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Abstract
The metabolic syndrome, one of the most common 
clinical conditions in recent times, represents a combi-
nation of cardiometabolic risk determinants, including 
central obesity, glucose intolerance, insulin resistance, 
dyslipidemia, non-alcoholic fatty liver disease and hy-
pertension. Prevalence of the metabolic syndrome is 
rapidly increasing worldwide as a consequence of com-
mon overnutrition and consequent obesity. Although a 
unifying picture of the pathomechanism is still missing, 
the key role of the pre-receptor glucocorticoid activation 
has emerged recently. Local glucocorticoid activation is 
catalyzed by a triad composed of glucose-6-phosphate-
transporter, hexose-6-phosphate dehydrogenase and 

11β-hydroxysteroid dehydrogenase type 1 in the en-
doplasmic reticulum. The elements of this system can 
be found in various cell types, including adipocytes and 
hepatocytes. While the contribution of glucocorticoid 
activation in adipose tissue to the pathomechanism 
of the metabolic syndrome has been well established, 
the relative importance of the hepatic process is less 
understood. This review summarizes the available data 
on the role of the hepatic triad and its role in the meta-
bolic syndrome, by confronting experimental findings 
with clinical observations. 
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INTRODUCTION
The metabolic syndrome (MS) is a multicomponent clini-
cal entity with a prevalence of  about 20%-25%. Several 
definitions of  MS have been suggested, including those 
of  the World Health Organization[1,2], the European 
group for the study of  insulin resistance[3], the National 
Cholesterol Education Programme Adult Treatment 
Panel III (NCEP ATP III)[4] and the International Dia-
betes Federation[5,6]. Although these definitions share 
many common features, some criteria are different. Ac-
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cording to the most widely accepted diagnostic definition 
of  NCEP ATP III, metabolic syndrome is diagnosed if  
three or more of  the following parameters are present: 
waist circumference greater than 102 cm in men and 88 
cm in women, serum triglyceride level higher than 150 
mg/dL (1.7 mmol/L), HDL-C level lower than 40 mg/dL 
(1.04 mmol/L) in men and lower than 50 mg/dL in 
women, blood pressure higher than 130/85 mmHg and 
fasting glucose level at least 110 mg/dL (6.1 mmol/L). 
The most important complication of  metabolic syn-
drome is the increased (approximately doubled) risk of  
the development of  ischemic heart disease.

The metabolic syndrome is much more than the 
simple sum of  the symptoms. It is a multifactorial dis-
ease, which is not due to a single genetic defect and lacks 
a unique pathomechanism. Its complex etiology likely 
includes inherited predisposition, intrauterine effects, life-
style factors and excessive calorie intake. Central (omental) 
adiposity and the pro-inflammatory conditions in the 
adipose tissue have emerged as crossing points of  these 
etiological factors.

The phenotype and symptoms (e.g. serum lipid pat-
tern and derangements of  carbohydrate metabolism) of  
the metabolic syndrome are remarkably similar to those 
of  Cushing syndrome, which is caused by excessive 
glucocorticoid production or medication. This clinical 
observation leads to the hypothesis that glucocorticoids 
might play a role in the pathogenesis of  the metabolic 
syndrome. Although plasma cortisol levels are normal, 
both cortisol excretion and total body cortisol production 
were found to be increased in patients with abdominal 
obesity[7]. Preclinical data on rodent models proved the 
role of  glucocorticoids in obesity[8]. The absence of  el-
evated serum cortisol levels both in human and rodent 
metabolic syndrome suggests the existence of  a local 
glucocorticoid effect in the background of  this phenom-
enon. The activity of  11β-hydroxysteroid dehydrogenase 
type 1 (11βHSD1) has appeared in the focus of  the 
pathogenesis recently.

