52 ± 0.44d,e 2.81 ± 0.49d,e 2.46 ± 0.37d,e 1.82 ± 0.47b,c,d,e

DEN + 300 AAF 0.47 ± 0.037b,d,e 0.39 ± 0.005d,e 3.9 ± 0.36d,e 3.59 ± 1.10b,d,e 2.88 ± 0.11d,e 3.30 ± 0.18d,e

Week 16

DEN 0.76 ± 0.1d 0.52 ± 0.13d 3.12 ± 0.62d 2.15 ± 0.08d 2.52 ± 0.56d 2.23 ± 0.26d

DEN + 100 AAF 0.46 ± 0.04d,f 0.22 ± 0.04d 4.48 ± 0.63d,f 4.08 ± 0.32d 3.92 ± 0.61d,f 4.56 ± 0.61d,f

DEN + 200 AAF 0.26 ± 0.07d,f 0.14 ± 0.07d,f 5.71 ± 0.76a,d,f 7.38 ± 2.24d,f 4.58 ± 0.56d,f 5.78 ± 1.72d,f

DEN + 300 AAF 0.14 ± 0.04b,d,f 0.12 ± 0.06d,f 6.45 ± 1.04b,d,f 9.78 ± 4.32b,d,f 5.89 ± 1.27d,f 7.38 ± 2.05b,d,f

Values are mean ± SD; number of animals = 6 rats/each group.
aP < 0.05 when DEN + 200 acetylaminofluorene (AAF) is compared to the DEN + 100 AAF.
bP < 0.05 when DEN + 300 AAF is compared to the DEN + 100 AAF.
cP < 0.05 when DEN + 300 AAF is compared to the DEN + 200 AAF.
dP < 0.05 compared to the naïve group.
eP < 0.05 compared to the diethylnitrosamine (DEN) group at week 10 group.
fP < 0.05 compared to the DEN at week 16 group. One-way ANOVA followed by Tukey's multiple comparison test. DEN: Diethylnitrosamine; 2-AAF: 2-
Acetylaminofluorene; RQ: Relative quantification; lncRNA: Long-noncoding RNA; miR: MicroRNA.

300 mg over the other two doses.

DISCUSSION
The nodules and cancer progression has been analyzed using animal models of 
carcinogenesis[16]. The present study aimed to develop a model of chemically-induced 
pre precancerous nodules in rat liver using DEN + 2-AAF and explore the putative 
molecular mechanism at the genetic and epigenetic levels. The conformation of 
premalignant epithelial tissues was disrupted by pre- and neoplastic liver nodules in 
experimental animals before the onset of cancer[17]. DEN is used to induce 
precancerous and cancerous lesions. It is metabolically activated by the liver 
cytochrome cytochrome P450 (CYP450) system, followed by induced DNA damage 
and oxidative stress in hepatocytes during cancer initiation[18]. The drawback of this 
model is the duration required for appropriate tumor development[19]. The initiated 
cells can be stimulated to proliferate and form hepatocyte foci and nodules by the 
administration of promotor agent, such as 2-AAF that causes toxicity, cell death, and 
carcinogenesis[20]. Carcinogens exert their carcinogenicity through either epigenetic 
effects without direct interaction with DNA or genotoxic effects[21].

GST-P immunohistochemistry served as an optimal marker of hepatic pre 
precancerous in rats[22]. In addition, PCNA is an essential cell cycle regulator; its 
expression serves as a tool for studying cell proliferation and identifying the 
replicating cells[23]. The nuclei of hepatocytes with positive PCNA immunostaining 
indicate hepatic regeneration. Also, a large number of cells circulating in GST-P-
positive areas were observed. Furthermore, liver regeneration induced by massive 
hepatic necrosis was associated with the proliferation of hepatocytes.

Accumulating evidence suggested that oncogenic transformation is associated with 
resistance or impeded apoptotic pathway. The cancer therapy targets such autophagic 
imbalance[24]. RAB proteins are members of the Ras superfamily consisting of small 
monomeric GTPases that regulate the intracellular trafficking of several cell types. 
RAB11 GTPases are involved in the recycling of endosomes as well as controlling 
trafficking and autophagy process[25]. Previous studies demonstrated a significant role 
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of RAB11A in pancreatic cancer[26] and non-small cell lung cancer[27].
A majority of the tumors present defects in the cell cycle, especially the loss of 

tumor suppressor p53, which prevents cell proliferation in response to DNA damage 
or dysregulation of oncogenes, inducing apoptosis or cellular senescence. p53 
heterozygous mutant is susceptible to the occurrence of HCC[28,29]. Cyclin was 
overexpressed in many human cancers, including ovarian and breast cancers. AKT 
acts as a cytoplasmic central regulator of cell cycle signaling (Cyclin D1 and E) and cell 
survival (Mdm2/p53)[30,31]. Cyclin E1 is a regulatory subunit of Cyclin-dependent 
kinase 2 (CDK2). Cyclin E1 is upregulated in human HCCs and associated with poor 
prognosis[32,33]. Notably, the dysfunction of apoptosis with dysregulation of BCL-2 and 
BAX has been reported in many cancers, including bladder cancer[34]. BAX is a central 
regulator of cell death, leading to mitochondrial dysfunction. Also, it is one of the 
proapoptotic Bcl-2 family proteins that regulate apoptosis in normal and cancer 
cells[35].

