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Abstract
Over the last years, cholangiocytes, the cells that line 
the biliary tree, have been considered an important 
object of study for their biological properties which in­

volves bile formation, proliferation, injury repair, fibrosis 
and angiogenesis. Cholangiocyte proliferation occurs 
in all pathologic conditions of liver injury where it is 
associated with inflammation and regeneration. During 
these processes, biliary cells start to secrete different 
cytokines, growth factors, neuropeptides and hormones 
which represent potential mechanisms for cross talk with 
other liver cells. Several studies suggest that hormones, 
and in particular, sex hormones, play a fundamental role 
in the modulation of the growth of this compartment 
in the injured liver which functionally conditions the 
progression of liver disease. Understanding the mecha­
nisms of action and the intracellular pathways of these 
compounds on cholangiocyte pathophysiology will 
provide new potential strategies for the management 
of chronic liver diseases. The purpose of this review 
is to summarize the recent findings on the role of sex 
hormones in cholangiocyte proliferation and biology.
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INTRODUCTION
The intrahepatic biliary tree is a complex three-dime
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nsional network of  interconnected ducts which starts at 
the level of  canals of  Hering, continues into intrahepatic 
ducts of  increasing diameter and ends at the level of  
the extrahepatic bile ducts[1]. The intrahepatic biliary 
tree plays a critical role in many liver functions including 
bile formation, regeneration, injury repair, fibrosis, 
angiogenesis and regulation of  blood flow. Most of  
these events are regulated by several neuropeptides, 
hormones, cytokines and growth factors which target 
cholangiocytes[2], the epithelial cells lining the biliary tree. 
Cholangiocytes are the preferential target of  damage 
in a group of  chronic cholestatic liver diseases called 
cholangiopathies, with a high social and economic 
impact due to their high prevalence and morbidity such 
as primary biliary cirrhosis (PBC), primary sclerosing 
cholangitis (PSC), polycystic liver disease (PCLD) and 
cholangiocarcinoma (CCA)[3-7]. In laboratory animals, 
‘‘typical’’ cholangiocyte proliferation is achieved by a 
number of  experimental models including bile duct 
ligation (BDL), partial hepatectomy, acute CCl4 feeding 
and chronic feeding of  a-naphthylisothiocyanate 
(ANIT) or bile salts[8-11]. In these hyperplastic models, 
cholangiocyte proliferation is closely associated with 
increased secretin receptor gene expression and secretin-
stimulated cAMP levels[12-18]. A variety of  clinical and 
epidemiological observations have shown the involve
ment of  sex hormones as inducers of  growth and diffe
rentiation of  target cells expressing their receptors[3]. 
The molecular mechanism of  these complicated events, 
especially sex hormone-dependent growth enhancement, 
has been studied extensively. In MCF-7 cells, an estro
gen-induced autocrine loop has been demonstrated to 
play an important role for estrogen-dependent growth. 
Androgen has been also found to promote the growth 
of  SC-3 cell through the induction of  several autocrine 
growth factors[4]. 

Sex hormones such as estrogens and androgens have 
been well known to regulate the growth of  normal as 
well as transformed target cells[19-24]. Generally, they have 
been proposed to promote cell growth whereas so-called 
anti-hormones inhibit the hormone-dependent growth. 
For example, anti-androgens such as cyproterone acetate 
have also been known to accelerate the growth of  pros
tate cancer in some circumstances[5]. Conversely, adminis
tration of  a large amount of  estrogens frequently causes 
the regression of  estrogen-receptor-positive breast 
cancer[6]. Tamoxifen, the most widely used therapeutic 
agent of  estrogen-dependent breast cancer, exhibits 
organ- and species-dependent differences in cell growth 
regulation[7]. Even in the same cells, growth response 
to tamoxifen has been observed to differ in a dose-
dependent manner. One plausible explanation is that 
two pathways exist for estrogen-dependent growth in 
target cells, one for the stimulatory and another for the 
inhibitory signal[4] (Figure 1).

In particular, estrogens exert a trophic action in seve
ral target organs such as liver[8] where they modulate 
growth and repair, intervening in neonatal liver growth 

and regeneration after injury in adults[3]. Moreover, ch
ronic administration of  estrogens for pharmacological 
purposes induces an enlargement of  liver mass[25,26] and 
after partial hepatectomy, ERs expression in hepatocytes 
increases with subsequent transcription of  genes involved 
in proliferation to restore a normal liver mass[25,27]. With 
this review, we aim to summarize the latest findings about 
the role of  sex hormones on biliary epithelium function, 
their effects and alterations during cholestasis. The role 
and mechanism by which sex hormones modulate cho
langiocyte functions have been explored only over the last 
few years at both experimental and clinical levels[28-50]. 