BIOCHEMISTRY OF THE GLUCOSE-
6-PHOSPHATE TRANSPORTER- 
HEXOSE-6-PHOSPHATE 
DEHYDROGENASE-11βHSD1 SYSTEM
11βHSD1 is a luminal enzyme of  the endoplasmic reticu-
lum (ER), which is expressed in many organs and tissues. 
The enzyme expressed in the liver and adipose tissue 
plays presumably the most important role in the patho-
genesis of  the metabolic syndrome. Its main function is 
the regulation and enhancement of  local glucocorticoid 
effect at tissue level. 11βHSD1 catalyzes the reversible 
interconversion of  cortisone and cortisol in vitro, by using 
nicotinamide adenine dinucleotide phosphate (NADP)+ 
or NADPH as a cofactor, which makes the activity sen-
sitive to modifications in cofactor supply. The fact that 
11βHSD1 acts exclusively as a reductase in vivo suggests 
a high luminal NADPH/NADP+ ratio in the ER. This 

ratio is generated by hexose-6-phosphate dehydrogenase 
(H6PDH), another luminal enzyme. H6PDH seems to 
be the major, if  not the only, enzyme responsible for 
NADP+ reduction in the ER lumen[9]. This tandem en-
zyme catalyzes the first two steps of  the pentose-phos-
phate pathway, i.e. the formation of  6-phosphogluconate 
from glucose-6-phosphate. Besides their colocalization 
and direct physical interaction[10], cooperativity between 
11βHSD1 and H6PDH was proved by biochemical[11], 
as well as by genetic[12] approaches. The activities of  the 
two enzymes are linked by cofactor sharing, i.e. they mu-
tually generate cofactors for each other. Their physical 
interaction and functional cooperation allow cortisone 
reduction despite the otherwise oxidative environment in 
the ER lumen. In agreement with in vivo observations, the 
existence of  a dominantly reduced intraluminal pyridine 
nucleotide pool was reported in the ER[13,14].

The substrate supply for and the specificity of  H6PDH 
are ensured by glucose-6-phosphate transporter (G6PT), 
an ER membrane protein. In the ER of  hepatocytes, 
adipocytes and neutrophil granulocytes (and possibly a 
number of  other cells), 11βHSD1 can be considered as 
a component of  a complex system, which also includes 
H6PDH and G6PT (Figure 1). 

The stringent cooperation of  the members of  the 
G6PT-H6PDH-11βHSD1 system can convert metabolic 
effects to an endocrine response; thus, the triad can act as 
a nutrient sensor[15,16]. Intracellular glucose-6-phosphate 
accumulation can accelerate the concerted action of  the 
G6PT-H6PDH-11βHSD1 triad, which promotes intra-
cellular glucocorticoid activation. Beyond its physiologi-
cal sensor role, the triad also detects overnutrition. It can 
participate in the pathomechanism of  gluco-, lipo-, and 
glucolipotoxicity[15,17-20]. Excessive glucose and fatty sup-
ply activates the unfolded protein response and induces 
ER stress by an unknown mechanism; local glucocorti-
coid activation might represent an alternative signaling 
pathway[15,16]. 

As it can be supposed from the variety of  symptoms 
of  human metabolic syndrome, the G6PT-H6PDH-
11βHSD1 triad present in different cell types and tissues 
can contribute to the development of  this complex dis-
ease in various ways and to different extents. The exis-
tence of  the triad has been proved in hepatocytes[11], neu-
trophil granulocytes[19] and adipocytes[21] and the system is 
presumably present also in other cell types. Its exact role 
in the pathogenesis of  the metabolic syndrome has been 
best clarified in adipose tissue.

TISSUE SPECIFIC EXPRESSION AND 
COOPERATION OF THE G6PT-H6PDH-
11βHSD1 TRIAD
The hepatic and adipose G6PT-H6PDH-11βHSD1 triad 
plays a crucial role in the pathogenesis of  metabolic syn-
drome (Figure 2). Blood circulation, especially the portal 
venous system, keeps the triads of  different localization 
connected by transporting glucocorticoid metabolites. 
Glucocorticoid supply is an important determinant of  
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the activity. Glucocorticoids are synthesized de novo in the 
adrenal gland; however, glucocorticoid precursors can 
also derive from type 2 isoform of  11β-hydroxysteroid 
dehydrogenase (11βHSD2) activity. 11βHSD2 is present 
primarily in the kidney[22] and other mineralocorticoid tar-
get tissues, such as colon and salivary gland[23,24]. Its physi-
ological role is to prevent the action of  glucocorticoids 
through mineralocorticoid receptor by the conversion of  
cortisol to inactive cortisone (Figure 2).

