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Abstract
Infection by hepatitis C virus (HCV), a plus-stranded 
RNA virus that can cause cirrhosis and hepatocellular 
carcinoma, is one of the major health problems in 
the world. HCV infection is considered as a multi-
step complex process and correlated with abnormal 
metabolism of lipoprotein. In addition, virus attacks 
hepatocytes by the initial attaching viral envelop 
glycoprotein E1/E2 to receptors of lipoproteins on host 
cells. With the development of HCV model system, 
mechanisms of HCV cell entry through lipoprotein 
uptake and its receptor have been extensively studied in 
detail. Here we summarize recent knowledge about the 
role of lipoprotein receptors, scavenger receptor class 
B type Ⅰ and low-density lipoprotein receptor in the 
entry of HCV, providing a foundation of novel targeting 
therapeutic tools against HCV infection.
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Core tip: As cirrhosis and hepatocellular carcinoma 
caused by hepatitis C virus (HCV) is one of the major 
health problems in the world, the investigation of HCV 
infection becomes more and more important. HCV entry 
is the initial step to start infection and is a multiple 
process involved in abnormal metabolism of lipid. Hence, 
here we summarize recent knowledge about the role of 
lipoprotein receptors for better understanding of HCV.
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INTRODUCTION 
Hepatitis C virus (HCV) mainly affects liver and causes 
infectious disease hepatitis C in the world[1]. As a RNA 
virus, HCV infects about 2%-4% of people all over the 
world and induces kinds of liver diseases, including 
about 343000 deaths due to liver cancer from HCV 
occurred in 2013 up from 198000 in 1990 and an 
additional 358000 in 2013 occurred due to cirrhosis[2]. 
Different from hepatitis A virus and hepatitis B virus, 
there is no available vaccine against HCV until now, and 
current therapy for HCV infection is based on direct-
acting antivirals with or without peginterferon plus 
ribavirin[3,4]. Hence, knowing the mechanism of HCV 
infection is becoming more and more important. 
 
HCV AND ITS STRUCTURE
The HCV belongs to the family Flaviviridae and is a 
kind of the genus hepacivirus. Based on the differences 
of nucleotide sequence, which is 30%-35% varying 
over the complete genome, it is classified into seven 
genotypes[5]. Sixty percent of all cases are caused by 
subtypes 1a and 1b and both types of HCV are able to 
be found all around the world. For further study on HCV 
entry and the elucidation of the mechanisms of HCV 
infection, HCV-like particles (HCV-LP), HCV pseudotyped 
particles (HCVpp) and HCV cell culture (HCVcc) system 
is widely developed recently[6-8]. HCV-LPs, production 
of baculovirus expression systems, can infect both 
hepatoma cells and human primary hepatocytes by the 
mediation of its receptors[9]. However, they are lack of 
reporter to reflect the earliest stages of infection[10]. The 
disadvantage of HCV-LPs is made up by HCVpp, which is 
produced by lentiviral particles incorporating unmodified 
HCV glycoproteins into the lipid envelope[11,12]. HCVpp 
mimics the very early stage of cell entry by carrying a 
marker gene. Only one deficiency of HCVpp system, 
they cannot be associated with lipoproteins, because 
it is lack of lipoproteins in the producing cells, 293T 
kidney cells[10]. Following, HCVcc system is developed 
to represent the complete replication cycle of virus and 
to release the production of authentic virus particles 
that are able to infect in vitro and in vivo[13,14]. Until 
now, HCVcc system is the only model system which can 
completely mimic a natural HCV infection, although its 
recipient cells are limited to two specific cell lines, LH86 
and Huh-7[10]. Unfortunately, there are few suitable 
small animal models for the research of HCV and only 
used for certain aspects of HCV infection in vivo[15,16].

In a typical HCV particle, a core of genetic material 
(a positive single-standard RNA), which consists of a 
single open reading frame of 9600 nucleotide bases 
long, is surrounded by a protective shell of nonstructural 

protein (NS2, NS3, NS4A, NS4B, NS5A and NS5B), 
and further encased in a lipid envelope[10]. There are 
two kinds of viral envelope glycoproteins, E1 and E2, 
which are embedded in the lipid envelope. Since non
structural proteins play important roles in viral self-
replication, both envelope proteins are necessary and 
serve as the fusogenic subunit during the process of 
HCV entry; particularly, E2 acts as the receptor binding 
protein[17,18]. Based on this, soluble form of recombinant 
E2 glycoprotein (sE2) was synthesized to study the 
receptors of HCV in cell entry[19,20]. 

