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Abstract
Hepatitis D virus (HDV) is a defective circular shape 
single stranded HDV RNA virus with two types of 
viral proteins, small and large hepatitis D antigens, 
surrounded by hepatitis B surface antigen. Superinfection 
with HDV in chronic hepatitis B is associated with a 
more threatening form of liver disease leading to rapid 

progression to cirrhosis. In spite of some controversy 
in the epidemiological studies, HDV infection does 
increase the risk of hepatocellular carcinoma (HCC) 
compared to hepatitis B virus (HBV) monoinfection. 
Hepatic decompensation, rather than development 
of HCC, is the first usual clinical endpoint during the 
course of HDV infection. Oxidative stress as a result of 
severe necroinflammation may progress to HCC. The 
large hepatitis D antigen is a regulator of various cellular 
functions and an activator of signal transducer and 
activator of transcription (STAT)3 and the nuclear factor 
kappa B pathway. Another proposed epigenetic mechanism 
by which HCC may form is the aberrant silencing of 
tumor suppressor genes by DNA Methyltransferases. HDV 
antigens have also been associated with increased histone 
H3 acetylation of the clusterin promoter. This enhances 
the expression of clusterin in infected cells, increasing cell 
survival potential. Any contribution of HBV DNA integration 
with chromosomes of infected hepatocytes is not clear 
at this stage. The targeted inhibition of STAT3 and 
cyclophilin, and augmentation of peroxisome proliferator-
activated receptor γ have a potential therapeutic role in 
HCC. 
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Core tip: Role of hepatitis D virus (HDV) in the onco-
genesis of hepatocellular carcinoma (HCC) has not 
been thoroughly investigated. Many epidemiological 
studies favour the increased risk of HCC with HDV 
superinfection. Oxidative stress as a result of severe 
necroinflammation may trigger the development of 
HCC. Epigenetic mechanisms like DNA methylation and 
histone modification may also be operating.
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INTRODUCTION
Hepatitis D virus (HDV) is a small virus, often compared 
to viroids because of its unique characteristics. It is a 
defective virus with a circular shape single stranded 
HDV RNA and two types of viral proteins, small (sHDAg 
or p24) and large hepatitis D antigens (lHDAg or p27), 
surrounded by hepatitis B virus (HBV) surface antigen 
(HBsAg)[1]. The virus does not code any enzyme to 
replicate its genome and takes the help from hepatocyte 
RNA polymerase Ⅱ for synthesizing its RNAs with 
positive and negative polarities. Both the smaller 
sHDAg, which is required for HDV genomic replication, 
and the larger lHDAg, which represses replication, 
colocalize with delta RNA throughout the nucleoplasm[2].

HDV is highly pathogenic. Whereas coinfection 
evolves to chronicity in only 2% of the cases, super
infection results in chronic infection in over 90% of the 
cases[3]. Superinfection with HDV in chronic hepatitis 
B is associated with a more threatening form of liver 
disease exacerbating the preexisting liver damage 
leading to more rapid progression to cirrhosis in 70% 
to 80% of the cases[4]. It may lead to cirrhosis within 
2 years in 10%15% of patients[5]. HBV DNA levels 
are low in both hepatitis B e antigen (HBeAg)negative 
and HBeAgpositive patients, suggesting suppressive 
effects of HDV on HBV irrespective of the phase of HBV 
infection. The clinical longterm outcome of HBeAg
positive patients is not different to HBeAgnegative 
patients infected with the HDV[6].

HEPATOCELLULAR CARCINOMA IN HDV 
INFECTION
Hepatocellular carcinoma (HCC) is the second most 
common cause of cancerrelated death in men worldwide[7]. 
Persistent HDV replication and hepatic inflammation end 
up with cirrhosis and HCC formation[8]. Active replication 
of both HBV and HDV may be associated with a more 
progressive disease pattern leading to early cirrhosis 
and HCC[5]. Wu et al[9] described three phases of HDV 
superinfection: acute phase, active HDV replication and 
suppression of HBV with high alanine transaminase (ALT) 
levels; chronic phase, decreasing HDV and reactivating 
HBV with moderate ALT levels; and late phase, develop
ment of cirrhosis and hepatocellular carcinoma caused 
by replication of either virus or remission resulting from 
the marked reduction of both viruses. Therefore, HBV 
replication, in spite of being inhibited by HDV, appears to 
play a major role sustaining HDV pathogenicity. 