It has been recently proved that omental 11βHSD2 
activity is also an important substrate supply for hepatic 
11βHSD1 activity[25]. Another possible mechanism for 
the omental cortisone production has been forwarded: 
11βHSD1 activity changes during the differentiation of  
preadipocytes. The existence of  11βHSD1 in adipose 
tissue was proved more than ten years ago with the con-
version of  radioactively labeled cortisone to cortisol in 
abdominal adipose tissue. Both the activity and expres-
sion of  the enzyme were higher in comparison with sub-
cutaneous adipocytes[26]. Abdominal obesity is known as 
the Cushing’s disease of  the omentum[27]. The existence 
of  the G6PT-H6PDH-11βHSD1 system was found in 
adipocytes as well[21]. 

However, the enzyme was suggested to function in a 
bidirectional manner in adipose tissue; the direction is de-
termined by the developing stage of  the preadipocyte or 
adipocyte. While cortisol oxidation dominates in preadi-
pocytes, cortisone reduction is predominant in matured 
adipocytes. Inactive glucocorticoid metabolites play an 
important role in the formation and hence in the local-
ization of  adipose tissue: they inhibit the development 
of  adipocytes from preadipocytes. If  11βHSD1 acts as a 
dehydrogenase, it inactivates cortisol and corticosterone, 

which leads to the inhibition of  preadipocyte prolifera-
tion[28,29]. When preadipocytes start to differentiate, the re-
ductase activity of  the enzyme is progressively increased, 
which leads to an accelerating cortisol production that 
drives adipocyte differentiation[30,31,27]. This mechanism 
leads to the special localization of  adipose tissue in 
Cushing syndrome and in the metabolic syndrome. The 
omentum contains preadipocytes that only start to differ-
entiate under excessive cortisol effects leading to central 
or visceral adiposity. Increase in H6PDH expression and 
its association with the increased 11βHSD1 activity was 
suggested to be present in the background of  adipocyte 
differentiation[32]. 

Adipocyte differentiation is enhanced in 11βHSD1 
overexpressing mice as well[33]. Direction of  enzyme 
activity depends on the developmental stage, as it was 
proved in rodent adipocyte cell lines[34,35]. However, re-
cent findings showed that adipose H6PDH activity is 
constantly high in human adipose-derived mesenchymal 
stem cells during differentiation, which suggests that 
other factors can be responsible for the dehydrogenase-
to-reductase switch in 11βHSD1 activity[36]. 

HEPATIC G6PT-H6PDH-11βHSD1 
SYSTEM AND THE PATHOGENESIS OF 
THE METABOLIC SYNDROME
As the main site of  lipid and carbohydrate metabolism, 
the liver has a crucial role in the pathogenesis of  the met-
abolic syndrome. Metabolic effects of  glucocorticoids, 
as well as the alterations caused by excessive blood glu-
cocorticoid concentrations are widely known. However, 
the local enhancement of  glucocorticoid effect in liver 
and its role in the metabolic syndrome has been recently 
investigated. 
 
Glucocorticoid effect in the liver
The presence of  glucocorticoid receptor and of  the above 
detailed components of  the prereceptorial glucocorticoid 
activating system has been reported in the liver. Besides 
the adrenal gland, other organs also contribute signifi-
cantly to cortisol production. It has been recently proved 
that the main site of  splanchnic cortisol production in 
obese nondiabetic human is the liver[25]. Receptorial glu-
cocorticoid effects are well known in the liver: their main 
outcome is mobilization of  nutrients from the depots 
supporting the maintenance of  normoglycemia in stress 
and starvation[37]. Stimulation of  gluconeogenesis via 
increasing the expression of  phosphoenolpyruvate car-
boxykinase, the rate-limiting enzyme, is one of  the most 
important elements of  this action. It also activates glu-
cose production from glycogen via induction of  glucose-
6-phosphatase. 

