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Abstract
Fucose (6-deoxy-L-galactose) is a monosaccharide that  
is found on glycoproteins and glycolipids in verte- 
brates, invertebrates, plants, and bacteria. Fucos
ylation, which comprises the transfer of a fucose re
sidue to oligosaccharides and proteins, is regulated by 
many kinds of molecules, including fucosyltransferases, 
GDP-fucose synthetic enzymes, and GDP-fucose 
transporter(s). Dramatic changes in the expression 
of fucosylated oligosaccharides have been observed 
in cancer and inflammation. Thus, monoclonal anti
bodies and lectins recognizing cancer-associated 
fucosylated oligosaccharides have been clinically 
used as tumor markers for the last few decades. 
Recent advanced glycomic approaches allow us to 
identify novel fucosylation-related tumor markers. 
Moreover, a growing body of evidence supports the 
functional significance of fucosylation at various pa
thophysiological steps of carcinogenesis and tumor 
progression. This review highlights the biological and 
medical significance of fucosylation in gastrointestinal 
cancer.
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INTRODUCTION
Oligosaccharides are one of  the most important factors 
in the posttranslational modification of  proteins and 
lipids. Glycomics, the systematic study of  glycans and 
glycan-binding proteins in various biological systems, 
is an emerging field in the post-genomics and post-
proteomics era[1-3]. It is well known that oligosaccharide 
structures change during malignant transformation[4]. The 
remodeling of  cell surface glycoproteins and glycolipids 
through modification of  oligosaccharide structures is 
associated with the biological behavior of  tumor cells[5-8]. 
Fucose is a constituent of  oligosaccharides, and is no
tably associated with cancer and inflammation[9]. In 
the 1980s, the development of  monoclonal antibodies 
against carbohydrate antigens triggered research to 
detect cancer-associated aberrant glycosylation. Several 
antibodies recognizing fucosylated glycoproteins or 
glycolipids in the sera of  patients with cancer have long 
been used as tumor markers, such as CA19-9[10]. Alpha-
fetoprotein (AFP)-L3 fraction, which is fucosylated 
AFP, has also been clinically used as a tumor marker for 
hepatocellular carcinoma (HCC) since 1996 in Japan and 
2005 in the United States[11,12]. In recent years, advances 
in the methodology for detection of  glycan alteration in 
cancer cells and sera of  patients with cancer have driven 
the development of  various types of  tumor markers. In 
this review, we summarize the history of  fucosylation-
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related tumor markers. Moreover, several research gro-
ups, including ours, have revealed the biological roles of  
fucose in several types of  cancer. This review also fo- 
cuses on the pathophysiological significance of  fuco
sylation in gastrointestinal cancer.

REGULATORY MECHANISM FOR 
FUCOSYLATION
Fucosylation is catalyzed by fucosyltransferases, gua
nosine 5’-diphosphate (GDP)-fucose synthetic enzymes, 
and GDP-fucose transporter(s) (Figure 1). The thirteen 
fucosyltransferase genes which have thus far been 
identified in the human genome can be divided into 
five groups. Firstly, FUT1 and FUT2 have been shown 
to be responsible for the α1-2 linkage of  fucose[13,14]. 
Secondly, a family of  α1-3 fucosyltransferases, including 
FUT3[15], FUT4[16-18], FUT5[19], FUT6[20,21], FUT7[22,23], 
and FUT9[24,25], is involved in the synthesis of  Lewis 
blood group antigens. FUTs3-7 can synthesize the sialyl 
Lewis X (sLex) structure, NeuAcα2-3Galβ1-4(Fucα1-
3)GlcNAcβ-R, and FUTs3-6 and FUT9 (i.e. not FUT 
7) can synthesize the Lex structure, Galβ1-4(Fucα1-
3)GlcNAcβ-R. FUT9 is the enzyme most responsible 
for the synthesis of  Lex in the brain[26]. Only FUT3 