HCV INFECTION 
Infecting a target cell by HCV entails an orchestrated 
process which can be described into several steps starting 
from the binding of the viral particles to receptors with 
co-receptors[21]. Usually, the interaction of glycoproteins 
(E1 and E2) on the viral surface and specific receptors 
on the surface of target cell determines the association 
of a HCV with a target cell. Here, we define the process 
of viral entry into cells into a three-step process (Figure 
1). Initially, HCV recognizes a target cell by binding to 
the mannose-binding lectins L-SIGN, which is mainly 
expressed on the endothelium of liver and DC-SIGN, 
which is expressed on dendritic cells. Both of the cell 
surface proteins are believed to function as HCV capture 
receptors[22]. Laterly, the viral glycoproteins interacts with 
the CD81 tetraspanin[23] and lipoprotein receptors[24-26], 
transferring the virus from the surface to side gradually. 
Finally, tight junction proteins may be utilized to help 
HCV entry by inducing clathrin-mediated endocytosis. 

ROLE OF CD81 TERASPANIN IN THE 
ENTRY OF HCV 
During the process of HCV cell entry, CD81 teraspanin, 
which contains a small extracellular loop, a large 
extracellular loop (LEL), four transmembrane domains 
and intracellular N- and C-terminal domains, plays 
an important role. It was firstly reported that CD81 
interacted with a soluble HCV glycoprotein E2 and 
blockade of CD81 by a specific antibody or silencing 
of CD81 inhibited the HCV entry and decreased HCV 
infectivity, demonstrating that CD81 is necessary for the 
entry of HCV[19,27,28]. In more detailed, the initial step 
of HCV binding to CD81 is actually the linking between 
HCV glycoprotein E2 and the LEL of CD81[29], showing 
LEL served directly in HCV entry. Subsequent research 
pointed out the relation between CD81 expression 
on cell surface and membrane lipid composition, that 
ceramide enrichment of the plasma membrane strongly 
inhibited the expression of CD81. As lipids organization 
on the membrane of host cells is essential for HCV entry, 
internalization of CD81 induced by ceramide inhibited 
HCV entry[30]. In HepG2 cells and Huh-7, which are 
derived from hepatoma, CD81 was also demonstrated 
to affect the susceptibility to HCV infection and the 
efficiency of HCV entry[31-33]. In addition, the dynamic 

2536 October 28, 2015|Volume 7|Issue 24|WJH|www.wjgnet.com

Lyu J et al . Lipoprotein receptors and HCV entry



of CD81, which is dependent on the hepatocytes 
polarization, could regulate HCV infection[34] and the 
trafficking of CD81 on the host cell membrane promoted 
claudin-1-dependent HCV particle internalization[35]. 
Recently, it was demonstrated that the expression of 
CD81 also modulated HCV RNA replication[36], suggesting 
that the HCV life-cycle also requires CD81.

Recent study pointed out that multiple RTKs could 
mediate HCV entry by regulating CD81-claudin-1 and 
viral glycoprotein-dependent membrane fusion[37]. Liu 
et al[38] also found that HCV transiently activates the 
phosphatidylinositol-3-kinase/AKT pathway to facilitate 
its entry. These findings may contribute to a new 
approach to prevention and treatment of HCV infection.

ROLE OF LIPOPROTEIN RECEPTORS IN 
THE ENTRY OF HCV
The metabolism of apolipoproteins, lipids and lipoproteins 
is mainly regulated by the liver and HCV attacks liver, 
leading to abnormal serum lipoproteins and accumulation 
of lipids in hepatic cells in a chronic mode[39-41]. In recent 
years, the relationship between cholesterol metabolism 
and fatty acid biosynthetic pathways in target cells and 
HCV infection has gained much attention. As a result, the 
role of lipoprotein receptor in the HCV entry is extensively 
investigated in detail. Hence, we will focus on roles of 
the two lipoprotein receptors, scavenger receptor class 

B type Ⅰ (SR-BⅠ) and low-density lipoprotein receptor 
(LDLR) in this review.

