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Abstract
Inflammation and immune activation in the gut are usu-
ally accompanied by alteration of gastrointestinal (GI) 
motility. In infection, changes in motor function have 
been linked to host defense by enhancing the expulsion 
of the infectious agents. In this review, we describe the 
evidence for inflammation and immune activation in GI 
infection, inflammatory bowel disease, ileus, achalasia, 
eosinophilic esophagitis, microscopic colitis, celiac dis-
ease, pseudo-obstruction and functional GI disorders. 
We also describe the possible mechanisms by which 
inflammation and immune activation in the gut affect 
GI motility. GI motility disorder is a broad spectrum 
disturbance of GI physiology. Although several systems 
including central nerves, enteric nerves, interstitial cells 
of Cajal and smooth muscles contribute to a coordi-
nated regulation of GI motility, smooth muscle probably 
plays the most important role. Thus, we focus on the 
relationship between activation of cytokines induced by 
adaptive immune response and alteration of GI smooth 
muscle contractility. Accumulated evidence has shown 

that Th1 and Th2 cytokines cause hypocontractility and 
hypercontractility of inflamed intestinal smooth muscle. 
Th1 cytokines downregulate CPI-17 and L-type Ca2+ 
channels and upregulate regulators of G protein signal-
ing 4, which contributes to hypocontractility of inflamed 
intestinal smooth muscle. Conversely, Th2 cytokines 
cause hypercontractilty via  signal transducer and ac-
tivator of transcription 6 or mitogen-activated protein 
kinase signaling pathways. Th1 and Th2 cytokines have 
opposing effects on intestinal smooth muscle contrac-
tion via  5-hydroxytryptamine signaling. Understanding 
the immunological basis of altered GI motor function 
could lead to new therapeutic strategies for GI func-
tional and inflammatory disorders.
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INTRODUCTION
Intestinal inflammation and immune activation are ac-
companied by alteration of  gastrointestinal (GI) motility, 
associated with altered function of  enteric nerves, intes-
tinal cell of  Cajal (ICCs) or smooth muscles. Changes 
in motor function have been described in experimental 
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models following a variety of  inflammatory stimuli, in-
cluding infection[1,2], chemical irritation[3,4] and immune 
activation[5,6]. In the context of  infection, changes in mo-
tor function have been linked to host defense by enhanc-
ing the expulsion of  the infectious agent. Also, evidence 
has emerged in animal studies that low-grade inflamma-
tion in the gut could alter GI motor function[6,7].

From a clinical viewpoint, some motility disorders 
have been associated with evidence of  immune activa-
tion, such as inflammatory bowel disease (IBD), ileus, 
achalasia, functional GI disease (FGID), or life-threaten-
ing intestinal pseudo-obstruction[8]. An understanding of  
the mechanisms that underlie immune-mediated changes 
in gut motor function is therefore critical, not only in un-
derstanding the pathophysiology of, but also in devising 
new therapeutic strategies for, these disorders.

This review describes the evidence for immune ac-
tivation in GI inflammation, infection and FGID, with 
a particular focus on cytokine-induced alteration of  GI 
motility.

CLINICAL POINT OF VIEW
Common symptoms of  GI diseases are abdominal pain 
or discomfort, diarrhea, constipation, fullness and bloat-
ing. A mechanical approach to constipation consists of  
poor intake of  fluid or fiber, slow colonic transit, and 
outlet dysfunction in the anorectal area. Diarrhea is an 
increase in the volume of  stool or frequency of  defeca-
tion, and is categorized into osmotic, secretory, exudative, 
and altered intestinal motility. Acute diarrhea that lasts 
for < 14 d is usually related to a bacterial, viral, or para-
sitic infection and poses the risk of  dehydration. Chronic 
diarrhea that lasts at least 4 wk is more likely to be due 
to alterations in GI motility and rapid transit than to a 
secretory component[9]. The symptoms of  GI disorders 
reflect a broad spectrum of  disturbance of  GI physiol-
ogy, including altered epithelial, muscle, intestinal and 
enteric neural function and are also, at least in part, due 
to immune activation.