exhibits α1-4 fucosyltransferase activity, resulting in the 
synthesis of  type 1 Lewis antigens such as Lea [Galβ1-
3(Fucα1-4)GlcNAcβ-R], Leb [(Fucα1-2)Galβ1-3(Fucα1-
4)GlcNAcβ-R], and sialyl Lea [NeuAcα2-3Galβ1-
3(Fucα1-4)GlcNAcβ-R]. Thirdly, FUT8 catalyzes the 
transfer of  a fucose residue to the C6 position of  the 
innermost GlcNAc residue of  N-linked oligosaccharides 
on glycoproteins to produce core fucosylation[27,28]. 
Fourthly, it remains to be determined which kinds of  
fucosyltransferase activity FUT10 and FUT11 have[29]. 
Finally, protein O-fucosytransferases 1 and 2 (Pofut1 
and Pofut2, respectively) transfer a fucose residue via 
an α-linkage to serine or threonine within epidermal 
g rowth factor (EGF)-l ike repeats containing an 
appropriate consensus sequence (C2-X(4-5)-[S/T]-C3) and 
thrombospondin type 1 repeats containing a consensus 
sequence (C-X-X-[S/T]-C-X-X-G), respectively[30-33]. 
Notch and the ADAMTS superfamily were identified 
as proteins targeted by Pofut1 and 2, respectively[34-36]. 
Since these proteins have been reported to regulate 
carcinogenesis and cancer progression, O-fucose may be 
associated with cancer biology[37-39]. 

GDP-fucose, which is a common donor substrate to 
all fucosyltransferases, is synthesized in the cytosol via 
two pathways, namely the salvage pathway and the de novo 
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Figure 1  Fucose metabolism. GDP-fucose is mainly synthesized through the de novo pathway by three reactions catalyzed by GDP-4,6-dehydratase (GMDS) and 
GDP-4-keto-6-deoxy-mannose-3,5, epimerase-4-reductase (FX). Free L-fucose is converted to GDP-fucose through the salvage pathway, which is a minor pathway. 
GDP-fucose is subsequently transported from the cytosol to the Golgi lumen by GDP-fucose transporter, and then transferred to acceptor oligosaccharides and 
proteins by fucosyltransferases.
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pathway. The salvage pathway synthesizes GDP-fucose 
from free L-fucose, derived from extracellular or lysosomal 
sources via two steps: catalyzation by L-fucokinase[40] 
and then GDP-fucose pyrophosphorylase[41]. The de novo  
pathway transforms GDP-mannose into GDP-fucose via  
three steps: catalyzation by GDP-mannose-4,6-dehy-
dratase (GMDS)[42,43] and GDP-4-keto-6-deoxymannose-3, 
5-epimerase-4-reductase (FX)[44]. The salvage pathway 
is responsible for only about 10% of  the cellular pool 
of  GDP-fucose. Thus, cellular GDP-fucose is mainly 
produced by the de novo pathway. A defect of  this pathway 
leads to a virtually complete deficiency of  cellular 
global fucosylation, including α1-2, 1-3/4, 1-6, and 
O-fucose[42,43,45]. After GDP-fucose has been synthesized 
in the cytosol, it is transported to the Golgi apparatus 
through GDP-fucose transporter to serve as a substrate 
for fucosyltransferases[46,47]. 

APPLICATION OF FUCOSYLATED 
GLYCANS AS TUMOR MARKERS
AFP is a glycoprotein produced in the mammalian 
embryonic liver and is a major serum protein in the 
developing fetus. While the expression of  AFP is absent 
in the normal adult, its reappearance is observed in 
patients with HCC. Therefore, AFP has been clinically 
used as a tumor marker for HCC[48,49]. However, de
termination of  the AFP level is of  limited value for 
the diagnosis of  HCC since AFP is often elevated in 
chronic liver diseases, such as chronic hepatitis (CH) and 
liver cirrhosis (LC). It is difficult to make a differential 
diagnosis of  HCC from benign liver diseases based 
on low or moderate elevation of  AFP. Under these 
circumstances, the fucosylated AFP (AFP-L3 fraction) is 
more effective for the specific diagnosis of  HCC because 
it increases in patients with HCC, but not in ones with 
CH and LC[11,12] (Figure 2A). LCA (Lensculinaris agglutinin) 
lectin-electrophoresis has been used for the measurement 