Hepatic decompensation, rather than development 
of liver cancer, is the first clinical endpoint that develops 
during the course of HDV infection[10]. A clinical study 
has suggested that HCC in HDV infection may be a 

secondary effect of severe necroinflammation leading 
to cirrhosis. In this study, decreased liver size was 
noticed more in cases of HDV HCC compared to an HBV 
monoinfection group where the liver size was normal or 
increased. HDV patients had lower platelets and larger 
varices on endoscopy as an indirect evidence of more 
severe portal hypertension. HCC presented at an earlier 
TNM stage compared with HBV monoinfection[11].

EPIDEMIOLOGICAL STUDIES
Some controversy exists in the epidemiological studies 
on the role of HDV infection in increasing the risk of 
HCC. Early studies did not find an increased incidence 
of HCC in HDV coinfected individuals. But recent 
studies show an increased incidence of the tumor. 
The risk of HCC should be reconsidered according to 
the changing natural history of chronic HDV disease. 
Though the incidence of HDV infection has decreased in 
many Western countries, it is still very much prevalent 
in many parts of the world specially the Asia Pacific 
Region[12].

The European Concerted Action on Viral Hepatitis 
(Eurohep) study done on hepatitis B patients and 
published in 1995 failed to show any significance of 
HDV (antiHDV) markers at presentation on prognosis. 
However, a later study done by the same group on 
200 HDV patients with a median follow up of 6.6 years 
showed that the adjusted estimated five year risk for 
HCC was 13% for antiHDV positive and 2%4% in anti
HDV negative/HBsAg positive cirrhotics. HDV infection 
increases the risk for HCC threefold and for mortality 
two fold in patients with hepatitis B cirrhosis[13,14]. Analysis 
of retrospective data from South London showed that 
the risk of hepatocellular carcinoma was similar in anti
HDV positive and negative patients[15].

Two studies from Turkey show prevalence of anti
delta antibodies in 18.8% to 23.0% of HBsAg positive 
HCC[16,17]. In an older Jordanian study the prevalence 
of antiHDV in a small group of HBsAg positive HCC 
patients was 67% (10/15). However, they were 
significantly older than patients without hepatitis D viral 
infection[18]. In another similar study from Greece done 
on 87 HBsAg positive HCC patients, 9 were positive for 
serum antidelta (10%) whereas among the HBsAg 
positive controls none was positive for this antibody 
(P = 0.067)[19]. In a Romanian study, 166 consecutive 
patients with compensated HDVrelated cirrhosis 
diagnosed since 1994 were followed up. HDVrelated 
cirrhosis in Romania is an aggressive disease with a 
median time to decompensation less than 2 years and 
a median survival less than 5 years. Jaundice, the main 
clinical consequences of portal hypertension and HCC 
were the most frequent causes of decompensation. 
HCC developed in 12% cases[20].

A study from Mongolia considered the sero
epidemiological and socialhistorical background of the 
country, and compared HCV related and HDV related 
HCC prevalence[21]. In Mongolia coinfection with 
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HBV and HDV had a stronger association with HCC 
development at a younger age while patients with HCV 
monoinfection were older. Their results demonstrated 
that the viruses had different epidemic dynamics in 
Mongolia; HCV was characterized by earlier epidemic 
expansion, whereas HDV spread with approximately 50 
years lag. Keeping this in mind, there was a comparable 
contribution of the HCVmonoinfection and HBV + HDV 
coinfection in the current HCC rate. 

In a study from the Kure district in Japan, where 
HDV infection of persons infected with HBV in 1990s 
was about 6%, such superinfection increases the risk 
of cirrhosis and HCC. The proportion of HCC per 1000 
person years was 7.84 among cases with antiHDV 
and 2.73 among those without antiHDV. The overall 
relative risk of HCC was 2.87, 95%CI: 1.036.23[22]. 
A study from Taiwan failed to show any acceleration 
in the development of HCC in patients with HDV 
superinfection. Nevertheless, the numbers of patients in 
HDV group were small compared to HBV monoinfection 
group (42 vs 255)[23].