Infections
Several types of  bacteria, including: Campylobacter, Salmo-
nella, Shigella and Escherichia coli; viruses, including: Rota-
virus, Norwalk virus, Cytomegalovirus and herpes simplex virus 
(HSV); and parasites, including: Giardia lamblia, Entamoeba 
histolytica and Cryptosporidium cause diarrhea. Different 
pathogens such as enterotoxin invade the host and cause 
infectious diarrhea.

In bacterial infection, Salmonella is a leading cause of  
GI disease worldwide. Ma et al[10] have reported that tu-
mor necrosis factor (TNF)-α modulates the expression 
of  Salmonella typhimurium effector proteins and enhances 
interleukin (IL)-8 secretions in intestinal epithelial cells. 
Other studies have shown that IL-6 may play an impor-
tant role in triggering systemic immune response against 
Salmonella[11,12]. Campylobacter jejuni infection, which induces 
a number of  cytokines and chemokines including IL-8 

and IL-10[13], is also a common cause of  human acute 
bacterial gastroenteritis.

Inflammatory bowel disease
In IBD such as Crohn’s disease (CD) and ulcerative coli-
tis (UC), there are longstanding observations of  altered 
motility and intestinal muscle contractility[14,15].

Crohn’s disease
Traditionally, CD has been associated with a T helper 
(Th)1 cytokine profile. Recent studies have indicated that 
Th17 cells as well as Th1 cells play a major role in the 
pathogenesis of  CD. Th17 cells express the IL-23 recep-
tor (IL-23R) on their surface. Other studies have identi-
fied IL-23R and other genes involved in the differentia-
tion of  Th17 cells as IBD susceptibility genes[16-20].

Th17 cells produce IL-17, IL-17F and IL-22, thereby 
inducing a massive tissue reaction, owing to the broad 
distribution of  IL-17R and IL-22R. Th17 cells also se-
crete IL-21 to communicate with cells of  the immune 
system. Differentiation factors [transforming growth fac-
tor (TGF)β plus IL-6 or IL-21], growth and stabilization 
factor IL-23 and transcription factors [signal transducer 
and activator of  transcription (STAT)3, retinoid-related 
orphan receptor (ROR)γt and RORα] have recently 
been identified as involved in the development of  Th17 
cells[21].

Some studies have shown delays in gastric and intes-
tinal transit that cannot be accounted for on the basis of  
mechanical obstruction, and are therefore likely due to 
inflammation-induced alterations in the motility appara-
tus[22-25]. Conversely, our groups have shown previously 
that contractility of  intestinal smooth muscle strips and 
cells from the inflamed intestine of  CD patients exhibit 
increased contractility in vitro after stimulation by carba-
chol[14,26]. Although CD is well recognized as having a 
Th1-dominant cytokine profile, we have demonstrated 
the dominant expression of  the Th2 cytokine IL-4, with 
little change in the Th1 cytokine interferon (IFN)γ in the 
muscularis externa of  small intestinal segments from CD 
patients. We have found that Th2 cytokines, IL-4 and 
IL-13 enhance muscle cell contractility in humans and 
mice[26,27], and IL-17 enhances muscle cell contractility in 
mice (unpublished observations), therefore, there is the 
possibility that Th2 or Th17 immune activation alters 
muscle contractility in CD patients.

Ulcerative colitis
UC is characterized by an exaggerated Th2-like response 
as demonstrated by increased production of  Th2 cyto-
kines such as IL-4, IL-5 and IL-13[28,29]. TNF-α mRNA is 
highly expressed in colon biopsy from UC patients cor-
relating with the grade of  inflammation[30]. Five genes in-
volved in downstream signaling of  IL-23R, IL-12B, Janus 
kinase 2, STAT3 and IL-2b mediate susceptibility to UC. 
These findings suggest that Th17 cells are also involved 
in UC pathogenesis[17-19,31]. Kobayashi et al[32] have dem-
onstrated significant upregulation of  IL-17A in lamina 
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propria CD4+ T cells following IL-23 stimulation in UC. 
It has been reported that high expression levels of  the 
Th17 cytokines IL-17A, IL-22 and IL-26 are found in the 
inflamed colon of  CD patients and in active UC[33-35].