of  AFP-L3[50]. Recently, the fully automated and high-
performance micro-total analysis system (μTAS) de- 
veloped by Wako Pure Chemical Industries has incr-
eased the analytical sensitivity for AFP-L3 and shor
tened the measurement time from the 1h required 
for the conventional assay to less than 10 min[51]. The 
molecular mechanism underlying the production of  
fucosylated AFP in HCC is complicated. Fucosylation 
at an N-glycan of  AFP is mediated by FUT8, which 
has been purified and cloned by our group[27,28]. The 
expression of  FUT8 is quite low in the normal liver 
and increases in HCC[52,53]. The up-regulation of  FUT8 
expression is required for the production of  fucosylated 
AFP, but such enhancement is insufficient to explain 
the specific production of  fucosylated AFP in HCC due 
to the broad increased expression of  FUT8 in benign 
liver diseases[54]. We have shown that GDP-fucose is a 
more important regulatory factor for fucosylation in 
HCC. The level of  GDP-fucose, and the expression 
of  FX and GDP-fucose transporter are significantly 
increased in HCC tissue compared with that in adjacent 
chronic inflamed tissue or normal liver tissue[55-57]. As 
a result of  cell experiments, the most important factor 
for the increase in fucosylation in HCC is thought to be 
the transport of  GDP-fucose. However, a problem is 
that the level of  GDP-fucose is increased only by two 
or three-fold, which does not explain the fact that the 
level of  serum AFP-L3 is increased in HCC to dozens 
of  times its normal level. Recently, we proposed an 
additional mechanism by which AFP-L3 increases in sera 
of  patients with HCC[58]. Fucosylated glycoproteins, such 
as α1-acid glycoprotein and α1-antitrypsin, produced in 
hepatocytes are secreted into the bile. FUT8 knockout 
mice show decreased levels of  these proteins in their 
bile, suggesting that fucosylation regulates the secretion 
of  certain types of  hepatic fucosylated glycoproteins, 
including AFP, into the bile. The disruption of  this so- 
rting system could be an additional mechanism und
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Figure 2  Measurement of fucosylation-related tumor markers in gastrointestinal cancer. A: The sera of patients with liver diseases were electrophoresed on an 
LCA agarose gel, followed by reaction with anti-AFP antibody. Since LCA specifically binds to fucosylated oligosaccharides on AFP, fucosylated AFP runs slowly on 
an LCA agarose gel; B: Since IgG has a fucosylated oligosaccharide in its Fc portion, a Fab fragment of anti-human haptoglobin IgG was coated on the bottom of a 
96-well ELISA plate. After the sera of patients had been loaded into individual wells, the reaction with biotinylated AAL was performed to detect specifically fucosylated 
haptoglobin. Peroxidase-conjugated avidin and 3,3’,5,5’ tetramethylbenzisine were used for development. 
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erlying the increase in AFP-L3 in sera of  patients with 
HCC. 

Recently, large-scale analytical methods have been 
developed for the human serum glycoproteome which 
are also powerful tools for the discovery of  diagnostic 
and therapeutic targets. Glycoprotein (GP) 73 was found 
to be a novel tumor marker for HCC through lectin-
based glycoproteomic analysis[59]. The serum GP73 level 
was significantly increased in patients with HCC, even 
in HCC patients who had serum AFP levels less than 20 
ng/mL[60]. It has also been reported that the fucosylation 
of  GP73 was increased in patients with HCC[59]. Mo
reover, other fucosylated glycoproteins, kininogen and 
α1-antitrypsin, were identified as candidate hepatic 
tumor markers[61]. The best performance was obtained 
with the combination of  fucosylated kininogen, AFP 
and GP73, the optimal sensitivity being 95% and the 
specificity 70%. 

 Pancreatic cancer is currently one of  the leading 
causes of  cancer-related deaths and the overall 5-year 
survival has been reported to be less than 5%[62]. CA19-9, 
which is a monoclonal antibody against the sLea structure, 
has been used as a tumor marker for pancreatic cancer[10]. 
However, false positives are a problem and an early 
diagnosis based on the CA19-9 level is quite difficult. 
Under these circumstances, we reported on the potential 
use of  fucosylated haptoglobin as a novel tumor marker 
for pancreatic cancer[63]. The positive rate for fucosylated 
haptoglobin is 60%-70% (Table 1) and the rate increases 
progressively with the stage of  the disease. For clinical 
applications, we established and validated the original 
lectin-ELISA system (Figure 2B). After our report, 
several groups reported that fucosylated haptoglobin was 
increased in sera of  patients with lung, prostate, and liver 
cancer[64-66]. Thus, our established lectin-ELISA system is 
available for detecting fucosylated haptoglobin in several 
types of  tumors. Haptoglobin is a glycoprotein produced 
in the liver. Thus, increases in fucosylated haptoglobin 
in sera of  patients with pancreatic cancer are thought to 
be caused by a soluble factor secreted from pancreatic 
cancer tissue. Recently, we found that interleukin-6 
(IL-6) secreted from pancreatic cancer cells induced the 
production of  fucosylated haptoglobin in the liver[67]. IL-6 
could be one of  the factors that induce the production of  

fucosylated haptoglobin in sera of  patients with pancreatic 
cancer.

