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Abstract
The obesity epidemic imposes a significant health bur-
den on human beings. Current understanding of the 
mechanisms underlying the development of obesity is 
incomplete and contemporary treatment is often inef-
fective. Gastrointestinal hormones are important regu-
lators of food intake and energy metabolism. Previous 
studies indicate that the mammalian target of rapamy-
cin signaling pathway in the gastric mucosa is crucially 
involved in fuel sensing in the gastrointestinal tract 
and plays a critical role in the coordination of nutrient 
availability and ingestive behavior via  the production of 
gastric hormones. As an important component of the 
brain-gut axis regulating food intake and energy ho-
meostasis, energy sensing in the gastrointestinal tract 
may provide a novel insight into our understanding of 
the precise coordination between the organism and cel-

lular energy state.
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INTRODUCTION
Food intake and energy metabolism are regulated by the 
reciprocal actions of  a group of  anorexigenic peptides, 
which include leptin, insulin, cholecystokinin, peptide YY 
and glucagon-like peptide, and by the actions of  a group 
of  orexigenic peptides, including ghrelin. The majority of  
these hormones are secreted by endocrine cells scattered 
throughout the gastrointestinal tract[1]. All these hor-
mones are proposed to modulate the activity of  the ener-
gy metabolism center within the hypothalamus, ultimately 
leading to a change in feeding behavior and the control 
of  metabolic homeostasis[2]. While many studies reveal 
that nutrient sensing molecules within the hypothalamic 
neurons are critical in the control of  energy homeosta-
sis[3] and defects in fuel sensing at the hypothalamic cel-
lular level may lead to energy imbalance at the organism 
level and to the development of  obesity[4], a recent study 
suggests that there also exists a fuel sensing mechanism 
in the gastric mucosa[5]. This finding suggests that the 
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interaction between peripheral and central fuel sensing 
mechanisms is a crucial feature of  feeding behavior and 
energy homeostasis[5]. The peripheral fuel sensing mecha-
nism in the gastric mucosa may function to regulate the 
production of  gastric hormones and therefore contribute 
to the modulation of  energy metabolism.

FUEL SENSING MECHANISM
Obesity is defined as the condition in which energy in-
take consistently outpaces energy expenditure leading to 
the accumulation of  excess fat to an extent that health is 
negatively affected. The development of  obesity is linked 
to small but cumulative discrepancies between caloric 
intake and energy expenditure[6]. Under normal condi-
tions, balance in energy metabolism is maintained by a 
precise regulation of  cellular activity in multiple organs 
that matches nutrient supply at the organism level[7]. The 
link between the energy status of  individual cells and the 
overall energy balance of  the entire organism is complex 
and remains largely unknown. Many studies have identi-
fied the hypothalamus as a critical organ for integrating 
intracellular metabolic processes with energy homeostasis 
at the organism level[7], adjusting food intake to match the 
level of  overall cellular activity. Recent investigations have 
identified 5’ AMP-activated protein kinase (AMPK)[8] and 
mammalian target of  rapamycin (mTOR)[9] as key fuel 
sensors in hypothalamic neurons. AMPK is a serine-thre-
onine protein kinase which serves as a cellular fuel sensor 
to protect cell viability in response to ATP depletion[10]. 
AMPK is tightly regulated, monitoring changes in the 
cellular ratio of  adenosine monophosphate (AMP) and 
adenosine triphosphate (ATP). Recent studies have sug-
gested that AMPK in the hypothalamus regulates energy 
metabolism by integrating inputs from multiple peptide 
hormones, neurotransmitters and nutrients. Alteration 
of  hypothalamic AMPK activity leads to change in food 
intake and body weight[11-13]. mTOR, a highly conserved 
serine-threonine kinase, has been reported to serve as an 
intracellular ATP sensor. In vitro studies have demonstrat-
ed that cellular levels of  ATP regulate mTOR signaling[14]. 
Aberrant mTOR activity is linked to the development of  
cancer, diabetes and obesity[15]. Significant elevation of  
mTOR signaling has been observed in liver and skeletal 
muscle of  insulin-resistant obese rats maintained on a 
high fat diet[16]. In contrast, absence of  the mTOR down-
stream target, S6 kinase 1, protects against diet-induced 
obesity and improves insulin sensitivity in mice[17]. mTOR 
signaling in hypothalamic neurons is involved in neu-
ronal sensing of  nutrient availability and regulates food 
intake and energy balance[9]. These observations suggest 
that mTOR plays an important role in central neuronal 
control of  nutrient intake and energy balance. Further 
studies indicate that mTOR signaling is a potential down-
stream pathway for food intake regulation in response 
to hypothalamic AMPK[18], likely through the mediation 
of  tuberous sclerosis complex 2, a known inhibitor of  
mTOR signaling[19]. Thus, food intake and nutrient me-