11βHSD1 and its functioning in the liver
11βHSD1 expression and enzyme activity have been 
described both in rodent and human liver. The first de-
scription of  11βHSD1 in human liver showed the highest 
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Figure  1 The glucose-6-phosphate transporter - hexose-6-phosphate 
dehydrogenase - 11β-hydroxysteroid dehydrogenase type 1 triad. Local 
glucocorticoid activation is catalyzed by a triad of the endoplasmic reticulum, 
composed by glucose-6-phosphate-transporter, hexose-6-phosphate dehyd-
rogenase and 11β-hydroxysteroid dehydrogenase type 1. The role of their 
cooperation is the enhancement of local glucocorticoid effect. PPP: pentose 
phosphate pathway; G6PT: Glucose-6-phosphate transporter; H6PDH: Hexose-
6-phosphate dehydrogenase; 11βHSD1: 11β-hydroxysteroid dehydrogenase 
type 1; NADP: Nicotinamide adenine dinucleotide phosphate; ER: Endoplasmic 
reticulum.
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enzyme activity around the vena centralis[38]. Direction, 
rather than localization, of  the enzyme activity has a ma-
jor importance in pathophysiology. Although in isolated 
and perfused rat liver, both reductase and dehydrogenase 
activities were described[38,39], in human and rat liver cell 
cultures, the enzyme was found to be acting exclusively 
as a reductase. Reductase activity of  11βHSD1 that can 
be detected in intact cells is responsible for its main 
pathophysiological effects: decrease in insulin sensitivity 
and stimulation of  hepatic gluconeogenesis via enhance-
ment of  local glucocorticoid effect. Both transgene 
11βHSD1 deficient mice and the selective inhibition of  
the enzyme[40] proved that decreased glucocorticoid effect 
caused by the impaired enzyme activity leads to increased 
insulin sensitivity in hepatocytes.

Hepatic 11βHSD1 in the metabolic syndrome –11βHSD1 
transgenic animals
Growing data suggest the role of  hepatic 11βHSD1 in 
the development of  abnormalities in carbohydrate and 
lipid metabolism that occur in the metabolic syndrome. 
Therefore, the expression and activity of  this enzyme are 
promising therapeutic targets for the future.

The impact of  hepatic 11βHSD1 on enhancing lo-
cal glucocorticoid effect and in the pathogenesis of  the 
metabolic syndrome was proved by using 11βHSD1 
knockout mice[41]. 11βHSD1-nul mice develop normally, 
become fertile, and their blood pressure is in the normal 
range. After adrenalectomy, the 11βHSD1 knockout mice 
are unable to convert 11-dehydrocorticosterone to corti-
costerone. Despite the elevated serum 11-dehydrocorti-
costerone levels, the intracellular glucocorticoid regenera-
tion is decreased so its antagonism on insulin effect is 
impaired as well. This is manifested in the impairment of  
phosphoenolpyruvate carboxykinase and glucose-6-
phosphatase activities, which leads to a decrease in stress-
induced hyperglycemia. The observation that 11βHSD1 
knockout mice are resistant to the development of  the 
metabolic syndrome, despite high-fat feeding, is another 
evidence for the role of  the enzyme in the pathogenesis. 
Although the serum corticosterone level is mildly elevat-
ed in these animals, the intracellular level is significantly 
decreased. Their serum lipid profile shows a cardiopro-
tective pattern: serum triglyceride level is decreased and 
the serum HDL level is increased[42]. This pattern could 
be influenced neither by high-fat feeding nor by perma-
nent hyperglycemia induced by chronic stress. Expression 
of  the enzymes of  gluconeogenesis is decreased, while 
expression of  the enzymes of  lipid peroxidation is highly 
increased. These data show that 11βHSD1 inactivation 
protects against the development of  the pathophysiologi-
cal alterations that are responsible for the metabolic syn-
drome. 