Altered colonic motor function in UC has been well 
documented[36-38]. Terry et al[39] reported that melatonin, 
which is an important regulator of  GI inflammation and 
motility, might have an ameliorative effect on UC. Ohama 
et al[40,41] have shown that protein kinase C (PKC)-poten-
tiated phosphatase inhibitor protein-17 kDa (CPI-17) 
expression is decreased in smooth muscle from UC pa-
tients. CPI-17 is downregulated by IL-1β and might con-
tribute to the decreased motor function.

Ileus
Ileus occurs as a result of  hypomotility of  the GI tract in 
the absence of  mechanical bowel obstruction. Presum-
ably, the muscle of  the bowel wall is transiently impaired 
and fails to transport intestinal contents. This lack of  co-
ordinated propulsive action leads to the accumulation of  
gas and fluids within the bowel. Many factors cause ileus, 
such as sepsis, drugs, trauma and GI inflammation, and 
most cases of  ileus occur after abdominal surgery. The 
mechanisms underlying the development of  postopera-
tive ileus are complex, and involve central neural reflexes, 
hormonal influences, local molecular inflammatory re-
sponses and the recruitment into the intestinal muscularis 
of  activated immune cells[42-46]. Immune activation is in-
volved in ileus as well as IBD. Serum IL-6 and IL-1β are 
increased in patients with ileus[47].

Bauer's group[48-51] have shown from animal studies 
that surgical manipulation of  the intestine activates the 
dense network of  normally quiescent macrophages, as 
demonstrated by phosphorylation of  mitogen-activated 
protein kinases (MAPKs) with resultant activation of  
transcription factors, early growth response gene-1, nu-
clear factor κB (NF-κB), IL-6 and STAT3. The transloca-
tion of  the transcription factors to the nucleus ultimately 
induces the secretion of  a complex inflammatory milieu 
of  proinflammatory cytokines: TNF-α, IL-1β and IL-6, 
and chemokines. Furthermore, NO and prostaglandins 
have the important role of  smooth muscle inhibition in 
postoperative ileus.

Achalasia
Esophageal achalasia is a motor disorder that is charac-
terized by the absence of  esophageal peristalsis and by 
incomplete relaxation of  the lower esophageal sphincter 
(LES). The failure of  LES relaxation is primarily caused 
by the loss of  the inhibitory innervation of  the esopha-
geal myenteric plexus[52].

Recent evidence has shown that HSV-1 is involved in 
the pathogenesis of  achalasia[53]. Facco et al[54] reported 
that achalasia patients are characterized by significantly 
higher esophageal lymphocyte infiltration, mainly rep-
resented by CD3+CD8+ T cells than controls. LES-
infiltrating lymphocytes recognize HSV-1 antigens 
specifically. Facco et al[54] observed that IL-1β, IFNγ and 

IL-2 are increased in achalasia patients. Another group 
has shown that in the immune activation of  achalasia pa-
tients, TNF-α is significantly increased in the LES[55].

Eosinophilic esophagitis 
Eosinophilic esophagitis is an important and established 
cause of  dysphagia, which is caused by exposure to ex-
ogenous allergens. Eosinophils and IL-5 produced by 
Th2 cytokines play a crucial role in this disease. Patients 
are exposed to food or air allergens. Antigen presenting 
cells (APCs) process these antigens and present them to 
Th2 cells. Activated Th2 cells produce IL-5, which is cru-
cial for the terminal differentiation and proliferation of  
eosinophils. IL-4, also produced by Th2 cells, promotes 
eosinophilic accumulation and IgE production from B 
cells. In addition, Th2 cells and activated mast cells re-
lease IL-13 and TNF that promote local inflammation. 
GI epithelial cells produce eotaxins, which have essential 
chemokine activity for the recruitment of  circulating eo-
sinophils to the site of  inflammation. As a result, mature 
eosinophils accumulated in the esophagus, are activated, 
degranulate and release multiple cytotoxic agents[56].