SEX HORMONES
Hormones are the chemical messengers of  the body since 
they are involved in transmission of  information from 
one tissue to another and from cell to cell. Hormones 
circulate in the bloodstream and interact with target cells 
that possess receptors that can only be activated by a 
specific type of  hormone. Several kinds of  hormones 
exist for their structure or activity in the cell. Usually 
they are known as steroids and peptides (Figure 2). In 
general, steroids are sex hormones, chemical substances 
made from cholesterol and produced by a sex gland or 
other organ that has an effect on the sexual features of  
an organism[9]. Like many other kinds of  hormones, they 
may also be artificially synthesized. On the other hand, 
peptides are made from long strings of  amino acids to 
regulate other functions and are sometimes referred to as 
“protein” hormones. 

Sex hormones are divided into 3 groups: (1) female 
sex hormones or estrogens; (2) male sex hormones or 
androgens; and (3) pregnancy hormones or progestins.

Estrogens
Estrogen is a generic term for estrus-producing com
pounds; the female sex hormones including estradiol, 
estriol and estrone (Figure 3). In humans, the estrogens 
are formed in the ovary, adrenal cortex, testis and 
fetoplacental unit and are responsible for female secon
dary sex characteristic development and, during the 
menstrual cycle, act on the female genitalia to produce 
an environment suitable for fertilization, implantation 
and nutrition of  the early embryo[10]. Uses for estrogens 
include oral contraceptives, hormone replacement 
therapy, advanced prostate or postmenopausal breast 
carcinoma treatment and osteoporosis prophylaxis[51-55]. 
They also antagonize the effects of  the parathyroid 
hormone minimizing the loss of  calcium from bones 
and thus helping to keep bones strong[11]. Estradiol 
(E2) is the main female sex hormone. Its actions are 
mediated by two members of  the nuclear receptor 
superfamily, estrogen receptor ERα and ERβ, and a 
recently discovered G protein-coupled membrane rece
ptor, GPR30[56,57]. Mechanisms by which ERα and ERβ 
bind ligand, dimerize, associate with coactivators or 
corepressors and regulate gene transcription are typically 

51 June 15, 2010|Volume 1|Issue 2|WJGP|www.wjgnet.com



referred to as “genomic” actions[12], which ultimately 
regulate both cell proliferation and survival[58-61]. Estro
gens play biological activities in several organs[13] inclu
ding the cardiovascular system, nervous system, digestive 
system and “male” organs such as the prostate. In tar
get tissues, estrogens may exert opposite actions and 
heterogeneous effects[62-66]. In detail, overexpression of  
ERα has been associated with cancer development and 
progression in several organs[14]. The functions of  ERβ 
are linked to a protective effect against uncontrolled 
or neoplastic cell proliferation[64,67]. In different types 
of  cancer, estrogens synergize the effects of  growth 
factors by acting at both receptor and post-receptor 
levels favouring the growth and spreading of  tumour 
mass[68-73]. The liver is a hormone-sensitive organ. Both 
normal liver and hepatocellular carcinoma (HCC) tissues 
from male and female mammals have been shown to 
express specific ERs, stimulating both in vivo and in vitro 
hepatocyte proliferation[15]. Moreover, anti-estrogens 
like tamoxifen have been shown to reduce levels of  ERs 
and to inhibit hepatocyte proliferation following partial 
hepatectomy[16]. Long-term use of  oral contraceptives 
(OCs) and anabolic androgenic steroids (AASs) can 
induce both benign and hepatocellular tumors[17]. Other 

experimental findings suggest that estrogens have nu
merous neuroprotective actions. This responsiveness can  
diminish with age, reducing neuroprotective actions of  
estrogen[18]. Hormonal treatment plays an established 
role in several solid tumors, first of  all in breast cancer 
where, for the last decades, the antiestrogen tamoxifen 
has been the most commonly used treatment for pati
ents with estrogen receptor alpha (ER)-positive breast 
cancer[19]. Tamoxifen is characterized by a favourable 
toxicity profile which, together with the easy oral admi­
nistration, makes this drug an interesting candidate for 
treatment of  other solid tumors potentially responding 
to hormonal manipulation[74-77]. In addition, there is in
creasing evidence showing that adipose tissue is a site 
of  steroid metabolism, including the interconversion 
of  estrone (E1) and E2. The presence of  both estrogen 
receptors (ERα and ERβ) in preadipocytes and ma
ture adipocytes strongly suggest a role for active es
trogen in these cells. For that reason, adipose tissue 
can be considered a significant source of  estrogenic 
compounds.