BIOLOGICAL ROLE OF THE INTERACTION 
BETWEEN LEWIS ANTIGEN AND 
SELECTIN IN TUMOR METASTASIS
Inflammation and cancer metastasis are associated with 
extravasation of  leukocytes or cancer cells from blood 
vessels into tissues. The interaction between cancer cells 
and vascular endothelial cells is mediated by a coordinated 
and sequential molecular cascade initiated, in part, by 
selectins, carbohydrate-binding proteins[68-71]. The initial 
adhesion mediated by these molecules triggers activation 
of  integrin molecules through the action of  several 
cytokines, leading to the extravasation of  cancer cells. In 
addition, leukocyte-endothelial interactions via selectins 
are associated with tumor angiogenesis and progression[72]. 
Carbohydrate ligands for selectins, such as sLex[73-75] and 
sLea[76,77], are expressed on cancer cells. sLex and sLea 
have been used as tumor markers for certain types of  
cancer. Increases in sLex and sLea in cancer tissues are 
correlated with a poor prognosis in several types of  
cancers, including colon, bladder, and breast cancers[78-80]. 
Two principal mechanisms underlying the accelerated 
expression of  sLex and sLea in cancers are known: 
“neosynthesis” and “incomplete synthesis”[81]. During 
“neosynthesis”, cancer-associated induction of  some 
glycosyltransferases, including fucosyltransferases, has 
been assumed to influence expression of  the determinants. 
Certain types of  fucosyltransferases are up-regulated in 
cancer tissues, and are responsible for the final step in the 
synthesis of  sLea and sLex[82,83]. On the other hand, recent 
results have indicated that normal epithelial cells of  several 
organs contain sufficient amounts of  enzymes required 
for the synthesis of  sLea and sLex. The difference between 
normal epithelial cells and cancer cells is that normal 
epithelial cells have additional enzymes to further modify 
these determinants into more complicated entities, such 
as disialyl Lea[84,85] and sialyl 6-sulfo Lex[86]. The impaired 
expression of  glycosyltransferases, which are involved in 
the synthesis of  complex carbohydrate determinants in 
normal epithelial cells, leads to the accumulation of  less-
complex cancer-associated carbohydrates in cancer cells 
(incomplete synthesis)[87-89].

RELATIONSHIP BETWEEN LEWIS 
ANTIGEN AND INFECTION BY 
HELICOBACTER PYLORI
Helicobacter pylori (H. pylori) is a Gram-negative bacterium 
that colonizes the human gastric mucosa, and infects 
over 50% of  the world’s population[90]. The infection 
outcome is diverse, and includes the development and 
recurrence of  gastritis, gastric and duodenal ulcers, 
and an increased risk of  gastric adenocarcinomas and 
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Table 1  Positive ratio of fucosylated haptoglobin in sera of 
patients with various diseases[63]

n Negative Positive %

Normal   30 29   1   3
aPancreatic cancer   87 30 57 66
a,cHCC   23 18   5 22
a,cLiver cirrhosis   12   9   3 25
cGastric cancer   10   8   2 20
aColon cancer 100 59 41 41
a,cChronic pancreatitis     9   7   2 22