tabolism may be coordinately regulated by linking AMPK 
and mTOR signaling pathways in the hypothalamus. 
These observations have motivated extensive studies of  
hypothalamic fuel sensing mechanisms and hypothalamic 
regulation of  energy metabolism[7]. In contrast, virtually 
no attention has been focused on fuel sensing by the gas-
trointestinal tract, despite its critical role in the regulation 
of  food intake.

GASTRIC mTOR IS A FUEL SENSOR 
INTEGRATING FUEL SUPPLY WITH 
HORMONE PRODUCTION
A series of  studies have identified mTOR as a potential 
candidate of  fuel sensor in the gastric mucosa because of  
its expression in a distinct group of  the gastric endocrine 
cells, its reciprocal relationship with energy status and its 
role in the regulation of  gastric hormone production[1,5,20]. 

Co-localization of mTOR signaling molecules in gastric 
neuroendocrine cells
Chromogranin A is a widely recognized marker of  neuro-
endocrine cells, including those of  the stomach, large and 
small intestine, adrenal medulla and pancreatic islets[21]. 
It is also an excellent marker for neuroendocrine tu-
mors[22]. In the gastric fundus, the active forms of  mTOR 
signaling molecules express in cells located in the basal 
one third of  the gastric mucosa. One third of  chromo-
granin A-immunoreactive cells express phospho-S6K1, 
the downstream target of  mTOR. The majority of  the 
mTOR positive endocrine cells are ghrelin positive with 
a small fraction of  cells stained positive for gastrin im-
munoreactivity. No mTOR signaling molecule is located 
within somatostatin immunoreactive cells[20]. These stud-
ies suggest that mTOR signaling may selectively influence 
the function of  a subpopulation of  gastric endocrine cells.

A reciprocal relationship between gastric mTOR 
signaling and energy status at the organism level
Gastric mTOR signaling also senses the body energy sta-
tus. Gastric mTOR activity decreases in 48 h fasted mice 
relative to fed animals. In contrast, there is a significant 
increase in gastric phospho-mTOR (Ser2448) and phos-
pho-S6 (Ser235/236) expression in obese mice relative to 
lean animals[5]. Gastric mTOR signaling is therefore re-
ciprocally related with the short- and long-term changes 
in nutritional status at the organism level.

Gastric mTOR and hormone production
Numerous peptides are synthesized and released from 
distinct populations of  secretory neuroendocrine cells 
throughout the gastrointestinal tract[23]. Their roles in 
the regulation of  gastrointestinal function have been 
well characterized for many years and it is now becom-
ing evident that they also modulate feeding behavior and 
energy metabolism via distinct mechanisms. Major neuro-
endocrine products have been identified as gastrin in G 
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cells, histamine and uroguanylin in enterochromaffin-like 
(ECL) cells, somatostatin in D cells, serotonin in EC cells 
and ghrelin in X/A-like cells[23,24]. Hormones secreted 
from gastric endocrine cells bind to receptors located 
in the hypothalamus to regulate food intake and energy 
metabolism[1]. The fuel sensing mechanism is critical for 
the regulation of  gastrointestinal hormone synthesis and 
secretion and therefore provides a fine tuning for the 
peripheral and central control of  feeding behavior and 
energy homeostasis.