Androgens
Androgens are a special kind of  fat molecule with a 
four-ringed, carbon atom backbone or core[20]. A series 
of  chemical reactions transform cholesterol first into 
the steroid pregnenolone and then into testosterone and 
other androgens (Figure 3). Like all steroid hormones, 
androgens produce effects by docking with receptors 
on the cell’s membrane surface or inside the cell in the 
liquid cytoplasm[20]. The steroid hormone/receptor 
unit moves into the nucleus activating specific genes. 
These genes drive the cell changes guiding androgen-
controlled growth and development[21]. Scientists have 
studied androgens since the 18th century. John Hunter 
initially described androgenic actions in 1771. Almost 
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Figure 3  The biosynthesis of the sex hormones starts with the oxidation of 
the side chain of cholesterol, which is catalyzed by the enzyme cytochrome 
P450scc to form pregnenolone. The next steps in the biosynthesis of 
testosterone can proceed via two different routes. Pregnenolone can be oxidised 
first by cytochrome P45017a to 17a-hydroxypregnenolone. The enzyme 3β-HSD 
also can convert pregnenolone first into progesterone. Both pregnenolone and 
progesterone are accepted as substrate by the enzyme cytochrome P45017a. In 
this way, after 3β-hydroxy-5-androstene-17-one (DHEA) synthesis, there is the 
testosterone and successively the estradiol formation.
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Figure 1  Two-pathway theory of estrogen-receptor-dependent growth. 
Many estrogen target cells contain growth-stimulatory and -inhibitory pathways. 
Both pathways are mediated through ERs. Tamoxifen may possess relatively 
high affinity for the growth-inhibitory pathway whereas estrogen can mainly 
activate the growth-stimulatory pathway. However, any ligand for ER can 
stimulate both pathways. 

Figure 2  Scheme of the two classes of hormones, steroids and peptide 
hormones that successively can be divided in corticoids and sex hormones.
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two century later in 1935, Leopold Ruzicka worked out 
the chemical structure of  the “androgenic principle” 
from the testes, calling it testosterone[22]. Testosterone 
and dihydrotestosterone (17-beta-hydroxy-5-alpha-an- 
drostan-3-one) are the most potent androgens in hu
mans and four-legged vertebrates[20]. The weaker andro
gens androstenedione and dehydroepiandrosterone 
(DHEA) occur in small amounts in all vertebrates[23]. 
Testosterone is essential for the production of  sperm 
and is manufactured by the interstitial Leydig cells of  
the testes. Its secretion increases sharply at puberty 
and is responsible for the development of  the so-called 
secondary sexual characteristics of  men during puber
ty[20]. Synthetic testosterone analogs are used in medicine 
to promote muscle and tissue growth in patients with 
muscular atrophy[24]. Testosterone therapy is indicated 
in adult men for the treatment of  hypogonadism[25]. 
Over the last three decades it has become apparent that 
testosterone plays a significant role in the maintenance 
of  bone and muscle mass, in erythropoiesis and in 
mental functions. Androgens are also key players in 
glucose homeostasis and lipid metabolism and exert 
an important role in liver. In fact, it has been observed 
that androgen receptors (ARs) are present in normal 
liver tissue from both males and females and that their 
expression is increased in tumor tissue[16]. Moreover, 
cross-sectional epidemiological studies have reported 
a direct correlation between plasma testosterone and 
insulin sensitivity and low testosterone levels are asso
ciated with an increased risk of  type 2 diabetes mellitus, 
dramatically illustrated by androgen deprivation in men 
with prostate carcinoma[42,43]. Prostate cancer is one of  
the most common cancers among men and androgens 
are involved in controlling the growth of  androgen-
sensitive malignant prostatic cells[26]. The model of  
LNCaP prostate cancer cell line was used to study 
androgen and estrogen metabolism during the transfor
mation process. It was discovered that substantial chan

ges in androgen and estrogen metabolism occur in the 
cells during the process[45-47]. Recent evidence indicates 
androgen actions in protecting the brain against neuro
degenerative diseases and their positive effects on age-
related testosterone loss in men and increased risk for 
Alzheimer’s disease (AD)[27]. The successful use of  
hormone therapies in aging men and women to delay, 
prevent and/or treat Alzheimer’s disease will require 
additional research to optimize key parameters of  hor
mone therapy[28]. 