The role of  11βHSD1 in the regulation of  gluco-
neogenesis was proved by the selective inhibition of  the 
enzyme as well. The seven-day-long carbenoxolone (non-
selective 11βHSD inhibitor) treatment of  rodents signifi-
cantly decreased phosphoenolpyruvate carboxykinase and 
glucose-6-phosphatase expression at mRNA level in hy-

perglycemic KKAγ mice strain, which leads to a decrease 
in the circulating serum insulin level[43]. Selective inhibi-
tion of  the enzyme leads to increased insulin sensitivity 
in type 2 diabetes mellitus model mice[44].

In contrast, transgenic mice overexpressing 11βHSD1 
selectively in the liver show all symptoms of  the meta-
bolic syndrome except for obesity. Transgenic mice 
overexpressing 11βHSD1 selectively in the adipose tissue 
show all symptoms of  the metabolic syndrome: these 
animals are obese, have hypertension, insulin resistance 
and dyslipidemia[33,45]. The corticosterone, serum leptin, 
tumor necrosis factor-alpha (TNFα) concentrations and 
lipoprotein lipase mRNA level in their adipose tissue are 
elevated. Hypertension is due to elevated angiotensinogen 
level. These data show that overexpression of  11βHSD1 
in adipocytes is mainly responsible for the development 
of  the typical obesity in metabolic syndrome, while he-
patic 11βHSD1 contributes to the establishment of  the 
metabolic alterations of  the disease. 

These data suggest, independently from the exact 
mechanism, that decreased or abolished activity of  
11βHSD1 protects against the development of  the meta-
bolic syndrome. On the other hand, overexpression of  
11βHSD1 is an underlying condition in the pathomecha-
nism of  the disease. 

Hepatic 11βHSD1 in animal models of type 2 diabetes 
and hereditary hyperlipidemia
Studies on expression and activity in hereditary hyperlip-
idemic and diabetic animal models provided important 
results strongly supporting the contribution of  the en-
zyme in the pathogenesis of  the metabolic syndrome. 
Investigations on other model animals of  type 2 diabetes 
and the hereditary hyperlipidemic model revealed the 
participation of  11βHSD1 in the pathogenesis, as also 
observed in transgenic animals.

Experiments on type 2 diabetic Goto-Kakizaki rats 
helped to clarify the role of  11βHSD1 in the develop-
ment of  the metabolic syndrome. Goto-Kakizaki rats 
show all of  the metabolic, hormonal and vascular ab-
normalities of  human type 2 diabetes. The animals, 
unlike many other type 2 diabetes models, have a lean 
phenotype. Hepatic 11βHSD1 expression and enzyme 
activity are elevated, but expression and activity of  the 
adipose enzyme are decreased[14]. These data suggest that 
this combination of  expression and enzyme activity of  
11βHSD1 can lead to and is responsible for the lean phe-
notype. To the contrary, Zucker fat rats, the obese model 
of  human metabolic syndrome, show an altered pattern 
of  11βHSD1 activity and expression compared to the 
control Zucker lean animals and to Goto-Kakizaki rats. 
In Zucker fat rats, expression of  11βHSD1 is increased in 
the adipose tissue but decreased in the liver. The reason 
for this difference in enzyme activities remains unclear: 
the role of  insulin, growth factors and cytokines were 
proposed but none of  them could be proved[46,22]. 

Besides the liver and adipose tissue, the hippocampus 
also shows decreased 11βHSD1 activity in obese Zucker 
rats: this phenomenon correlates to the abnormalities in 
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hypothalamus-hypophysis-adrenal axis that is known to 
have a role in human obesity[47]. 