Interestingly, previous studies reported the role of tumor suppressor miR-1262 in 
cancers. The expression of miR-1262 was dysregulated in the lung[36] and colon 
cancers[37]. On the other hand, hsa-miR-1298 is a microRNA gene, correlated to 
undefined RNA class and localized on the X chromosome (Xq23), (114715233-
114715344 bp), 112 bases in length. Calvisi et al[6] demonstrated the secretion of 
circulating miR-21, miR-221a, miR-519d and miR-1228 in HCC patients. The high 
mobility group “A” family consisted of lncRNA RP11-513I15.6, which encoded the 
small nuclear proteins. Moreover, it play a significant role as an oncogene and is 
frequently overexpressed in different malignancies, such as HCC out[38], breast 
cancer[39], and ovarian cancer[40].

CONCLUSION
Administration of DEN to rats produced changes in hepatocytes with increased GST-P 
and PCNA expression and development of precancerous hepatic foci. The transformed 
cells proliferated when challenged with another carcinogen (2-AAF) as a promoter. 
These changes increased with the elevated dose of 2-AFF and duration of the 
experiment. DEN and 2-AAF affected the mRNA-biomarkers, including RAB11A, 
BAX, p53, and Cyclin E. Thus, the oncogenic properties of DEN and 2-AAF were 
observed in induced HCC model, which might be attributed to the suppression of p53, 
autophagy, and apoptosis along with the activation of the cell cycle. Moreover, it 
significantly increased the level of miR-1262 and miR-1298 with a concomitant 
decrease in the expression of lncRNA-RP11-513I15.6. This phenomenon led to the 
hypothesis that lncRNA-RP11-513I15.6 is a part of competing endogenous RNA, 
decreasing the level of miR-1262 and miR-1298, which, in turn, regulates the selected 
target mRNAs.

ARTICLE HIGHLIGHTS
Research background
2-Acetylaminofluorene (2-AAF) dose dependently promoted hepatic precancerous 
lesion. Over diethylnitrosamine (DEN), 2-AAF decreased autophagy. Over DEN, 2-
AAF decreased apoptosis and tumor suppression gene. Over DEN, 2-AAF increased 
hepatic cell proliferation. 2-AAF epigenetically regulated long-noncoding RNA 
(lncRNA) RP11-513I15.6/miRNA-1262/miR-1298 (microRNA = miRNA = miR).

Research motivation
Urgent need for hepatocellular carcinoma (HCC) rat model for preclinical trials.

Research objectives
The present study aimed to develop a model of chemically-induced pre precancerous 
nodules in rat liver using DEN + 2-AAF and explore the putative molecular 
mechanism at the genetic and epigenetic levels.

Research methods
Bioinformatics-based selection of molecular parameters to investigate the oncogenic 
mechanism of the chemicals used in the HCC model followed by induction of animal 
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model by. intraperitoneal injection of DEN for three weeks consecutively, followed by 
one intraperitoneal injection of 2-AAF at three different doses (100, 200 and 300 
mg/kg. Rats were sacrificed after 10 wk and 16 wk. Liver functions, level of alpha-
fetoprotein, glutathione S-transferase-P and proliferating cell nuclear antigen staining 
of liver tissues were performed. The mRNA level of RAB11A, BAX, p53, and Cyclin E 
and epigenetic regulation by lncRNA RP11-513I15.6, miR-1262, and miR-1298 were 
assessed in the sera and liver tissues of the rats.

Research results
2-AAF administration significantly increased the percent area of the precancerous foci 
and cell proliferation along with a significant decrease in RAB11A, BAX, and p53 
mRNA, and the increase in Cyclin E mRNA was associated with a marked decrease in 
lncRNA RP11-513I15.6 expression with a significant increase in both miR-1262 and 
miR-1298.

Research conclusions
Administration of DEN to rats produced changes in hepatocytes with increased 
glutathione S-transferase-P and proliferating cell nuclear antigen expression and 
development of precancerous hepatic foci. The transformed cells proliferated when 
challenged with another carcinogen (2-AAF) as a promoter. These changes increased 
with the elevated dose of 2-AFF and duration of the experiment. DEN and 2-AAF 
affected the mRNA-biomarkers, including RAB11A, BAX, p53, and Cyclin E. Thus, the 
oncogenic properties of DEN and 2-AAF were observed in induced HCC model, 
which might be attributed to the suppression of p53, autophagy, and apoptosis along 
with the activation of the cell cycle. Moreover, it significantly increased the level of 
miR-1262 and miR-1298 with a concomitant decrease in the expression of lncRNA-
RP11-513I15.6. This phenomenon led to the hypothesis that lncRNA-RP11-513I15.6 is a 
part of competing endogenous RNA, decreasing the level of miR-1262 and miR-1298, 
which, in turn, regulates the selected target mRNAs.

Research perspectives
More in vitro functional studies are urgently need to explore the competing endogenur 
role of lncRNA in HCC pathogenesis.
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