Progestins
The term progestins is defined as the natural or synth­
etic progestational substances that mimics some or all 
of  the actions of  progesterone, a crude hormone of  
the corpus luteum from which progesterone can be 
isolated in pure form[29]. Progesterone is responsible for 
preparing the uterus for implementation of  the fertilized 
egg. It also has an important role as a birth control 
agent[30]. It is a steroid hormone produced in the ovary 
under the control of  the pituitary gonadotropins[78-80] 
(Figure 4). It has also been recently demonstrated that 
the synthetic progestogen, levonorgestrel, increases 
progesterone accumulation in cultured, stable porcine 
granulosa cells, the JC-410[81-93]. Results of  those studies 
have been interpreted to suggest that progestins may 
affect progesterone synthesis by the regulation of  
steroidogenic enzymes, the cytochrome P450 side-
chain cleavage (P450scc) and 3β-hydroxysteroid dehy
drogenase (3β-HSD)[31]. The genomic action of  proges
terone is mediated by two progesterone receptor (PR) 
isoforms, A and B[84,85]. PR-B is a strong activator of  
gene transcription, whereas PR-A can act as a ligand-
dependent trans-repressor of  PR-B[32]. The large majority 
of  PR target genes have been identified in breast cancer 
cells[87,88]. Different evidence indicates that this hormone 
also exerts neuroprotective effects on the central nervous 
system (CNS). Its neuroprotective actions make it a 
particularly promising therapeutic agent for neuroinjury 
and neurodegenerative diseases. Progesterone appears 
to exert its protective effects by protecting or rebuilding 
the blood-brain barrier, decreasing the development 
of  cerebral edema, down-regulating the inflammatory 
cascade and limiting cellular necrosis and apoptosis[33]. 
The family of  anti-progestins, i.e. mifepristone, includes 
pure agonists such as progesterone itself  or progestins 
and, at the other end of  the biological spectrum, pure 
progesterone receptor antagonists (PA). Selective proges
terone receptor modulators (SPRM) have mixed agonist-
antagonist properties and occupy an intermediate po- 
sition of  the spectrum. Mifepristone is used to termi
nate pregnancy[34]. Many PA and SPRM display direct 
antiproliferative effects in the endometrium although 
with variable actions which seem product- and dose-
dependent. This property justifies their use in the 
treatment of  myomas and endometriosis. Interestingly, 
clinical data show that treatment with these compounds 
is not associated with hypo-estrogenism and bone 
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Figure 4  Scheme of hypothalamic-pituitary-gonadal (HPG) axis control 
exerted by both circulating and in situ locally produced estradiol in 
men. This axis controls development, reproduction, and aging in animals. The 
hypothalamus produces gonadotropin-releasing hormone (GnRH). The pituitary 
gland produces luteinizing hormone (LH) and follicle-stimulating hormone (FSH), 
and the gonads produce estrogen, progesterone and testosterone from different 
kinds of cells.



loss. The potential clinical applications of  these com
pounds cover a broad field and are very promising 
in major public health areas. Further developments 
might also include hormone replacement therapy in 
post-menopausal women as well as the treatment of  
hormone-dependent tumors[35]. 

Other sex hormones
Another group of  substances secreted by the pituitary 
gland can be defined sex hormones. They include the 
follicle-stimulating hormone (FSH), the luteinizing 
hormone (LH) and the prolactin (Prl). The synthesis 
and secretion of  estrogens is stimulated by FSH which 
is in turn controlled by the hypothalamic gonadotropin 
releasing hormone (GnRH) (Figure 4). High levels of  
estrogens suppress the release of  GnRH providing a 
negative-feedback control of  hormone levels[36]. Pro
gesterone production is stimulated by LH which is also 
stimulated by GnRH[36]. Elevated levels of  progesterone 
control themselves by the same negative feedback loop 
used by estrogen[37]. The two gonadotropins, FSH and 
LH, are key regulators of  ovarian cell functions and 
the potential role of  gonadotropins in the pathogenesis 
of  ovarian cancer is suggested. The presence of  gona
dotropins in ovarian tumor fluid and their receptors 
expression suggests the importance of  these factors in 
the transformation and progression of  ovarian cancers 
as well as being prognostic indicators[94-97]. The recent 
cDNA microarray analyses and characterization in 
the molecular mechanisms of  gonadotropin signaling 
have indicated the effects of  gonadotropins on the re
gulation of  some ovarian cancer cell growth, survival 
and metastasis that may involve other growth factors[38]. 
Prl is another hormone released by the pituitary gland 
that stimulates breast development and milk production 
in women[39]. It is secreted by so-called lactotrophs in 
the anterior pituitary as a prohormone. Although the 
pleiotropic actions of  Prl are recognized, its role in 
regulating growth and differentiation of  mammary tissues 
is better understood[98,99]. Several lines of  evidence have 
also indicated that Prl acts as an autocrine, paracrine and 
endocrine progression factor for mammary carcinoma 
in vitro and in vivo in rodents and humans[100]. These data 
include recent epidemiologic studies indicating that 
postmenopausal women with ‘high-normal’ levels of  
Prl are at increased risk of  breast cancer[101-105]. Elevated 
prolactin (hyperprolactinemia) may be due to a benign 
tumor in the pituitary gland called a prolactinoma. Abno
rmally low prolactin (hypoprolactinemia) can cause 
menstrual disorders and lead to inadequate lactation[31]. 
It is concluded that the rat is a predictive model for hu
man mammary carcinogenesis and that rat mammary 
carcinogenesis induced by hyperprolactinaemic drugs may 
have greater importance in human toxicological risk than 
previously thought[40]. 