Several data from different hyperglycemic and hyper-
insulinemic mice strains suggest a possible protective ef-
fect of  the downregulation of  11βHSD1 against the met-
abolic syndrome. The expression of  hepatic 11βHSD1 is 
decreased in the leptin deficiency model ob/ob mice[48]. 
However, in type 2 diabetes model db/db mice, he-
patic 11βHSD1 activity is elevated. This is followed by 
enhanced glucocorticoid receptor expression, elevated 
phosphoenolpyruvate carboxykinase level and increased 
insulin sensitivity[49]. In the KKAγ polygenic type 2 dia-
betes model, adult animals have hyperglycemia, hyperin-
sulinemia and glucose intolerance. Its hepatic 11βHSD1 
expression and activity are decreased compared to the 
non-diabetic control. In a polygenic metabolic syndrome 
animal model[50], the body fat content of  the “fat” ani-
mals was 21%, while in the lean animals it was 4%. The 
fat animals developed the metabolic syndrome with 
insulin resistance, fatty degeneration of  the liver and 
hypertension. In fat animals, the expression of  adipose 
11βHSD1 and serum glucocorticoid levels are impaired, 

but the expression of  the hepatic enzyme is increased. 
Despite a high-fat diet, the metabolic syndrome does not 
develop in lean animals. Hereditary hypertriglyceridemic 
Prague rats show elevated 11βHSD1 activity. Lipid con-
tent of  the liver is highly elevated compared to normal 
control. 11βHSD1 inhibition seems to have no effect on 
hepatic lipid content[51]. Inhibition of  11βHSD1 in diet-
induced obesity model rat leads to reduced hepatic very 
low density lipoprotein secretion, which improves hyper-
triglyceridemia[52]. Carbenoxolone treatment of  hereditary 
hypertriglyceridemic rat strain shows the same alteration 
in lipid metabolism[53].

These data show that the changes of  hepatic 
11βHSD1 activity in obese animals may be a protective 
mechanism against the development of  metabolic abnor-
malities that lead to type 2 diabetes. Downregulation of  
hepatic 11βHSD1 in obese rats is due to elevated serum 
glucocorticoid levels rather than to insulin resistance 
alone; therefore, it cannot be prevented by oral antidia-
betic drugs (thiazolidinediones or metformin) in Zucker 
rats[46]. Nevertheless, the exact underlying mechanisms 
remain to be elucidated. It is also clarified in type 2 diabe-
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tes and metabolic syndrome model animals that hepatic 
11βHSD1 enzyme is mainly responsible for the meta-
bolic abnormalities (insulin resistance, serum lipid profile 
alterations etc), while the adipose enzyme is responsible 
for the phenotypical alterations (abdominal obesity) char-
acteristic to the disease. 

Human hepatic 11βHSD1 in the metabolic syndrome
The role of  11βHSD1 in human metabolic syndrome 
is uncertain in many points and controversial data ap-
pear in the literature[54]. Serum glucocorticoid levels in 
patients with metabolic syndrome are in normal range 
or only mildly elevated, which supports the role of  local 
enhancement of  glucocorticoid action by 11βHSD1. In 
human individuals, the whole body 11βHSD1 activity 
can only be monitored indirectly and noninvasively, by 
the measurement of  24 h urine tetrahydrocortisol and 
tetrahydrocortisone levels and cortisone/cortisol ratio. 
Many authors reported correlation between body mass 
index and 11βHSD1 activity: some of  them found a posi-
tive[55-57], while others reported a negative correlation[58]. 
Some authors did not find correlation between BMI and 
enzyme activity[59-61]. However, increased urinary corti-
sone/cortisol ratio was found in women with increased 
abdominal fat compared to peripheral distribution of  
adipose tissue[62]. 

The role of  different tissue specific 11βHSD1 en-
zymes was investigated in the metabolic syndrome: just 
like the non-human models, the hepatic and adipose 
tissue enzymes are the most important. Ethical burdens 
limit the possibilities of  measuring different tissue-spe-
cific 11βHSD1 enzymes in human individuals: adipose 
enzyme can be examined via fat biopsies of  the subcuta-
neous fat depot, but human studies based on sample tak-
ing from the omental tissue, as well as liver biopsies, are 
rarely available and do not provide sufficient data.