Microscopic colitis
Microscopic colitis is a common cause of  chronic watery 
diarrhea, especially among older persons. Diagnosis re-
quires histological analysis of  colon biopsy samples in the 
appropriate clinical setting[57]. Microscopic colitis dem-
onstrates a Th1 mucosal cytokine profile with IFNγ as 
the predominantly upregulated cytokine, with concurrent 
induction of  NO synthase and downregulation of  IFNγ-
related cell junction proteins[58].

Celiac disease
Celiac disease is a disorder that is characterized by a de-
regulated immune response to ingested wheat gluten and 
related cereal proteins in susceptible individuals[59,60]. The 
characteristic features of  celiac disease include nausea, 
bloating and diarrhea in patients presenting with otherwise 
typical irritable bowel syndrome (IBS)[61]. Several studies 
have shown increased concentrations of  5-hydroxytrypta-
mine (5-HT) in the duodenal mucosa[62], increased plasma 
5-HT levels[63] and increased urine excretion of  the 5-HT 
metabolite and 5-hydroxyindoleacetic acid[64].

It is considered that the onset of  celiac disease is me-
diated by a skewed Th1 response[65]. In recent literature it 
has been shown that gliadin-specific Th17 cells are pres-
ent in the mucosa of  celiac disease patients. These Th17 
cells have a role in the pathogenesis of  the disease as 
they produce pro-inflammatory cytokines (such as IL-17, 
IFNγ and IL-21), mucosa-protective IL-22 and regulatory 
TGFβ, which actively modulates IL-17A production by T 
cells in the celiac mucosa[66].

Pseudo-obstruction
Chronic idiopathic intestinal pseudo-obstruction (CIIP) 
is a rare, progressive and life-threatening syndrome that is 
characterized by severely impaired GI motility. Recurrent 
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episodes of  abdominal pain and distention are accompa-
nied by bloating, nausea and vomiting without evidence 
of  mechanical obstruction[67]. CIIP may occur throughout 
the GI tract, but usually involves the small bowel. Several 
neurotropic viruses have the ability to infect the central 
and enteric nervous systems. Selgrad et al[68] and Sanders  
et al[69] have shown that the polyoma virus, JC virus, in-
fects the enteric glia of  patients with CIIP[68]. JC virus may 
infect ICCs and therefore contribute to ICC loss or to re-
differentiation to smooth muscle cells. Further investiga-
tion is needed.

Functional dyspepsia
FGIDs are common clinical syndromes worldwide. 
Functional dyspepsia (FD) is characterized by the pres-
ence of  recurrent or chronic upper abdominal symptoms, 
such as epigastric pain, early satiety and fullness, without 
anatomical or biochemical abnormalities[70]. There is in-
creasing evidence for involvement of  the immune system 
in FD. Kindt et al[71] have reported that, compared to 
controls, stimulated lymphocyte expression of  IL-5 and 
IL-13 is enhanced in IBS, FD and non-cardiac chest pain. 
Conversely, stimulated monocytic IL-12 and lymphocytic 
IL-10 expression is reduced in IBS and FD, while IFNγ 
expression is also reduced in FD patients. A shift towards 
a Th2 cytokine profile is present in FGID, while the 
cellular immunophenotype remains largely unchanged. 
Arisawa et al[72] have reported that IL-17F 7488T and 
macrophage migration inhibitory factor -173C alleles are 
significantly associated with the development of  FD, par-
ticularly epigastric pain syndrome, a subgroup of  FD, in 
Helicobacter pylori-infected subjects. 

Futagami et al[73] have reported that gastric emptying 
evaluated by T-max values in post-infectious FD patients 
is similar to that in controls. However, the degree of  his-
trogical duodenitis in post-infectious FD is significantly 
greater than that in controls. CCR2/CD68-double posi-
tive cell number in post-infectious FD patients is signifi-
cantly increased. 