ESTROGENS AND BILIARY EPITHELIUM
Estrogens and their metabolites have been hypothesized 

to have a pathogenic role in the diseases which pre
ferentially affect the female sex[106-109]. Furthermore, 
marked alterations of  estrogen hepatic metabolism oc
curs in cholestasis which is one of  the hallmarks of  cho
langiopathies, including the decreased hepatic levels of  
P450-dependent microsomal enzymes with a consequent 
enhanced estradiol serum level[41]. Over the last years, we 
have discovered that rat cholangiocytes express both ERα 
and ERβ subtypes while hepatocytes only express ERα[28]. 
In addition to that, cholangiocyte proliferation after BDL 
is associated with a marked increase in the expression 
of  ER and especially the ERβ while hepatocytes which 
do not proliferate after BDL display a decrease of  ERα 
protein expression[42] (Figure 5). This important role 
of  estrogens in modulating cholangiocyte proliferation 
during BDL is associated with enlarged bile duct mass and 
enhanced estradiol serum levels[29].

The role of  estrogens in modulating cholangiocyte 
proliferation has been confirmed by experiments show­
ing that when BDL rats were treated with tamoxifen or 
the pure ER antagonist, ICI 182,780, the intrahepatic 
bile duct mass was markedly decreased in comparison 
with the control rats by impaired proliferation and 
enhanced cholangiocyte apoptosis. In breast cancer 
and hepatocellular carcinoma, tamoxifen induces cell 
death by multiple mechanisms including the blocking 
of  the mitogenic effect of  estrogens and induction of  
apoptosis-related genes[43]. In fact, the Fas receptor/
Fas ligand pathway plays a crucial role in tamoxifen-
induced apoptosis in hepatocellular carcinoma and cho
langiocarcinoma cell lines[110-112]. To support the positive 
modulatory effect of  estrogens on cholangiocyte prolife
ration, in vitro experiments show that proliferation of  
isolated rat cholangiocytes were significantly increased 
by 17β-estradiol and that these effects were individually 
blocked by ER antagonists[28]. Regarding the role of  
endogenous estrogens on modulating cholangiocyte 
proliferation during experimental cholestasis, we also 
evaluated the effects of  ovariectomy (OVX) and estrogen 
replacement treatment in BDL rats[44]. OVX rats were 
submitted to BDL and the bile duct mass was compared 
with control BDL rats submitted to sham-OVX and with 
BDL-OVX rats treated with exogenous administration 
of  17β estradiol. OVX induced a significant reduction 
of  bile duct mass in BDL rats that was associated 
with a decreased expression of  ERβ. Administration 
of  17β estradiol induced a normalization of  bile duct 
mass, ER expression and cholangiocyte proliferation in 
comparison with untreated BDL rats. A probable cross-
talk between estrogens and growth factors including 
IGF1 (insulin like growth factor) has been proposed 
and later demonstrated that result in a synergistic gro
wth stimulation[4,112]. This signaling cascade, typically 
activated by growth factors acting through tyrosine 
kinase receptors, involves the recruitment of  the steroid 
receptor-coactivator (Src) and adapter protein Shc (Src-
homology/collagen protein) which act upstream to 
the mitogen-activated protein (MAP) kinase isoforms 
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ERK1/2 (extracellular signal-regulated kinase)[113,114]. 
We found that cholangiocyte proliferation induced by 
BDL involves the activation of  the Src/Shc/ERK sig
nalling cascade blocked through administration of  ER 
antagonists[45].

Normally,  human cholangiocytes do not express 
ERs but they stain positive for ERα and β in different 
pathological conditions such as primary biliary cir
rhosis (PBC)[31], polycystic liver disease[115] and cholan
giocarcinoma[116-121]. All these conditions are characterized 
by reactive or neoplastic cholangiocyte proliferation, sug
gesting that estrogens and their receptors may play a role 
in modulating the proliferative activities of  cholangiocytes 
and therefore the course of  these diseases.