The activity of  hepatic 11βHSD1 negatively correlates 
to body mass index in human individuals. Impairment 
of  enzyme activity leads to decreased hepatic glucose 
production and increased insulin sensitivity[55]. It has been 
recently proved that hepatic 11βHSD1 activity negatively 
correlates with abdominal adipose tissue area, and the ex-
pression positively correlates with phosphoenolpyruvate 
carboxykinase expression[63]. The lack of  impairment of  
hepatic 11βHSD1 activity in type 2 diabetic obese indi-
viduals[64] is an intriguing observation. The absence of  
hepatic 11βHSD1 downregulation in obese diabetics em-
phasizes its possible role in pathogenesis. This raises the 
hypothesis that inhibition of  11βHSD1 in obese people 
who develop impaired glucose tolerance could protect 
from progression to type 2 diabetes. 

Regulation of 11βHSD1 in liver
Many factors can influence hepatic 11βHSD1 activity. 
In rodent liver, estrogen and insulin decrease the activ-
ity of  the enzyme[65,66]. Growth factors (TGFβ, bFGF, 
EGF, HGF) seem to be ineffective[38]. Reductase activ-
ity of  the enzyme was inhibited by insulin and IGF-1, 
while increased by dexamethasone in a rat hepatoma cell 

line[67]. The stimulating effect of  interleukin (IL)-1, IL-2, 
IL-5, IL-6, IL-13, leptin, estradiol and gonadotropins on 
11βHSD1 activity was proved as well[54].

In the human hepatoma cell line, TNFα, IL-1β in-
creases and the clinically used oral antidiabetic PPARγ ag-
onist significantly decreases the transcriptional activity of  
hepatic 11βHSD1 gene[68]. This phenomenon was further 
supported by studies on transgenic mice overexpressing 
TNFα: 11βHSD1 mRNA level and activity are elevated 
in their livers[69].

CEBPα transcription factor regulates hepatic 
11βHSD1[70]. The exact mechanism of  this regulatory 
process was recently revealed: TNFα-induced transcrip-
tion of  11βHSD1 gene acts via the p38 MAPK pathway 
in HepG2 cell line[69]. Besides CEBPα, CEBPβ has an 
important role in the control of  basal 11βHSD1 tran-
scription too. Thyroxin influences both the transcription 
and the activity of  the enzyme[71,72]. Metyrapone inhibits 
11βHSD1 activity in sheep liver[73]. The mechanism un-
derlying the increase of  11βHSD1 activity in liver cirrho-
sis remains unclear [74].

The exact roles of  these numerous factors having im-
pact on 11βHSD1 activity in cell lines and different ani-
mal models have not been totally clarified in the patho-
genesis of  metabolic syndrome. Some of  them provide a 
possible new therapeutic option in the future or help to 
understand the exact mechanism of  clinically used anti-
diabetic and antihyperlipidemic drugs. 

Options for therapeutic intervention at hepatic 11βHSD1
Carbenoxolone is the most widely examined non-selec-
tive inhibitor of  11βHSD. Results on animal models and 
human individuals proved its positive effect on metabolic 
alterations: it increases insulin sensitivity, decreases he-
patic gluconeogenesis, serum cholesterol and improves 
triglyceride profile[75-78].

Although human data are not available yet, inhibi-
tion of  hepatic 11βHSD1 with newly developed targeted 
drugs (compound 544 Merck, BVT2733 biovitrum) 
seems to be effective in animal models: both compounds 
increase hepatic insulin sensitivity and decrease serum tri-
glyceride and cholesterol levels. Besides this effect, com-
pound 544 Merck decreases fasting glucose level, food 
intake and adipose tissue mass[79]. BVT2733 seems to be 
effective in lowering hepatic gluconeogenesis and plasma 
glucose and insulin levels[80,43,44,54]. These compounds have 
been applied mainly in the preclinical phase or human 
phase 1 drug development studies, so little data are avail-
able about their efficacy and safety. Their possible clinical 
application is now a future goal in the pharmaceutical 
industry. 