Statistic analysis was performed according to the program for StatView 
software. aP < 0.05 vs normal; cP < 0.05 vs pancreatic cancer (c2 test).
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mucosa-associated lymphoid tissue (MALT) lympho
mas[91-93]. The lipopolysaccharides (LPSs) of  H. pylori 
contain fucosylated oligosaccharides, predominantly type 
Ⅱ blood group antigens, such as Lex and Ley, in addition 
to minor amounts of  type Ⅰ antigens, such as Lea and 
Leb[94,95]. Lewis blood group antigens are also present 
in the normal human gastric mucosa. The molecular 
mimicry of  host cell surface antigens has been suggested 
to mask the pathogen from host immune surveillance, 
and thus plays an important role in colonization and 
long term infection in the stomach[96]. These Lewis 
antigens are synthesized by H. pylori fucosyltransferases 
using GDP-fucose as a donor substrate. A recent report 
suggested that L-fucose released from the surface of  
host cells by secreted human α-L-fucosidase is used 
as a source for the production of  Lex in H. pylori[97]. 
Successful H. pylori infection is dependent on tight ad
herence to the mucous epithelial cells and the mucus 
layer lining the gastric epithelium. Two oligosaccharide 
structures, Leb and sLex/a, on the surface of  mucous cells 
serve as specific ligands for blood group antigen-binding 
adhesin (BabA) and sialic acid-binding adhesin (SabA) 
respectively, expressed on the surface of  H. pylori[98,99]. 
H. pylori adhesins, such as BabA, may have evolved an 
ability to distinguish between host and bacterial ligands 
based on the differences in their core sugar structures 
in order to avoid bacterial autoaggregation[100]. These 
findings show that certain oligosaccharide structures 
expressed on H. pylori and gastric epithelial cells are 
closely associated with the pathogenesis and prevention 
of  H. pylori-related disease, suggesting their therapeutic 
potential through modification of  the determinants.

MODIFICATION OF GROWTH 
FACTOR RECEPTORS AND ADHESION 
MOLECULES THROUGH CORE-
FUCOSYLATION
Most receptors on the cell surface, including EGF re
ceptor (EGFR), transforming growth factor β receptor 
(TGFβR), E-cadherin, and integrins, are core-fucosylated. 
Core-fucosylated oligosaccharides affect protein folding 
and structure, and as a result, regulate many physiological 
and pathological events, including cell growth, migration, 
embryogenesis, and tumor invasion. The importance of  
core-fucosylation for the functions of  several membrane-
associated proteins has been demonstrated through 
glycomic analyses of  Fut8-deficient mice. TGF-β is a 
pleiotropic cytokine that is especially important for cancer 
biology and the immune system[101,102]. Fut8-deficient 
mice show marked dysregulation of  TGFβR activation 
and signaling due to impaired binding between a receptor 
and a ligand[103]. Since TGF-β signaling also controls 
extracellular matrix homeostasis[104], Fut8-deficient mice 
show an emphysema-like phenotype in the lungs. Further 
studies by our group revealed that core-fucosylation 
was required for the binding of  the EGF to EGFR, 

which contains 12 potential N-glycosylation sites[5,105]. 
The growth retardation observed in Fut8-deficient mice 
might be caused partly by impaired EGF signaling. 
Both integrins and E-cadherin are associated with the 
characteristics of  cancer cells through regulation of  the 
cell-extracellular matrix interaction and homotypic cell-
cell adhesion, respectively[106,107]. Recent reports showed 
that a loss or decrease in core-fucosylation on N-glycans 
in integrins and E-cadherin resulted in defects in their 
functions[6,108]. Thus, core-fucosylation would be closely 
involved in the biological behavior of  cancer cells through 
regulation of  the functions of  many membrane-associated 
proteins. 

BIOLOGICAL ROLE OF FUCOSYLATED 
GLYCANS IN TUMOR IMMUNE 
SURVEILLANCE VIA TRAIL SIGNALING
While many studies have revealed that fucosylation is 
closely associated with cancer biology through modulation 
of  signal transduction and the cell-cell adhesion pathway, 
we recently provided new evidence that fucosylation 
affects tumor immune surveillance via another signaling 
pathway: TRAIL signaling[109,110]. 