PBC is one of  the chronic cholestatic liver diseases 
which represent the most frequent acquired cholangi

opathy. This is an autoimmune liver disease in that 
the key pathology involves the attack upon the small, 
microscopic bile ducts by immune system inflammatory 
cells. The result is a chronic granulomatous inflammatory 
infiltrate invading and progressively destroying the small 
bile ducts within the portal tracts of  the liver[46]. The 
disease predominantly affects females with a typical clini
cal presentation occurring during the peri- and post-
menopausal period[47]. Recent findings suggest that 
estrogens may influence the course of  PBC by directly 
modulating the pathophysiology of  cholangiocytes[31]. 
In fact, in PBC, such as in other chronic cholestatic 
conditions, estrogen serum levels are increased as a con
sequence of  impaired hepatic metabolism and biliary 
excretion of  estrogens and their metabolites[48]. How
ever, estrogen replacement therapy as osteoporosis 
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Figure 5  Some representative immunohistochemistry for Erα, progesterone and prolactin receptors in normal and bile duct ligation (BDL) rats. A, B: Erα 
receptors; C, D: progesterone receptors; E, F: prolactin receptors. The expression of all these receptors is highly increased after BDL compared with that in the biliary 
epithelium of the normal animal. Original magnification × 40.
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treatment has been shown to be safe in PBC patients[49]. 
These clinical studies allowed summarizing the concept 
that administration of  estrogens in PBC patients exerts 
deleterious effects on the liver but they can improve 
liver function. During PBC, the ER expression varies 
according to different stages and correlates with mar
kers of  proliferation and apoptosis. ERα expression 
increases from 1% of  cholangiocytes in PBC stage 
Ⅰ to 12% in stage Ⅲ while ERβ is stably high in all 
histological stages. Interestingly, in stages Ⅰ-Ⅲ, ERα 
expression co-localizes with PCNA indicating that the 
expression of  this receptor subtype is a typical feature 
of  proliferating cholangiocytes. Furthermore, in stage 
Ⅳ of  PBC where there is the maximal degree of  duc
topenia, cholangiocytes are negative for ERα and ex
press the lowest proliferation/apoptosis ratio[31]. We 
can speculate that a relative proliferative deficiency of  
cholangiocytes in the terminal ductopenic stages of  PBC 
is associated with the disappearance of  ERα. These 
findings could have important therapeutic implication by 
the modulation of  ERs. To this latter regard, preliminary 
clinical observations indicate that tamoxifen improves 
biochemical parameters of  cholestatis in PBC patients. 
Interestingly, through the ERα, estrogens can positively 
modulate the GH/ IGF-1 axis[14]. 

Autosomal dominant polycystic kidney disease 
(ADPKD) is one of  the most prevalent human genetic 
diseases[50]. Hepatic cysts are the most common extra-
renal clinical manifestation of  ADPKD[51]. Estrogens 
have a role in the development and progression of  
hepatic cysts in ADPKD patients. The probability of  
developing hepatic cysts is higher in women than in men. 
Many studies and the clinical observations show a strict 
estrogen sensitivity of  cyst formation and progression 
in ADPKD patients[122,123]. First of  all, the epithelial layer 
of  hepatic cysts presents the expression of  ERβ and 
this occurs in all cysts examined, whereas the staining 
for ERα was less evident (Figure 6).  Estrogens act not 
only directly but also by promoting the synthesis and 
release of  growth factors from the cyst epithelium[115]. 

These findings show how the formation and progression 
of  hepatic cysts is highly sensitive to changes in the 
estrogen status in the body[4,115].

Cholangiocarcinoma is a malignant tumor arising 
from cholangiocytes and characterized by a poor prog
nosis and scarce response to current therapies[124-132]. 
Human intrahepatic cholangiocarcinoma and the human 
intrahepatic cholangiocarcinoma cell line HuH-28 express 
ERs. The use of  17β-estradiol stimulates proliferation 
and inhibits apoptosis of  HuH-28 cell lines, findings 
comparable with the proliferative response of  MCF7, a 
breast cancer cell line. Proliferation of  these cells induced 
by 17β-estradiol is associated with enhanced protein 
expression of  ERα, p-ERK1/2 and pAKT but with 
decreased protein expression of  ERβ[32,116]. This further 
supports the role of  ERα in the estrogen-dependent 
modulation of  neoplastic cell growth. Estrogens appear 
to act in several critical points of  the IGF signal transduc
tion pathway. ERα and IGF-1R have been shown to 
co-precipitate and their state of  activation as well as 
the related signaling pathways have been shown to be 
potentiated by their coupling[52]. Finally, this mechanism 
may converge at different common transduction path
ways modulating proliferation including ERK and phos
phatidylinositol-3 kinase/Akt pathways[53]. Thus, the role 
played by estrogens and their receptors in the growth 
of  ER-positive neoplasms represents the basis for the 
pharmacological treatment and/or prevention of  different 
cancers with ER antagonists. 