Ghrelin: In 1999, ghrelin was isolated from the human 
and rat stomach as the endogenous ligand for the growth 
hormone secretagogue-receptor (GHS-R)[25]; it is synthe-
sized mainly by X/A-like cells in the gastric mucosa and 
secreted into the circulation[26]. Several molecular forms 
of  ghrelin are found in the stomach and circulation: the 
28 amino acid ghrelin with n-octanoylated serine in posi-
tion 3; des-acyl ghrelin, an identical peptide in which the 
third amino acid serine is not acylated; and the 27 amino 
acid des-glutamine 14 ghrelin produced by alternative 
splicing of  the ghrelin gene[24]. Another putative proghre-
lin peptide, termed “obestatin”, has been proposed[27] but 
biochemical and functional evidence supporting its exis-
tence has not been forthcoming. Octanoylation is neces-
sary for ghrelin to bind with its receptor, GHS-R. Ghre-
lin-O-acyltransferase, the enzyme responsible for ghrelin 
acylation, has been recently characterized as a member 
of  the Membrane Bound O-Acyltransferases family[28,29]. 
Ghrelin has been reported to exercise a broad array of  
functions including control of  food intake[30] and glucose 
metabolism[31]. Exogenous ghrelin induces adiposity in 
rodents by stimulating an acute increase in food intake, as 
well as a reduction in fat utilization[32]. Blocking the action 
of  ghrelin by either its receptor antagonism[33] or interfer-
ing with its availability for its receptor by neutralizing an-
tibodies[34] or Spiegelmer RNA[35] have been reported to 
show some effects on reduction of  food intake and body 
weight, although the immunization against ghrelin fails to 
cause long-term body weight reduction. Ghrelin exerts 
its orexigenic effect via a mechanism involving the central 
nervous system; at least part of  the orexigenic effect of  
ghrelin is mediated by up-regulating the genes encoding 
orexigenic peptides neuropeptide Y (NPY) and agouti-
related peptide (AgRP)[36]

 in the hypothalamus. During 
fasting, ghrelin secretion increases[37]. Conversely, plasma 
ghrelin concentration decreases in most obese subjects[38] 

except in Prader-Willi syndrome[39]. Ghrelin and its recep-
tor are expressed in human and rat pancreatic islets[40]. 
Ghrelin inhibits glucose stimulated insulin secretion in 
a dose-dependent manner in vitro[41]. Intravenous ghrelin 
injection decreases plasma insulin and increases plasma 
glucose levels, likely by inhibition of  insulin secretion[41]. 
Absence of  ghrelin in ob/ob mice lowers blood glucose 
substantially even though it does not decrease food intake 
or body weight[42]. 

The secretion of  ghrelin is tightly coupled to the fast-
ing or fed state[43]. While it is presumed that precise con-
trol in the production and secretion of  ghrelin is critical 

for the maintenance of  energy balance, the molecular 
mechanisms by which ghrelin producing cells modulate 
transcription and translation of  ghrelin to match overall 
energy status remain largely unknown. A recent study has 
demonstrated that gastric mTOR is a critical molecule 
coordinating the ghrelin production with energy supply 
levels. In gastric mucosa, mTOR signaling molecules are 
located mainly in the ghrelin-positive cells. More than 
90% of  ghrelin-positive cells stain positively for mTOR 
signaling molecules. There exists a reciprocal relationship 
between gastric mTOR signaling and the expression and 
secretion of  ghrelin during changes in energy status. In-
hibition of  gastric mTOR signaling increases expression 
of  gastric ghrelin and circulating ghrelin. Conversely, ac-
tivation of  gastric mTOR signaling attenuates the expres-
sion and secretion of  ghrelin. All these data support the 
concept that gastric mTOR activity is reciprocally linked 
to the production of  ghrelin[5].

Gastrin: Gastrin is an acid secretagogue peptide discov-
ered by Edkins[44] in 1906. Gastrin stimulation of  ECL 
cells results in the increased synthesis and release of  his-
tamine, which then induces acid secretion by binding to 
the H receptors located on parietal cells[45]. Other major 
physiological functions of  gastrin on the gastrointestinal 
tract includes functioning as a growth/differentiation 
factor[46]. Gastrin release is stimulated by vagal impulses 
during the cephalic phase and by intramural neural re-
flexes as well as by the presence of  food constituent in 
the gastric lumen during the gastric phase of  acid secre-
tion[47]. Increased production of  hydrochloric acid lowers 
intragastric pH and inhibits further secretion of  gas-
trin[48]. Gastric mTOR signaling may be involved in the 
regulation of  gastrin synthesis and secretion in a propor-
tion of  gastric G cells. Only 1/3 of  gastrin cells contain 
mTOR signaling molecules, suggesting that regulation 
of  gastrin synthesis and secretion may involve multiple 
mechanisms[20].