SR-BⅠ
SR-BⅠ, as a 509 amino acid glycoprotein, is an integral 
membrane receptor with cytoplasmic C-terminal and 
N-terminal domains separated by a large extracellular 
domain (Figure 2); and is found in numerous cell types 
and tissues, including the liver and adrenal. There are 
evidences that SR-BⅠ selectively mediates uptake of 
high-density lipoprotein (HDL) cholesterol ester (CE) into 
transfected Chinese hamster ovary cells[42] and C323 of 
SR-BⅠ is critical for SR-BⅠ-mediated cholesterol ester 
uptake[43]. Previous study also proves that the human 
homologue of SR-BⅠ, CD36 and LIMPII Analogous-1 
(hSR-BⅠ/CLA-1), serves as a receptor of HDL and 
regulates cholesterol efflux to HDL during the process of 
reverse cholesterol transport[44-47].

Recent reports indicate that HDL promoted HCV 
entry and this enhancement was mediated by the forma
tion of SR-BⅠ, HDL and HCV envelope glycoproteins 
complex[20,48,49]. Many groups demonstrated that the 
glycoprotein E2 could bind SR-BⅠ in hepatoma cells: 
Scarselli et al[20] demonstrated that extracellular domain 
of SR-BⅠ interacts with E2 hypervariable region 1 
(HVR1)[20,26]; Catanese et al[50] found out that amino 
acids 70-87 and the single residue E210 of SR-BⅠ are 
required for E2 recognition, raising a possibility for new 
therapeutic strategies targeting virus/SR-BⅠ recognition. 
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Figure 2  Model of scavenger receptor class B type Ⅰ topology and its 
relevance for hepatitis C virus entry. The SR-BI regions comprise cytoplasmic 
C-terminal and N-terminal domains separated by a large extracellular domain. 
Cholesterol uptake and HCV entry is mainly mediated by extracellular domain. 
Particularly, C323 is critical for SR-BI-mediated cholesterol ester uptake. 
Amino acids 70-87 and the single residue E210 of SR-BI are required for E2 
recognition in HCV entry. SR-BⅠ: Scavenger receptor class B type Ⅰ; HCV: 
Hepatitis C virus; HDL: High-density lipoprotein; JAK/STAT: Janus kinase/signal 
transducer and activator of transcription.
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Figure 1  Process of hepatitis C virus cell entry. After being captured by DC-
SIGN and L-SIGN, virions with apolipoprotein may first attach a host cell by 
interacting with LDLR on the cell surface (1), following by binding to CD81 and 
SR-BⅠ (2), and finally by a later utilization of the tight junction protein CLDN1 
and OCLN (3). HCV: Hepatitis C virus; SR-BⅠ: Scavenger receptor class B 
type Ⅰ; LDLR: Low-density lipoprotein receptor; CLDN-1: Claudin-1; OCLN: 
Occluding.
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the signaling pathways involved in the HCV infection in 
more detail. After binding of glycoprotein E2 to SR-BⅠ, 
multiple signaling pathways will be inactivated to facility 
HCV entry in host cells. There is a report points out 
that HCV selectively decreased the abundance of signal 
transducer and activator of transcription 1 (STAT1) and 
reduced the phosphorylation of STAT1 in the nucleus 
by binding its core protein to STAT1 in a proteasome-
dependent manner to defense the immunity induced 
by JAK/STAT pathway[54]. In turn, the treatment with 
interferon alpha was proved to phosphorylate STAT1 to 
protect the host cells from infection of HCV[25]. STAT3 
activation in human hepatocytes was also confirmed to 
resist an attack from HCV infection in vitro[55]. Clinically, 
treatment with interferon alpha and ribavirin is one of 
the therapies for chronic HCV infection. Type 1 interferon 
is a production from host cells infected with virus and 
constitute the primary defense mechanism against viral 
infection and replication[56]. Secreted interferon acts 
through an autocrine and paracrine loop that requires 
intact interferon receptor and JAK/STAT pathways 
involving STAT family members[57].  

In summary, all of these evidences point out the 
critical role of SR-BⅠ in enhancing HCV entry into 
hepatic cells and the complicated process requires 
the complex between lipoproteins, SR-BⅠ, and HCV 
envelope glycoproteins. The SR-BⅠ  gene is able to 
transcript into two mRNA splice variants, SR-BⅠ and 
SR-BⅡ and the two variants are different from their 
C-termini. Although there is evidence that HCV soluble 
envelope glycoprotein E2 is able to interact with not only 
human SR-BⅠ but also SR-BⅡ[58], the role of SR-BⅡ in 
the HCV entry is rarely reported.