ANDROGENS AND BILIARY EPITHELIUM 
The role of  androgens on biliary epithelium has been 
poorly investigated. In fact, we have only preliminary data 
on the castration effects in normal and experimental rat 
model of  BDL in which there is a decrease in androgen 
receptors expression and impairment in cholangiocyte 
growth especially after bile duct ligation to support the 
hypothesis that testosterone, as estrogens, may play a 
key role in biliary epithelium proliferation[54]. In human 
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Figure 6  Immunohistochemistry for ERα, progesterone and  prolactin receptors in liver sections from patients affected with polycystic liver disease. 
A: Erα receptors; B: progesterone recepors; C: prolactin receptors. Also in course of human cholangiopathies, these three considered receptors seem to play an 
important role in cholangiocyte physiology. Original magnification × 20.
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conditions, several studies exist on the use of  anabolic 
androgenic steroid (AAS). They are frequently utilized 
at high doses by bodybuilders to achieve a rapid increase 
in muscle mass although they are associated with a 
number of  side effects. Several liver disorders have been 
reported to be associated with AAS consumption such 
as cholestasis, peliosis hepatis and liver tumors[55]. In 
recent times, this use has also been proved to be involved 
in the development of  hepatic adenomas (HA)[56]. Al
though more than 750 cases of  oral contraceptive-
induced HA have been reported, apparently androgen-
induced HA are relatively rare. HA are not malignant 
tumors but surgical intervention may be required if  
sudden massive bleeding or liver failure occurs; rupture 
of  HA with haemoperitoneum can be a life threatening 
complication[57]. A non-surgical approach should be 
considered for androgen-induced HA given that some 
tumors have regressed after AAS administration was 
stopped[58]. In any case, after a diagnosis of  liver tumors 
the administration of  AAS should cease[133-135].

PROGESTINS AND BILIARY EPITHELIUM
As previously summarized, a number of  studies have 
shown that, not only estrogens and androgens but also 
progestins strongly regulate cholangiocyte functions. 
Glaser et al have been found that female and male rat 
cholangiocytes express nuclear and membrane receptors 
that bind progesterone (PR, PGRMC1, PGRMC2, 
and mPRα). Following chronic administration of  pro
gesterone to normal female and male rats, there is an 
increase in biliary growth which can be partly preven
ted by the simultaneous administration of  the nuclear 
progesterone receptor antagonist RU-486[59] or with 
administration of  a neutralizing anti-progesterone anti
body[60]. Finally, this study also demonstrated for the first 
time that the biliary epithelium possesses the enzymatic 
pathway for the steroidogenesis of  progesterone and 
secrete progesterone, indicating that, in addition to a 
paracrine pathway, cholangiocytes regulate their growth 
in an autocrine mechanism[136-142] (Figure 6). In humans, 
the concentrations in serum of  sulfated metabolites 
of  progesterone are known to be elevated in patients 
with intrahepatic cholestasis of  pregnancy (ICP)[61]. 
Some studies propose that patients with ICP have a 
selective defect in this secretion into bile probably for 
a genetic polymorphism of  canalicular transporters for 
steroid sulphates or their regulation. Interaction with 
estrogen metabolites may further enhance the process 
triggering ICP in genetically predisposed individuals[62]. 
Ursodeoxycholic acid, an important bile acid, stimulates 
the biliary excretion of  these metabolites, particularly 
those with a 3alpha-hydroxy-5alpha (H) configuration 
and disulphates. The effect appears to be independent 
of  the stimulation of  bile acid secretion. An effect of  
ursodeoxycholic acid on the reductive metabolism of  
progesterone cannot be excluded[63].  

OTHER SEX HORMONES AND BILIARY 
EPITHELIUM
Information on the role of  FSH in liver pathophysiology 
is limited[64]. A study has demonstrated that liver cirrhosis 
is associated with endocrine dysfunction, notably in the 
gonadal axis[65]. In males it has been recognized that 
cirrhotic liver disease is associated with hypogonadism 
and feminization parallel with impairments in the se
rum level of  sex hormones[66]. The derangement of  
hypothalamic-pituitary function may play a role in the 
sexual dysfunction and changes in sex hormones in male 
patients with cirrhosis[64]. For the first time, we have 
shown that the biliary epithelium expresses FSHR and 
that FSH is a trophic factor for the biliary epithelium since 
chronic administration of  FSH to normal rats increased 
cholangiocyte proliferation and intrahepatic ductal mass 
by cAMP-dependent phosphorylation of  ERK1/2 and 
Elk-1[12-13]. In support of  the findings that FSH treatment 
increases cholangiocyte FSH receptor expression, it has 
been demonstrated that it induces follicular growth and 
ovulation together with an increase in FSH binding and 
mRNA levels in ovaries[143,144]. In addition, another study 
has demonstrated that treatment of  these cells with 
FSH increases the levels of  two FSH receptor mRNA 
transcripts[67]. Although FSH may modulate cholan
giocyte growth by a paracrine mechanism, our studies 
support the novel concept that FSH is a key player in 
the autocrine loop regulating the balance between cho
langiocyte proliferation and loss. These findings have 
important pathological implications since modulation of  
cholangiocyte expression and secretion of  the trophic 
factor FSH may be important in the management of  
chronic cholestatic liver diseases[145].