H6PDH
The exact role of  H6PDH in obesity and metabolic syn-
drome is not fully elucidated. It is known that diet and 
macronutrient composition can influence glucocorticoid 
metabolism, which might be due to the impact of  carbo-
hydrate intake on the activity of  the pentose phosphate 
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pathway. Sucrose ingestion increases both 11βHSD1 
and H6PDH mRNA levels in mesenteric fat, while it de-
creases 11βHSD1 and increases H6PDH mRNA levels 
in liver. These observations support the hypothesis that 
increased 11βHSD1 activity in the adipose tissue contrib-
utes to sucrose-induced obesity[81].

The symptoms observed in H6PDH knockout mice 
and a decreased negative feedback on the hypothalamic–
pituitary–adrenal axis show the importance of  H6PDH 
in the regulation of  11βHSD1 as well as in the pathogen-
esis of  the disease[82,83]. As a consequence of  diminished 
H6PDH activity, 11βHSD1 enzyme activity switches 
from a reductase to a dehydrogenase in the livers of  
H6PDH knockout mice, which leads to glucocorticoid 
inactivation. Since 11βHSD1 activity greatly influences 
hepatic glucose output, this switch causes many altera-
tions in glucose homeostasis of  H6PDH knockout 
mice. Compared to wild-type mice, H6PDH knockout 
animals have a reduced weight gain, a peripheral fast-
ing hypoglycemia, an improved glucose tolerance, and 
elevated plasma corticosterone concentrations. Both fed 
and fasted H6PDH knockout mice have normal plasma 
insulin levels; however, insulin and plasma glucose levels 
are reduced 4 h after fasted animals are refed, indicat-
ing an improved insulin sensitivity. There is a preserved 
induction and activity of  the glucocorticoid-responsive 
gluconeogenic enzymes phosphoenolpyruvate carboxyki-
nase and glucose-6-phosphatase in the livers of  fasted 
H6PDH knockout mice. Glycogen storage is elevated in 
the liver of  fed H6PDH knockout mice, with enhanced 
glycogenesis. These data suggest a partial retention of  
glucocorticoid sensitivity in the liver[84].

It can be hypothesized that the switch in 11βHSD1 
activity from reductase to dehydrogenase caused by the 
lack of  H6PDH activity leads to a protection against type 
2 diabetes at high-fat feeding. This mechanism might be 
responsible for the above-mentioned metabolic altera-
tions in H6PDH knockout animal. 

G6PT
11βHSD1 activity is significantly reduced in G6PT-defi-
ciency (GSD1b) while remarkably increased in glucose-
6-phosphatase deficiency (GSD1a), which strongly sup-
ports the contribution of  G6PT to metabolic sensing[85]. 
Inhibition of  G6PT with chlorogenic acid leads to de-
creased cortisol production in the liver, via the change of  
cofactor supply of  11βHSD1[11]. These data suggest that 
pharmacological inhibition of  G6PT can be a hopeful 
therapeutic option in the metabolic syndrome and in type 
2 diabetes.

CONCLUSION
The hepatic G6PT-H6PDH-11βHSD1 triad plays a cru-
cial role in the pathogenesis of  the metabolic syndrome. 
The system integrates the metabolic and redox homeo-
stasis of  the cell with a prereceptorial hormone activa-

tion. Metabolic alterations characteristic to the disease, 
especially those of  carbohydrate and lipid metabolism, 
are at least partly due to derangements of  this metabolic 
sensor. The growing experimental data obtained from 
pharmacological or genetic manipulations with the com-
ponents of  the triad collectively indicate that the triad is a 
hopeful therapeutic target in the prevention and/or treat-
ment of  the metabolic syndrome. 
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