Somatostatin: Somatostatin was originally isolated as a 
hypothalamic somatotropin-release inhibiting factor[49] 
and was soon found to potently inhibit the secretion of  
multiple hormones, including gastrin[50]. However, pro-
duction of  somatostatin appears not to be affected by 
gastric mTOR. No mTOR activity is detected in soma-
tostatin positive cells. Furthermore, inhibition of  gastric 
mTOR signaling by rapamycin demonstrates no effect on 
the synthesis and secretion of  somatostatin[20].

All of  this evidence supports that mTOR signaling 
selectively modulates the production of  gastric hor-
mones. The differential regulation of  gastric hormones 
by mTOR signaling may provide an alternative strategy 
for the development of  novel therapeutics for obesity 
and other disorders of  energy metabolism.

GASTRIC FUEL SENSING AND ENERGY 
METABOLISM
In the central nervous system, fuel substrates such as glu-
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cose, fatty acids and amino acids, or hormones including 
leptin and insulin, act on the hypothalamic neurons to 
inform the energy metabolism regulating center of  the 
energy status[3]. Specific populations of  “glucosensing” 
neurons have been identified[51]. In the hypothalamic 
arcuate nucleus, pro-opiomelanocortin neuron is the 
glucose-excited neuron, while NPY neuron is inhibited 
by glucose. These neurons form the neuronal circuits 
to monitor and integrate the quantitative and temporal 
changes in glucose concentration[51]. By regulating their 
activity and neurotransmitter release, these neurons co-
ordinate the central glucose level with the peripheral glu-
cose production and utilization to maintain the glucose 
homeostasis[3,51].

How hypothalamic neurons sense the energy supply 
is being actively explored. Studies by Cota et al[9] strongly 
support the notion that mTOR is a critical intracellular 
molecule within hypothalamic neurons to coordinate the 
energy supply with food intake and energy metabolism. 
Although mTOR and S6K1 are widely expressed in a 
variety of  tissues within the CNS, the phosphorylated 
form of  these two kinases is abundantly localized in the 
hypothalamus, particularly in the NPY/AgRP neurons. 
Activity of  the mTOR pathway in the hypothalamus 
is tightly linked with energy supply. mTOR activity de-
creases during fasting and its activity conversely increases 
during re-feeding. Central administration of  leucine, a 
branch chained amino acid, decreases food intake and 
body weight by activation of  the hypothalamic mTOR 
signaling. Leptin stimulates hypothalamic mTOR activity 
and inhibition of  mTOR signaling blunts the anorectic 
effect of  leptin[9]. Hypothalamus specific expression of  
dominant negative S6K results in an increase in food 
intake, whereas expression of  constitutively active S6K 
decreases food intake[52]. These observations suggest that 
mTOR is a critical fuel sensor in the hypothalamus. 

Inhibition of  mTOR signaling by rapamycin has been 
demonstrated to increase food intake. Such an orexi-
genic effect of  rapamycin may be mediated by ghrelin. 
Intraperitoneal injection of  rapamycin stimulates ghrelin 
secretion and expression. Ghrelin receptor antagonist 
D-Lys-3-GH-releasing peptide-6 or ghrelin receptor dele-
tion abolishes the rapamycin-induced increment in food 
intake despite that plasma ghrelin remains elevated[5]. 
Together with the observation that mTOR is selectively 
expressed in a subpopulation of  gastric endocrine cells 
and its activity is reciprocally related with the energy level, 
we propose that gastric mTOR is a peripheral fuel sensor 
integrating the energy supply with the food intake and 
energy metabolism by alteration of  ghrelin production. 
Defining the mTOR signaling pathway to inhibit the pro-
duction of  acyl ghrelin, the active form of  ghrelin, would 
shift therapeutic focus to gastric targets. 

CONCLUSION
The fuel sensing mechanism in the central nervous system 
is critical for energy homeostasis. However, the anatomi-

cal structure and location of  the hypothalamus pose sig-
nificant hurdles for therapy targeting this organ. Searching 
for peripheral targets is appealing. Novel evidence sug-
gests that mTOR is a critical regulatory molecule in gastric 
ghrelin cells and that its activity is linked to energy supply 
through modulation of  the production of  acyl ghrelin. 
Further studies will aim to advance our understanding of  
intracellular processes in the production of  ghrelin and 
to provide new information on the integration of  cellular 
activities of  gastric endocrine cells with overall nutrient 
availability. Results of  these new investigations will yield 
new insights relevant to treatment strategies for human 
obesity.
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