Regarding the other gonadotropin, it has been ob
served that with a reduction in the plasma level of  tes
tosterone there is an elevation of  the LH level in BDL 
rats demonstrating a primary defect in testosterone pro
duction by testes[146]. 

If  the BDL rats were treated with L-NAME, a NO 
inhibitor, to reduce its over production during bile duct 
ligation, there is an interesting effect on the LH levels[68]. 
Prolonged L-NAME treatment could not decrease the 
elevated level of  LH in BDL rats while it could increase 
the level of  testosterone in those rats. These data suggest 
that the primary effect of  bile duct ligation is at the level 
of  Leydig cells and the increase of  LH is secondary to the 
decrease in circulating testosterone. One interpretation 
is that L-NAME has only a partial effect on the NO 
inhibited Leydig cells which can produce normal levels of  
testosterone after being stimulated by an increased level 
of  LH. The other interpretation is based on the complex 
effect of  NO on gonadotropin secretion. In fact, it has 
previously been clearly demonstrated that NO stimulates 
LHRH secretion by activating guanylate cyclase and 
supports a potential role of  NO as a neuroactive agent 
involved in the control of  LHRH secretion and, thereby, 
reproductive functions[69]. It has also been suggested 
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that the endogenous level of  NO may determine the 
sensitivity of  GnRH-stimulated gonadotropin released by 
the anterior pituitary[146-151].

In addition, Prl participates in the regulation of  liver 
function. Their receptors (PrlR) are expressed by rat 
hepatocytes in the sinusoidal domain of  cellular memb
ranes and in perinuclear areas[70]. They are also expressed 
by human hepatocytes of  patients with obstructive 
jaundice of  different etiology but prolactin receptor 
expression is lower in hepatocytes compared to human 
cholangiocytes[71]. The expression pattern and regulation 
of  PrlR isoforms is totally different in cholangiocytes 
compared to hepatocytes. In fact, mature rat cholangio
cytes express low levels of  PrlR while it is very high 
in hepatocytes; only the long isoform is detected in 
cholangiocytes while the short isoform predominates 
in hepatocytes; and PrlR levels in cholangiocytes are 
induced by obstructive cholestasis while it is the opposite 
in hepatocytes. From these data, the actions of  prolactin 
on liver are anticipated to exhibit strong cell-type spe
cificity in both normal and pathological conditions[72] 
(Figure 6).

Taffetani et al have demonstrated that Prl regulates 
the growth of  female cholangiocytes, presumably 
by an autocrine mechanism. In fact, cholangiocytes 
from normal and BDL female and male rats express 
prolactin receptors. Furthermore, Prl has a trophic effect 
on the growth of  normal female cholangiocytes by 
phosphorylation of  PKCβ-Ⅰ and dephosphorylation 
of  PKCα. In addition, cholangiocytes express the 
protein for and secrete prolactin, suggesting that 
prolactin participates by an autocrine mechanism in 
the modulation of  cholangiocyte proliferation and that 
it may be an important therapeutic approach for the 
management of  cholangiopathies[152-159].

CONCLUSION
A large body of  evidence supports the therapeutic po
tential of  sex hormones in animal models and human 
clinical conditions in the modulation of  cholangiocyte 
growth/loss. Mechanisms of  action for most of  them 
have been studied and others are in the course of  study.  
Further investigations are needed to elucidate the precise 
mechanism of  androgens, progestins and their receptors in 
regulating normal liver physiology and pathophysiology of  
cholestatic diseases. All of  this interestingly suggests that 
sex hormones represent novel and important treatment 
options that could beneficially affect the pathophysiology 
of  the biliary epithelium. Sex hormones clearly function 
as more than reproductive compounds by exhibiting a 
myriad of  roles that are also essential to protect liver and 
biliary functions. In particular, the main concept is that 
estrogens and probably other hormones act by synergizing 
the effects of  growth factors. This interaction may have 
more clinical implications for diseases involving the biliary 
epithelium in which cholangiocyte proliferation is a typical 
hallmark influencing disease progression and may also be 

relevant in the course of  the neoplastic transformation. In 
conclusion, sex hormones are regulators of  cholangiocyte 
proliferation in cholestasis and their modulation could 
represent a future therapeutic strategy for the management 
of  cholangiopathies. 
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