When we examined the global fucosylation level in 
several colon cancer cells using Aleuria aurantia (AAL) 
lectin, which recognizes fucosylated oligosaccharides, 
little binding to AAL lectin was found in HCT116 cells 
(Figure 3A). Further analysis revealed that HCT116 
cells had a deleted GMDS transcript which eliminated 
their ability to synthesize GDP-fucose, and resulted in a  
virtually complete deficiency of  fucosylation. Tranfec
tion of  the wild-type GMDS gene into HCT116 cells 
restored the cellular fucosylation. GMDS-rescued cells 
showed dramatically suppressed tumor formation 
and metastasis compared with mock cells when they 
were inoculated into athymic nude mice (Figure 3B). 
Depletion of  natural killer (NK) cells stimulated tumor 
growth of  the GMDS-rescued cells, but not that of  the 
mock cells, indicating that a deficiency of  fucosylation 
leads to escape from NK cell-mediated tumor immune 
surveillance (Figure 3C). Tumor necrosis factor-related 
apoptosis-inducing ligand (TRAIL) is expressed mainly 
on the surface of  immune cells, where it functions in 
T-cell homeostasis and NK cell-mediated killing of  
virally infected or oncogenically transformed cells[111-114]. 
The engagement of  TRAIL receptors by the ligand leads 
to apoptosis through a specific signaling cascade[115]. 
Subsequent studies revealed that the GMDS-rescued 
cells were significantly more susceptible to TRAIL-ind
uced apoptosis (Figure 3D), which caused the increased 
sensitivity of  the GMDS-rescued cells to NK cells. 
Aberrant transcripts of  the GMDS gene were found in 
three other cancer cell lines (two human colon cancers 
and one gastric choriocarcinoma) as well as several colon 
and ovarian cancer tissues. Thus, loss of  GMD might be 
a common mechanism for cancer cells to evade TRAIL-
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mediated killing. While the increase in fucosylation 
is important at an early stage of  carcinogenesis, defu
cosylation through genetic mutation in certain types of  
advanced cancer would lead to escape from NK-cell 
mediated tumor surveillance and the acquisition of  more 
malignant characteristics (Figure 4).

Currently, because of  their ability to kill cancer cells,  
optimized soluble recombinant human TRAIL or ago- 
nistic antibodies targeting TRAIL receptors are und
ergoing phase 1 or 2 clinical evaluation as promising pro
apoptotic antitumor therapeutic agents in patients with 
several types of  tumors[116]. However, it has now become 
clear that many types of  tumor cells are resistant to TR

AIL[117-119]. Thus, studies are now underway to identify and 
characterize potential biomarkers of  sensitivity to TRAIL. 
Our findings demonstrated that examination of  the fu
cosylation levels in tumor tissues might be promising 
for predicting the efficiencies of  TRAIL-targeted th
erapies. Furthermore, the combination of  TRAIL-ta
rgeting medicine with a therapy, which could up-regulate 
fucosylation level, might have a synergistic therapeutic 
effect.

CONCLUSION
Fucosylation has been thought to play important roles 
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Figure 3  Deficiency of GMDS leads to escape from NK cell-mediated tumor surveillance through modulation of TRAIL signaling[109]. A: After trasnfection of 
the wild-type GMDS gene into HCT116 cells, Western blot analysis of GMDS and AAL blot analysis were performed. The binding to AAL was restored in transfected 
cells (WT-GMDS); B: Tumor growth of the GMDS-rescued cells on the backs of athymic nude mice was significantly suppressed compared to mock cells. The bar 
indicates 10 mm; C: When athymic nude mice were treated with anti-asialo GM1 antibody to deplete NK cells, the tumor growth of the GMDS-rescued cells was 
accelerated, but not in the case of mock cells. D: The higher susceptibility of the GMDS-rescued cells to TRAIL was confirmed by clonogenic survival assays. These 
figures are modified from the data in reference 109.
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in a wide variety of  events in cancer biology, but only 
AFP-L3 and CA19-9 have been used for the diagnosis 
of  cancer. In the case of  cancer therapy, fucosylation 
has never been clinically applied so far. Our recent study 
indicates that modulation of  fucosylation might be a 
promising target for cancer immune therapy. Recently 
identified fuocsylation-related tumor markers need to  
be validated using hundreds of  clinical specimens. In 
addition, tumor markers are not only monitors for 
diagnosis or therapy, but also represent the biological 
characters of  cancer cells. Thus, the mechanisms 
underlying the production of  any tumor markers should 
be revealed. While we have investigated the biological 
significance of  fucosylation in carcinogenesis and cancer 
progression, as described in this review, further analyses 
are required for its application to clinical tumor therapy. 
What molecules are the targets of  fucosylation? Which 
linkages, α1-2, α1-3/4, α1-6, and/or O-fucose, are 
important? When is fucosylation up- or down-regulated 
during carcinogenesis and cancer progression? We would 
like to pose these questions to anyone studying cancer 
fucosylation. We believe that fucosylation is not just a 
tumor marker, but is also a possible factor determining 
the characteristics of  cancer cells.
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