In the family of scavenger receptors, there is 
another member named scavenger receptor class A 
(SR-A), which is mainly expressed in macrophage. It 
is composed of a cytosol domain, a transmembrane 
domain, a spacer domain, an alpha-helical coiled-coil 
domain, a collagen-like domain and a cysteine-rich 
domain and has two different types, SR-AI and SR-
AII[59]. Different from the SR-B, the main function of 
SR-A in innate immunity is defense of bacteria. Recently, 
it was reported that SR-AI could bind to the non-
structural protein NS3 of HCV in dendritic cells, pointing 
out that SR-A may serve as endocytic innate receptors 
in NS3 recognition[60].

LDLR 
LDLR is another potential lipoprotein receptor involved in 
HCV infection of hepatocytes. LDLR (Figure 3), an 893 
amino acids transmembrane protein, is a cell surface 
receptor that mediates uptake of cholesterol-rich low-
density lipoprotein (LDL)[61,62]. When the main ligand 
cholesterol-LDL binds to the receptor, it is transferred 
into hepatic cells by clathrin-mediated endocytosis and 
then the receptor will release the bound LDL particle 
because of the conformational change induced by 
change in pH. Accumulation of serum LDL directly leads 
to the development of atherosclerosis.

Based on the detailed internship between virus and 
SR-BⅠ, Murao et al[25] point out that interferon alpha 
decreases the efficiency of HCV infection by down 
regulating the binding of SR-BⅠ with both synthesized 
E2 region-Ⅰ (4931) and E2 region-Ⅱ (4938) peptides 
in HepG2 cells. Vercauteren et al[51] recently found a 
new anti-SR-BⅠ antibody, small molecule inhibitors 
monoclonal antibody1671 (mAb1671), significantly 
inhibited infection of hepatoma cells with wild-type HCV 
by inhibiting the function of SR-BⅠ, suggesting that 
mAb1671 could be used as a therapeutic antibody. 

SR-BⅠ not only acts as a binding receptor of HCV, 
but also plays a critical role in the post-binding steps. 
Catanese et al[50] and Zeisel et al[52] showed that the 
susceptibility of human hepatoma cells to HCVcc in
fection is markedly reduced by silencing of SR-BⅠ with 
specific siRNA, SR-BⅠ specific antibody or mutation 
of SR-BⅠ and the effect is independent of lipoprotein, 
pointing out the role of SR-BⅠ in the post-binding 
process. 

HCV particles associated with plasma lipoproteins 
like HDL can be found in the viral particles isolated from 
patients and the abnormal metabolism of lipid influences 
the HCV infection, suggesting that HCV entry might also 
potentially involve the interactions with SR-BⅠ ligands, 
HDL. Although HCVpp is not able to interact with HDL 
apolipoprotein, the increase of HDL still markedly induces 
the enhancement of HCVpp entry, while inhibition of 
the transfer of HDL CE reduces the entry of HCVpp into 
cells[49,53]. However, the ability of HDL to facilitate HCV 
entry is largely in a SR-BⅠ-dependent manner since 
silencing of this receptor cancelled the effect of HDL on 
enhancement of viral entry[49].

Another goal of recent researches was to examine 
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Figure 3  Structure of low-density lipoprotein receptor and its relevance 
for hepatitis C virus entry. LDLR is structurally composed by four motifs: 
LDLR type A repeats, which is the main binding site for ligand; an epidermal 
growth factor-like domain, which is response to the change of pH to release 
ligand; a transmembrane anchor and a cytoplasmic domain, which mediates 
clustering of the receptors into the clathrin-coated pit. LDLR: Low-density 
lipoprotein receptor.
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Since Agnello et al[63] firstly suggested the role of 
LDL-R in HCV entry in 1999, most studies focus on its 
role as a receptor of HCV or facilitating initial attachment 
to cell surface[10]. André et al[64] reported that lipo-
viro-particles isolated from patients with hepatoma 
infect hepatic cells in an LDLR-dependent manner, 
indicating the important role of LDLR in HCV infection. 
In coincidence with this report, LDLR is confirmed to 
take part in an early stage in infection of normal human 
hepatocytes by serum-derived HCV virions in vitro[65]. A 
human study that LDLR expression of 68 patients with 
HCV chronic infection was significantly associated with 
HCV-viral load, supplies the evidence that the LDLR may 
be one of the receptors implicated in HCV replication[66]. 