Irritable bowel syndrome
IBS is characterized by the presence of  abdominal pain 
or discomfort and an alteration in bowel habits[74]. The 
pathogenesis is considered to be multifactorial and in-
cludes psychosocial factors, visceral hypersensitivity, infec-
tion, microbiota and immune activation. Several reports 
have described increased numbers of  T cells in various 
lymphoid compartments of  the small or large intestine in 
IBS patients[75-78]. Pro-inflammatory cytokines such as IL-
1β, IL-6 and TNF-α in peripheral blood mononuclear 
cells[79] and IL-6 and IL-8 in serum[80,81] have been reported 
to be increased in IBS patients. 

ROLE OF IMMUNE RESPONSE IN ALTERED 
INTESTINAL MUSCLE FUNCTION
Innate immune response
Goblet cells: The mucous layer that coats the GI tract is 

the front line of  innate host defense largely because of  
the secretory products of  intestinal goblet cells. In most 
intestinal infections, induction of  goblet cells and mucin 
synthesis and secretion occur frequently, during the acute 
phase, to expel antigens[82].

Macrophages: Macrophages perform a key role in in-
nate defense against foreign invaders and produce a 
number of  cytokines such as IL-1β, IL-6 and TNF-α. 
Macrophages are not crucial for changes in muscle con-
traction in Trichinella spiralis-infected mice[83]. Innate im-
mune response seems not to have a major role in muscle 
function.

Adaptive immune response: APCs present antigens to 
CD4+ Th cells. Th cell-dependent immune responses are 
divided into four subsets: Th1, Th2, Th17 and T regula-
tory (Treg). Th1 cells produce IFNγ and their primary 
role is protection against intracellular microbes. Th2 cells 
produce IL-4, IL-5 and IL-13 and are involved in allergic 
disorders and protection against extracellular pathogens. 
Th1 differentiation is mainly driven by IL-12 and IFNγ, 
while IL-4 drives Th2 differentiation. Treg cells are 
important in the control of  immune responses to self-
antigens, prevention of  autoimmunity and maintenance 
of  self-tolerance. In contrast, IL-17-producing Th17 cells 
play a major role in autoimmunity[19] (Figure 1).

Th1/Th2/5-HT: Recent animal studies have shown that 
Th1 and Th2 immune response is associated with hypo-
contractility or hypercontractility of  inflamed intestinal 
smooth muscle, respectively. 

We have previously shown[7] that Th1 and Th1-related 
cytokines cause hypocontractility of  inflamed intestinal 
smooth muscle. TNF-α and IL-1β inhibit carbachol-
induced contraction via downregulation of  CPI-17[84] 
and L-type Ca2+ channels[85], respectively. Other groups 
have shown that surgical manipulation suppresses jejunal 
contractions with upregulation of  IL-6, TNF-α, cyclo-
oxygenase-2 and inducible NO synthase[86]. We also have 
shown that incubation of  IFNγ with intestinal smooth 
muscle decreases carbachol-induced smooth muscle cell 
contraction[87]. Wells and Blennerhassett have reported a 
decrease in muscle contractions in 2,4,6-trinitrobenzene-
sulphonic acid (TNBS)-inflamed preparations[88]. In a 
Th1-dominant, TNBS-induced colitis model, it has been 
shown that carbachol- and 5-HT-induced contractility of  
rat colonic circular smooth muscle cells is decreased in 
the acute phase, and 5-HT-mediated contraction is still 
impaired by day 36 post-TNBS.

On the contrary, the Th2 cytokines IL-4 and IL-13 
acting via STAT6 mediate the development of  nematode 
T. spiralis-induced intestinal muscle hypercontractility, 
which contributes to worm expulsion[27,89,90]. A model of  
Nippostrongylus brasiliensis infection supports our finding 
that Th2 responses mediate muscle contraction[91,92]. Ihara 
et al[93] have shown that MAPK pathways play crucial 
roles in Th2-cytokine-mediated Ca2+ sensitization and 
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hypercontractility observed in inflamed colonic circular 
smooth muscle from sodium dextran sulfate-treated mice. 