In a Spanish study, One hundred and fiftyeight 
patients with chronic HDV were followed for a median 
period of 158 mo. 18% had hepatic decompensation, 
3% developed hepatocellular carcinoma[24]. Romeo et 
al[25] tracked the course of HDV infection in 299 patients 
over a mean period of 233 mo; 46 developed HCC. 
Persistent HDV replication led to cirrhosis and HCC at 
annual rates of 4% and 2.8%, respectively, and was the 
only predictor of liverrelated mortality.

A recent study calculated the standardized incidence 
ratios (SIRs) for hepatitis D patients. The risk of 
hepatocellular carcinoma was greatly increased in 
patients with HBV and HDV (SIR = 137.17, 95%CI: 
62.19 to 261.51) when compared with the general 
population. The risk of HCC among patients with HDV 
was increased (SIR = 6.11, 95%CI: 2.77 to 11.65) 
when patients with chronic HBV monoinfection were 
used as the reference population[26]. High levels of HDV 
viremia in noncirrhotic patients were associated with 
a considerable likelihood of progression to cirrhosis and 
the development of HCC; multivariate analysis: OR = 
1.42, 95%CI: 1.041.95; P = 0.03. Once cirrhosis has 
developed, the role of HDV replication as a predictor of 
a negative outcome lessens[27]. Table 1 summarizes the 
epidemiological studies on the role of HDV infection in 
increasing the risk of HCC.

HDV AND HBV GENOTYPES
Hepatitis D is an immunemediated disease. Though it 
is more aggressive than HBV monoinfection, the rate of 
disease progression may vary, as with other immune 
mediated diseases. Active replication of both HBV 
and HDV may be associated with a more progressive 
disease pattern. HDV and HBV genotypes may play a 
role in various disease outcomes. Genotype Ⅱ HDV 
infection is relatively less frequently associated with 
fulminant hepatitis at the acute stage and cirrhosis or 

HCC at the chronic stage as compared to genotype Ⅰ[41,42]. 
The outcome of patients with genotype Ⅳ (Ⅱb) HDV 
infection is more like of genotype Ⅱ HDV infection. HBV 
of the genotype C is also a significant factor associated 
with adverse outcomes (cirrhosis, HCC or mortality) 
in patients with chronic hepatitis D in addition to 
genotype Ⅰ HDV and age[42,43].

ONCOGENESIS
The mechanism by which HDV causes HCC remains to 
be elucidated, but recent advances seem to suggest 
a number of pathways that result in pathogenesis. 
HCC development itself is a complex process involving 
cumulative gain and loss of function mutations affecting 
tumor suppressor and oncogenic products[44].

HDV seems to exert epigenetic control over HBV 
transcription and replication. A possible explanation may 
be that p24 and p27 both repress HBV enhancers, pIIE1 
and PIIE2 inhibit replication, thus accounting for the low 
serum levels of HBV DNA in coinfected patients[45]. P27 
also inhibits interferonα signaling by interfering with 
janus kinase, tyrosine kinase 2, signal transducer and 
activator of transcription (STAT)1 and STAT2, impairing 
the transcription of 2’, 5’ oligoadenylate synthase and 
protein kinase R but upregulating myxovirus resistance 
A gene transcription, which causes HBV replication 
inhibition[46,47]. In fact HDV has been shown to repress 
HCV replication as well and chronic HCV infection has 
been reported to be cleared in the presence of HBV and 
HDV superinfection[1]. This implies that HCC is caused 
by HDV alone in a conviction, but it may not be so, as 
the active proliferation of both HBV and HDV leads to 
more aggressive disease and HCC[5].

It is believed that the pathogenic effects of HDV 
arise from replicationassociated cytopathogenecity 
rather than a direct effect, since there is little injury 
observed in liver tissues expressing HDAg alone[48]. An 
investigation by Taylor confirmed that the expression 
of the antigen alone had no cytopathic effect, however 
high levels of the antigen and viral RNA caused cell 
cycle arrest in the G1 phase within two days and cell 
death in six[49]. This experiment models the acute phase 
of infection wherein a high replicative rate is responsible 
for tissue injury. However, in chronic infection, wherein 
adequate levels of the large antigen are built up to 
suppress HDV RNA synthesis, the problem shifts to the 
development of HCC. 