While HDL facilities the entry of HCV into hepatic 
cells, LDL could significantly inhibit the cell entry of 
serum HCV and HCVpp via LDLR. Some studies also 
reported that ApoE-containing very LDL, as a ligands 
of LDLR, mediates the HCV entry in vitro. Recently, 
Ficolin-2, as a lectin-complement pathway activator, 
inhibited the chronic HCV infection by inhibition the 
function of LDLR and SR-BⅠ and this effect was blocked 
by ApoE3-mediated immune escape[67]. It was confirmed 
by a recent report that ApoE3 and ApoE4 rescue the 
production of infectious virus and it requires both the 
LDLR and SR-BⅠ[68]. By contrast, Prentoe et al[26] found 
in the process of HCV entry, the function of LDLR is in 
an ApoE-independent but E2 HVR1-dependent manner. 
Although there are lots of evidences to prove that LDLR, 
the same as SR-BⅠ and CD81, plays a critical role in 
the initial step of HCV entry, one of studies suggested 
that LDLR is not necessary for HCV entry and implied 
the physiological function of LDLR in HCV replication[69]. 
Recently, it was demonstrated that HCV upregulates 
the expression of LDLR via SREBPs and PCSK9 at both 
transcriptional and posttranslational level to increase the 
uptake of lipid and to promote viral proliferation[70]. Until 
now, there is no doubt that LDLR is able to mediate the 
HCV infection. However, the detailed mechanism how 
it really works during this complex process needs to be 
further investigated. 

ROLES OF TIGHT JUNCTION PROTEINS 
IN THE LATER PHASE OF HCV ENTRY
By using screening cDNA library, two kinds of tight 
junction proteins, claudin-1 (CLDN-1) and occludin 
(OCLN), were identified as factors that are able to affect 
the HCV entry in the later phase[71,72]. Either CLDN-1 or 
OCLN contains four transmembrane domains and two 
extracellular loops with the N-terminus and C-terminus 
in the cytoplasm. Interestingly, there is no evidence to 
confirm that there is direct interaction between CLDN-1 
or OCLN and HCV particles. However, it was proved that 
CLDN-1 directly interacts to CD81 and the association 
increases the virus entry in the later phase[73]. Laterly, 
Krieger et al[74] produced CLDN-1 specific antibody and 
found it inhibited HCV infection by reducing the binding 
of E2 with host cell surface and disrupting the formation 

of CD-81-CLDN-1 complex. OCLN is also able to interact 
directly with E2, and silence of CLDN-1 and OCLN by 
specific siRNA reduced both HCVpp and HCVcc cell 
entry[75].

OTHER FACTORS ON CELL SURFACE 
INVOLVED IN HCV ENTRY
Besides the receptors we talked above, there are some 
other factors on host cell surface, which are believed to 
be functional in HCV entry. Lupberger et al[37] pointed out 
the important role of epidermal growth factor receptor 
(EGFR) and ephrin receptor A2 (EphA2) as cofactors 
in HCV entry. EGF accelerated HCV entry by activating 
signaling pathways and inhibition of EGFR or EphA2 
activity reduced CD81-CLDN1 association. Following, 
Diao et al[76] confirmed that EGFR internalization and 
activation are critical for HCV entry and firstly identified a 
hitherto-unknown association between CD81 and EGFR 
by using HCVcc system. Based on these theories, Meyer 
et al[77] recently supposed a model that interferon-α 
inducible protein 6 inhibits HCV entry by impairing EGFR 
mediated CD81/CLDN1 interactions. Niemann-Pick 
C1-like 1 (NPC1L1), as a cholesterol uptake receptor 
was firstly identified as an HCV entry factor by Sainz 
et al[78] and they also proved clinically available FDA-
approved NPC1L1 antagonist ezetimibe potently blocks 
HCV uptake in vitro via a virion cholesterol-dependent 
step, discovering a new antiviral target and potential 
therapeutic agent. Furthermore, transferrin receptor 1 
has also been reported as a receptor for HCV entry[79]. 
However, the roles of these new factors in HCV entry 
remain to be determined in detailed.

CONCLUSION 
The process of HCV entry is a multi-step process and 
the major steps have already been described as the 
combination of HCV glycoprotein and targeting cell-
surface molecules, such as CD81 and lipoprotein 
receptor SR-BⅠ and LDLR. With the development of HCV 
model system, the role of lipoprotein and its receptor in 
HCV infection is more and more detailed understood. 
However, since all the model system has their own 
limitations, the results obtained by using system in vitro 
do not completely reflect the in vivo situation. Further 
studies are required, especially by using engineering 
new animal models, for HCV infection, and a detailed 
understanding of the mechanism of HCV entry will give 
a sufficient groundwork for the development of new 
therapeutic drugs and tools.
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