We evaluated the association of  5-HT with Th1/Th2 
responses. 5-HT influences intestinal homeostasis by 
altering gut physiology, and has been implicated in the 
pathophysiology of  various GI disorders such as IBD, 
IBS and GI infection[94-97]. Using the Trichuris muris-
infected AKR (susceptible to infection with generation 
of  a Th1 response), BALB/c (resistant to infection, with 
generation of  a Th2 response), STAT4-deficient (impaired 
in Th1 responses) and STAT6-deficient (impaired in Th2 
responses) mice to explore the mechanism of  the entero-
chromaffin (EC) cell and 5-HT responses in Th1/Th2-
dominant environments, we found that the EC cell and 
5-HT responses to the same infectious agent were influ-
enced by Th1 or Th2 cytokine predominance[98]. 

Furthermore, we evaluated the 5-HT response and 
intestinal motility using T cell-induced enteropathy in 
Th1/Th2-dominant environments[99]. In BALB/c mice, 
carbachol-induced intestinal smooth muscle cell contrac-
tion was significantly increased at day 7 post anti-CD3 
antibody injection, when the tissue damage returned to its 
normal histological appearance. We observed that 5-HT 
protein in the intestine was significantly increased at day 
7. On the other hand, in AKR mice, carbachol-induced 
muscle cell contraction was significantly decreased and 
5-HT protein in the intestine was also decreased at day 7. 
We showed, in this model, that Th1 and Th2 cytokines 
had opposing effects on intestinal muscle contraction via 
5-HT signaling in the post-inflammation phase.

Th17: Several disorders that were originally considered 
to be Th1-mediated have been reclassified as Th17-
mediated inflammation[100,101]. A recent study has shown 
that Th17 cells are increased during acute infection with 
T. spiralis, and that jejunal smooth muscle strips cultured 
with IL-17 show enhanced contractions, elicited by ace-
tylcholine, in a concentration-dependent manner[102]. We 
found that IL-17 protein in the small intestine is upregu-
lated in mice injected with an anti-CD3 antibody[103], and 
that IL-17 incubation with smooth muscle cells enhances 
carbachol-induced smooth muscle cell contraction (un-
published observations). IL-17 might be the key cytokine 
to alter GI muscle function.

HOW DO CYTOKINES AFFECT GI 
MUSCLE FUNCTION?
As we have mentioned in this review, several cytokines 
are upregulated in GI diseases, and adaptive immune 
systems have a key role in altered muscle function of  
chronic GI diseases such as IBD and FGID.

Signal transduction pathways in smooth muscle cells 
Motility disorder is a broad spectrum disturbance of  GI 
physiology, including altered epithelial, smooth muscle, 
intestinal and enteric neural function and while immune 
activation may contribute, it plays only a limited role 
(Figure 2). GI motility depends on activation and cou-
pling of  muscarinic receptors at multiple sites including 
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enteric neurons, ICCs, and smooth muscle. Cycles (slow 
waves) of  membrane depolarization and repolarization 
originating in ICCs are transmitted to the smooth muscle 
cells. Among these, smooth muscle is the most important 
system because alteration in the contractile process occurs 
at the level of  the GI smooth muscle. The depolarization 
of  smooth muscle cells primarily reflects activation of  
voltage-gated Ca2+ channels, which results in Ca2+ entry 
from the extracellular space. Concurrent stimulation of  
rhythmic smooth muscle by excitatory neurotransmitters 
elicits further depolarization and Ca2+ entry, and activates 
intracellular signaling cascades that result in Ca2+ release 
from intracellular stores. GI smooth muscle expresses 
both M2 and M3 muscarinic receptors. The M3 receptors 
are coupled to Gq/11, which activates phospholipase C 
and produce inositol 1,4,5-triphosphate and diacylglycer-
ol. These second messengers elicit the activation of  PKC 
and trigger an increase in intracellular Ca2+ concentration 
([Ca2+]i). On the other hand, M2 receptors are coupled 
to Gi/o, which regulates adenyl cyclase. Although the 
inhibition of  adenyl cyclase is a classical effect of  M2 
receptor activation, other possible downstream signaling 
pathways which contribute to smooth muscle contraction 
have been proposed, including phosphoinositol 3-kinase 
and integrin-linked kinase[104]. Alternatively, coupling of  
M2 and M3 receptors is regulated by G protein recep-

tor kinases and regulators of  G protein signaling (RGS) 
proteins, which also play an important role in regulating 
smooth muscle contraction[105]. 