Oxidative stress
Oxidative stress as a result of severe necroinflammation 
in HDV infection may progress to HCC. Large hepatitis D 
antigens or p27 was shown by Williams et al[50] to be a 
regulator of various cellular functions and an activator of 
STAT3 and the nuclear factor kappa B (NFκB) pathway 
(Figure 1). Studies on HCV and HBV have linked the 
activation of NF-κB and STAT3, via the overproduction 
of reactive oxygen species (ROS), to the pathology of 
the virus[5158]. These proteins have been implicated in 
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epithelial-mesenchymal transition and fibrogenesis[66,67] 
and cause cirrhosis. Isoprenylation inhibitors, still in 
early development, may play a key role in preventing 
these undesirable outcomes[11].

In a dose dependent manner, p27 also significantly 
increases (3.2 fold) NFκB activity[50]. NFκB complex 
activation requires the phosphorylation of the serine 32 
and 36 (and possibly Tyr42) residues by an Inhibitor of 
kappa B kinases, IêB kinase (IKK)α and IKKβ, of IκB 
(which is then proteosomally degraded), hence allowing 
the nuclear translocation and DNA binding of the active 
dimmer (p50/65)[50]. Park et al[68] demonstrated that 
p27 might also increase NFκB activation via tumor 
necrosis factor α (TNFα) induction. TNFα is involved 
in a wide range of inflammation and immunity related 
actions[6971]. The study also found that the large antigen 
increased TNF receptor associated factor (TRAF2), IKKβ 
and p65 mediated NFκB activation. The investigators 
found TRAF2 (a protein involved in early signal trans
duction events) to interact with both SHDAg and 
LHDAg. An interesting parallel can be drawn to HCV, 

cell transformation and tumorigenesis, indeed STAT3 
over expression is associated with leukemia, prostate 
cancer and melanoma[5962]. The ROS are produced 
by endoplasmic reticulum (ER) stress, the NADPH 
oxidase (Nox) family (HCV induces Nox1 and Nox4 
in hepatocytes)[63], the direct action of the HBV and 
HCV proteins and the ER overload response. Williams 
et al[50] found that in the presence of antioxidants 
(PDTC, NAC) or calcium inhibitors (TMB8, BAPTAAM, 
Ruthenium Red), p27induced activation of STAT3 and 
NFκB was dramatically reduced. They described that 
p27 caused an increase in ROS production, partly due 
to the isoprenylation process. P27 has a prenylation 
site on C211, which binds to farnesyl residues, and a 
nuclear export signal, which allows transport of the 
neosynthesized ribonucleoprotein to the ER[64,65]. HDV 
proteins also cause some ER stress, as p27 activates 
ER stress elements present in the promoter of target 
genes, GRP78 and GRP94, and the antigen also triggers 
Nox4 activity via transforming growth factor (TGF)b1. 
TGFb1 and cJun signaling cascades may also induce 

Table 1  The epidemiological studies on the role of hepatitis D virus infection in increasing the risk of hepatocellular carcinoma

1Romeo et al[27] 193 patients with HDV co-infection were investigated for a median of 9.5 yr. HDV RNA levels appeared significantly 
associated with HCC

1Romeo et al[25] 299 HDV infected patients invstigated over 28 yr. Persistent HDV leads to cirrhosis and HCC at annual rates of 4% and 2.8%
1Oyunsuren et al[28] 292 chronic hepatitis patients were investigated retrospectively. HDV co-infection has a stronger association with HCC 

development at a younger age than HCV mono-infection
1Fattovich et al[14] 
(EUROHEP study group)

A retrospective cohort study of 200 Western European patients was carried out with a follow-up median period of 6.6 yr. 
HDV infection increases the risk of HCC three-fold 

1Cenac et al[29] 89 Sahelian African patients were tested alongside 47 controls. 55% of HDV patients had HCC compared to the 17% who 
had HBV mono-infection with HCC

1Oliveri et al[30] Patients with HDV co-infection developed HCC at a significantly younger age than those affected by HBV alone, by about 
10 yr

1Tamura et al[22] 1127 patients were followed for atleast 3 yr. The prevalence was 4.05 per thousand person years in HDV co-infection 
patients compared to 2.73 in patients with HBV alone

1Verme et al[31] 62 patients were investigated. The findings suggest that HDV co-infection causes HCC at an earlier age 
1Smedile et al[32] 85 patients were investigated. The outcome in patients with HDV co-infection was significantly worse than others
1Trichopoulos et al[19] 116 patients were investigated. There is a higher prevalence of HCC amongst HDV co-infected patients
1Toukan et al[18] The highest prevalence of HCC was found in those patients co-infected with HDV
1Ji et al[26] 650 out of 9160 HBV patients had HDV. The median follow up was 11 yr. The risk of HCC was increased. HDV was a 

strong risk factor
2Huang et al[33] 114 HCC patients were investigated prior to surgery. A higher prevalence of hepatic inflammation was observed in HCV 

patients and also, possibly, in HDV patients
2Abbas et al[11] 92 HDV positive and 92 negative patients with HCC were compared. HDV causes HCC in a different manner to HBV
3Heidrich et al[6] 71 out of 534 patients had HBV and HDV co-infection. The median follow-up period was 4.25 yr. The long-term outcome 

for HBeAg positive and negative was the same
3Huo et al[23] 42 HDV co-infected patients were compared to 255 HBV patients, all with HCC, over a period of 8 yr. HDV co-infection 

does not accelerate HCC development, and the outcomes are the same as HBV mono-infection
3Fattovich et al[13] 

 (EUROHEP study group)
349 Western European patients were investigated for 5 yr. HDV co-infection had no prognostic value for the development 
of HCC

3Realdi et al[34]  (EUROHEP) 366 caucasian patients were investigated for 6 yr. HDV infection did not influence the prognosis
3Kage et al[35] 58 patients were investigated. HDV is unlikely to have a role in the development of HCC
3Tzonou et al[36] 185 cases with HCC and 432 hospital controls were investigated. HDV was not a significant cause of HCC
3Tassopoulos et al[37] 47 patients with HCC were investigated. None of the 47 had any evidence of HDV infection
3Chen et al[38] 60 patients were investigated. However, the study indicated that HDV co-infection does not lead to a rise in HCC 

development amongst Chinese living in Taiwan
3Govindarajan et al[39] Sera from 39 patients with HBV associated with HCC were studied for the presence of HDV. Only one patient tested 

positive
3Negro et al[40] Liver tissues of 19 patients with chronic HDV were investigated and compared to tissues from 16 patients with chronic 

HBV, and 3 normal patients. Hepatocyte proliferation in HDV was similar to HBV, but higher than normal

1Studies favoring role of HDV in HCC; 2Inconclusive; 3Studies against role of HDV in HCC. HDV: Hepatitis D virus; HCC: Hepatocellular carcinoma; HBV: 
Hepatitis B virus; HBeAg: Hepatitis B e antigen; HCV: Hepatitis C virus.
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which via NS5A and NS5B proteins also modulates 
TNFα induced NFκB activation[72,73]. Furthermore, the 
HBX protein directly interacts with IκB, preventing its 
association with NFκB[74]. However Williams et al[50] 
showed that HDV proteins could not directly interact 
with NFκB and STAT3 but could act to transcribe various 
unknown genes by binding to endoplasmic reticulum 
stress response element (ERSE) motifs in target genes. 

The discussion above demonstrates some of the 
possible mechanisms by which the HDV induces HCC. 
Furthermore, clinical observations seem to reinforce the 
view that HCC in HDV infection may be a secondary to 
the necroinflammation and cirrhosis of the liver[11]. The 
investigators noted a decrease in liver size with HDV 
as opposed to HBV monoinfection and saw that HDV 
patients had lower platelets and larger varices.

DNA methylation
It has been suggested that another mechanism by which 
HCC forms is the aberrant silencing of tumor suppressor 
genes by DNA methyltransferases (DNMT1) and DNMT 
3b[75]. DNMT1 is responsible for the maintenance 
of methylation patterns whereas DNMT 3a and 3b 
catalyze new methylation events[76]. Hence DNMT 3b is 
potentially oncogenic. Indeed, a study by Mota et al[77] 
noted that at least 32 proteins had differential expression 
in the presence of HDV components, pointing towards 

possible epigenetic links. The study did not identify the 
mechanism of pathogenesis, but noted that HMGB1 (over 
expression of which is associated with metastasis in 
various cancer types) was over expressed in Huh7D12 
cells while NASP, TPI and PABP2 (which interact with 
DNMT 3a and 3b) were found to be down regulated, 
hence promoting cell proliferation. Proteins involved 
in cellular metabolism, transport, signal transduction 
and growth (PCNA and FEN1 Endonuclease) were also 
found to be affected[77]. Indeed Negro et al[40] found 
that in the cirrhotic tissue of patients with HCC, HDV 
RNA occasionally colocalized with PCNA (a marker of 
hepatocyte proliferation).