While increased [Ca2+]i is the paramount signal to initi-
ate smooth muscle contraction, the contractile properties 
of  smooth muscle cells are primarily governed by phos-
phorylation of  the regulatory light chain (LC20) of  myosin 
Ⅱ[106,107]; this is in turn driven by the balance between myo-
sin light chain kinase (MLCK) and smooth muscle myosin 
light chain phosphatase (MLCP). To initiate contraction, 
increases in [Ca2+]i activate MLCK, a Ca2+/calmodulin-
dependent enzyme[108]. MLCK phosphorylates LC20 on 
Ser-19, which results in contraction of  smooth muscle 
through increases in myosin ATPase activity and cross-
bridge cycling. MLCP is responsible for the dephosphory-
lation of  LC20, which results in relaxation of  smooth 
muscle[109]. It is the balance between MLCK and MLCP 
activities that dictates the contractile activity of  smooth 
muscle. Although MLCK is Ca2+/calmodulin dependent, 
MLCP functions independently of  Ca2+/calmodulin and 
is mediated by the G protein-coupled process described 
above; it is regulated directly by phosphorylation of  the 
myosin targeting subunit of  MLCP (MYPT1)[109] and/or 
indirectly via phosphorylation of  CPI-17[110]. Inhibition of  
MLCP, thus, results in greater LC20 phosophorylation and 
greater force development at a given [Ca2+]i.
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coupled to Gq/11, which activates phospholipase C (PLC) and produce inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DG). These second messengers elicit the 
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smooth muscle contraction. To initiate contraction, increases in [Ca2+]i activate MLCK, a Ca2+/calmodulin-dependent enzyme. MLCK phosphorylates LC20 on Ser-19, 
which results in contraction of smooth muscle through increases in myosin ATPase activity and cross-bridge cycling. MLCP is responsible for the dephosphorylation 
of LC20, which results in relaxation of smooth muscle. It is the balance between MLCK and MLCP activities that dictates the contractile activity of smooth muscle. 
Although MLCK is Ca2+/calmodulin dependent, MLCP functions independently of Ca2+/calmodulin and is regulated directly by phosphorylation of the myosin targeting 
subunit of MLCP and/or indirectly via phosphorylation of CPI-17. IL-1β upregulates RGS4 expression by inhibiting NF-κB activation. IL-1β also downregulates CPI-17 
expression leading to muscle relaxation. PKC: Protein kinase C; MLCK: Myosin light chain kinase; MLCP: Myosin light chain phosphatase; NF-κB: Nuclear factor κB.
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It has been reported that IL-1β plays an important 
role in decreased GI smooth muscle contractility in Th1 
cytokines-dominant colitis. It has been shown that IL-
1β downregulates CPI-17 expression, which contributes 
to decreased GI smooth muscle contractility[40,41,84]. It has 
also been shown that IL-1β upregulates RGS4 expression 
by inhibiting NF-κB activation and RGS4 contributes to 
the inhibitory effect of  IL-1β on the GI smooth muscle 
contraction[111,112]. Th2 cytokines may have opposing 
mechanisms to downregulate RGS4 expression. The im-
portant point is that it has yet to be determined whether 
the activated cytokines indicated above actually contribute 
to alteration of  GI motility disorder in humans. However, 
several animal studies have shown that cytokines directly 
affect GI motility[84,87,89,102]. Further investigations should 
be undertaken.

CONCLUSION
Understanding the underlying immunological basis of  GI 
disease by considering the time course of  the disease, cy-
tokine profile, and motor function may ultimately lead to 
new therapeutic strategies for GI functional and inflam-
matory disorders.
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