It has been established that DNMT1 and DNMT 3b 
knockdown causes a global methylation reduction of 
over 95%, causing the loss of insulinlike growth factor 
2 imprinting and the loss of silencing of the vital tumor 
suppressor p16INK4a[76]. Hence their roles in human 
cancers are clear. Benegiamo et al[75] went on to show 
the large antigen activates STAT3 via phosphorylation 
of Tyrosine 705 residue. STAT3 in turn regulates 
DNMT1 and causes the over expression of DNMT3b. 
Among the 24 genes investigated by the study, the 
promoter of E2F1, a vital regulator of the cell cycle 
(bound by the Retinoblastoma protein) was found to 
be hypermethylated. It has been proposed that E2F1 
may also be responsible for Nox4 activation. E2F1 is 
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often targeted by other small DNA and RNA viruses 
as well. The virus was thus found to cause cell cycle 
disruption and a 2fold increase in G2/M phase arrest 
was observed[75]. It has been suggested by Kannan 
that following arrest, the cell acquires further mutations 
that allow it to proceed with the cycle, giving rise to 
cancerous cells[78].

Histone modification
HDAgs have also been associated with increased histone 
H3 acetylation of the clusterin promoter[79]. This enhances 
the expression of clusterin in infected cells, increasing 
cell survival potential. Histone acetyltransferases, CREB
binding protein and p300[80] are key to this process, as 
they interact with the antigens while the linker histone H1e 
binds to the small antigen[81]. Kang et al[82] reported that 
clusterin is over expressed in HCC, with the expression 
increasing with metastatic HCC[83]. Indeed, it has already 
been noted that increased levels of the protein is an 
important factor in determining the aggressiveness of 
a breast tumor[84]. It is believed that at least in human 
renal cell carcinoma clusterin contributes to a phenotype 
resistant to Fasmediated apoptosis[85]. However, some 
conflicting results have been noted in the literature 
regarding the roles of clusterin, which has been involved 
in cell cycle arrest[86], cell death[87] and inhibition of 
proliferation[84]. An explanation suggested is that although 
clusterin may initially cause senescence in problematic 
cells, over time the molecule may be responsible for 
survival and with the accumulation of further mutations, 
may allow tumorigenesis[88].

Metabolic and autoimmune changes
Another factor to consider is the downregulation of 
the Rho GDP dissociation inhibitor and guanine binding 
proteins[74]. These proteins are involved in the regulation 
of the mitogen activated protein kinase (MAPK) pathway, 
which is frequently implicated in cancer[89]. A lower 
availability of Triosephosphate Isomerase and Pyruvate 
Carboxylase, which lead to an abnormal retention of 
lipids may also be responsible for microvesicular steatosis 
during HDV infection[77].

Furthermore, Wedemeyer et al[45] suggest that 
hepatitis D is an immune mediated disease, noting a 
rise in CD4+ T cells in individuals with a HDV infection. 
Although the role of the host’s immune system seems 
unlikely, various autoantibodies have been detected 
in infected patients. Prominent amongst them is liver
kidney microsomal antibody type 3, directed against 
uridine diphosphate glucoronyl transferase[90]. The 
disruption of metabolism in this way could contribute 
to HCC. Indeed Hanahan et al[91] have already labeled 
some changes in cellular metabolism as hallmarks of 
cancer. 

HBV DNA integration
It is interesting to note that the HBX product has 
been found to directly interact with p53 and has been 
associated with the MAPK pathway and hence causes 

HCC[92]. It was previously thought that HBV DNA 
integration with chromosomes of infected hepatocytes 
would be responsible for HCC. However, the process 
of integration has been noted to be entirely random 
rather than targeted to specific genes and the length 
and components of the integrant has found to vary 
considerably[93]. Interestingly, when Woodchuck hepatitis 
virus targets the intronless N-myc2 gene as a site of 
integration, it predisposes to HCC[94]. Together with the 
activity of the protein product, the increased expression 
of mechanistic of rapamycin (mTOR) and PI3K/Akt were 
found to be responsible for cancer development[95]. 
Indeed mTOR promotes cell proliferation, apoptosis 
resistance and vascularization of tumors[96] by regulating 
the transcriptional activity of FOXO13a and protein 
translation by pS6 and eIF4E[95]. To the authors’ 
knowledge, no study has yet investigated the association 
of the HDV antigens with mTOR or the downregulation of 
MiR101[97] (which is done by HBX protein and interacts 
with DNMT3A) and this could be a potential area of 
research. 

Peroxisome proliferator-activated receptor and HCC
Peroxisome proliferatoractivated receptor (PPAR) has 
been shown to play a role in the development of HCC[98]. 
PPARα (which normally has a role in lipid metabolism), 
found in the liver, kidney, heart, and small intestine, 
has been shown to be involved in the regulation of the 
cell cycle. In mice, knocking down PPARα led to HCC 
suppression[99]. However, conflicting reports of the role 
of PPARα exist. Meanwhile PPARγ, found in adipose 
tissue and macrophages, inhibits HCC[100102]. These 
control epithelialmesenchymal transition and prevent 
metastasis by increasing Ecadherin through TIMP3[103]. 
PPARγ is also involved in cell cycle arrest[103] and induces 
Fas dependent apoptosis, hence combating HCC. PPARδ 
(a gene derived from the TCF/βcatenin pathway) is 
found universally and has been reported to be involved 
in highly malignant colon cancer[104]. It is thus necessary 
to explore in the future whether PPAR are somehow 
exploited by HDV in the development of HCC. If so, 
thiazolidinediones, which act on PPARγ, could be used 
to treat HCC. Together with retinoic acid, PPAR agonists 
and antagonists could become the frontline therapeutic 
drugs in HCC treatment. 

TOWARDS THERAPEUTICS AND A 
BETTER UNDERSTANDING OF HDV
A better understanding of the molecular events 
underlying HCC development following HDV infection 
is vital to not only the approach to the virus but 
also for the development of new drugs, which can 
target specific parts of the pathways involved if not 
the virus itself and prevent development of HCC in 
patients infected with HDV. For example the targeted 
inhibition of STAT3 with a decoy 15mer double
stranded oligonucleotide, which corresponds to the 
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STAT3 response element in the cfos promoter region, 
has been experimentally proven to abrogate head and 
neck cancer growth[105] and could eventually be used 
to prevent or treat HCC as well. 

Cyclophilins are a class of proteins localized in various 
cellular compartments, involved in metabolism and 
homeostasis and are upregulated during inflammation 
and cancer. Cyclophilin A (CypA), in the cytoplasm, 
is involved in the virus life cycle, while extracellular 
CypA and CypB are proinflammatory in nature. 
Cyclosporins are potential cyclophilin inhibitors and 
could have therapeutic potential for the treatment 
of virus induced liver diseases. Indeed cyclosporin A 
(CsA) has been shown to inhibit HBV and HDV entry 
via sodium taurocholate cotransporting polypeptide. 
There is a direct interaction between the drug and the 
NTCP receptor (which is also a bile salt transporter), 
with overlap at the preS1 domain (which mediates 
viral entry). CsA also has immunosuppressive effects, 
exercised via cyclophilin dependent inhibition of 
calcineurin[106].

Interestingly, HDV can, in vivo, infect the cells of 
hepadnavirusinduced hepatocellular carcinoma in 
Woodchucks[107]. Since it had been previously hypothe
sized that hepadnavirusinduced HCCs are resistant to 
reinfection, the experiment proves that the cells still 
have functioning woodchuck hepatitis virus receptors 
and if a resistance does exist, it occurs downstream 
of the receptor[108]. This information may facilitate 
development of novel strategies further dissecting the 
mechanism of liver carcinogenesis associated with HDV 
infection

The spread of HDV can be prevented by depriving 
the defective HDV of HBV necessary to propagate its 
infection. Countries with effective vaccination programs 
have shown a dramatic decrease in the incidence of 
HCC[109]. As there is no effective treatment for HDV 
and the only treatment available is interferon, which is 
of limited efficacy[110], vaccination against HBV should 
be stressed. Carriers of HBs should be informed of the 
risk of superinfection from carriers coinfected with HDV 
and educated about preventive practices.
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