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Abstract
The gastrointestinal tract is the largest reservoir of 
commensal bacteria in the human body, providing 
nutrients and space for the survival of microbes while 
concurrently operating mucosal barriers to confine the 
microbial population. The epithelial cells linked by tight 
junctions not only physically separate the microbiota 
from the lamina propria, but also secrete proinflamma-
tory cytokines and reactive oxygen species in response 
to pathogen invasion and metabolic stress and serve as 
a sentinel to the underlying immune cells. Accumulat-
ing evidence indicates that commensal bacteria are in-
volved in various physiological functions in the gut and 
microbial imbalances (dysbiosis) may cause pathology. 
Commensal bacteria are involved in the regulation of 
intestinal epithelial cell turnover, promotion of epithelial 

restitution and reorganization of tight junctions, all of 
which are pivotal for fortifying barrier function. Recent 
studies indicate that aberrant bacterial lipopolysaccha-
ride-mediated signaling in gut mucosa may be involved 
in the pathogenesis of chronic inflammation and carci-
nogenesis. Our perception of enteric commensals has 
now changed from one of opportunistic pathogens to 
active participants in maintaining intestinal homeosta-
sis. This review attempts to explain the dynamic inter-
action between the intestinal epithelium and commen-
sal bacteria in disease and health status.
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INTRODUCTION
The gastrointestinal tract is the largest reservoir of  com-
mensal bacteria in the human body. Food intake through 
the oral route serves as a port to the outside environ-
ment and allows for entry of  exogenous organisms, and 
nutrients in the gastrointestinal tract support growth and 
survival of  both the host and commensals. With this 
unique feature, the healthy gut is required to perform 
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digestive and absorptive functions while it concurrently 
maintains a barrier against luminal microbes. Accumulat-
ing evidence indicates that the taxonomically complex 
intestinal microbes constitute a dynamic community (mi-
crobiota) that is now known to have a strong impact on 
human physiology. 

Humans are born germ-free, yet, rapidly after birth, 
bacteria populates the digestive tract and establishes a 
microbial ecosystem in the gut[1]. The bacterial density 
gradually increases along the proximal to distal segments 
of  the gastrointestinal tract and rises to an estimated 1011 
to 1012 bacteria per gram of  colonic content. The enteric 
bacterial population consists of  up to 100 trillion (1014) 
cells, which is ten times the number of  cells of  the hu-
man body[2,3]. The gut microbiota is highly diverse and 
displays an individual-specific composition determined 
by host genotype and environmental factors. It had been 
estimated that more than 500 bacterial species inhabit 
the human gut, based mainly on culturing techniques[4,5]. 
With the advancement of  metagenomic technology, our 
knowledge of  the diversity of  bacterial species has ex-
panded rapidly beyond the list obtained from traditional 
microbiological methods, by which many gut bacteria 
are not culturable. Around 15 000 to 36 000 species of  
bacteria have now been identified in the human gastroin-
testinal tract using culture-independent rRNA sequence 
analysis[6,7]. A recent paper from the Metagenomics of  
the Human Intestinal Tract project revealed a total of  3.3 
million non-redundant microbial genes in human fecal 
specimens[8]. Much to our surprise, this number is ap-
proximately 150 times larger than the protein-encoding 
gene set in human cells (approximately 20 000 genes 
according to data of  Human Genome Project)[9,10]. Com-
monly identified enteric commensal bacteria include the 
phyla of  Firmicutes (species such as Lactobacillus, Clos-
tridium, Enterococcus), Bacteroidetes (species such as Bacte-
roides), Proteobacteria (species such as Escherichia coli) and 
Actinobacteria (species such as Bifidobacteria)[6,11].

Commensal bacteria were traditionally considered 
simply as co-living organisms residing in the gut lumen 
without much interaction with the host, and their quiet 
presence in the intestines did not draw interest from the 
gastroenterological field for several decades. Paradoxi-
cally, cardiologists and researchers in critical care medi-
cine have paid much more attention to these bacteria in 
situations of  gut barrier damage. In the event of  their 
invasion to the systemic circulation and/or extraintesti-
nal sterile organs, gut-derived bugs may pose a serious 
risk to the individual by inadvertently triggering septic 
shock, systemic inflammatory response syndrome and 
subsequent multiple organ failure[12,13]. Abnormal enteric 
bacterial translocation and gut-derived sepsis have been 
documented clinically and observed in animal models 
of  intestinal ischemia/reperfusion[14-16], bowel obstruc-
tion[17,18] and hemorrhagic and traumatic shock[19,20].

The beneficial effects of  our co-evolved microor-
ganisms have begun to be seen recently[3,21]. It is now 
generally believed that commensal bacteria are involved 

in various physiological functions in the gut, whereas 
dysbiosis (a term that describes the condition of  hav-
ing microbial imbalances within the body) may cause 
pathology[6,22]. This review will discuss the classical view 
and the recent knowledge of  host-microbe interaction in 
the gastrointestinal tract. Early studies investigated the 
maintenance of  a passive intestinal barrier to confine the 
luminal bacteria and to fend off  invasions of  opportu-
nistic microbes; current research is focused on the ben-
eficial effects of  commensal bacteria on the hosts as well 
as the influence from an active intestinal barrier on the 
microfloral population in order to maintain gut homeo-
stasis and, in a broader aspect, to promote the health of  
the host.

INTESTINAL BARRIERS FOR LUMINAL 
CONFINEMENT OF COMMENSAL BACTERIA
There is no doubt that tight control of  the location, 
number and population of  enteric bacteria by the hosts 
is prerequisite for health-promoting effects. Luminal 
confinement of  commensal microflora is a main task of  
the gut mucosa. To prevent microbial dissemination or 
invasion of  sterile extraintestinal viscera, physical barri-
ers composed of  epithelial cells and mucus layer, chemi-
cal barriers with antimicrobial peptides, and immune 
barriers including secretory IgA, act as front lines of  
defense. If  these foremost barriers fail and bacteria trans-
location occurs, activation of  immune cells in the lamina 
propria including phagocytes and lymphocytes are next in 
line to carry out antimicrobial actions (Figure 1).  
 
Epithelial barrier limits the space for bacterial growth
The luminal surface of  the gastrointestinal tract from 
the stomach to the rectum is covered by a single layer 
of  epithelial cells. These epithelial cells with their well-
ordered brush borders constitute a large surface area 
that is multiplied both by the macroscopic features of  
valvulae conniventes and the microscopic structures of  
finger-like villi. The vast interior surface area of  the gut 
lining allows for efficient nutrient uptake for the individ-
ual. On the other hand, this large surface area also has to 
tolerate noxious luminal contents and form a competent 
barrier and/or defense mechanism in face of  a massive 
load of  antigenic substances and microbes. It is worth 
noting that this amazing balancing act between uptake 
and exclusion is managed by intestinal epithelial cells 
with a dynamic turnover pace. 

Crypt-villus axis and enterocytic turnover rates: The 
turnover rates of  intestinal epithelial cells (enterocytes) 
are governed by the pace of  crypt cell proliferation and 
villus/surface cell shedding. The newly proliferated stem 
cells in the crypt regions differentiate into epithelial 
cells with high expression of  brush border enzymes and 
transporters, and concurrently migrate upward to the 
apex of  the villi where cell apoptosis and detachment 
occurs at the so-called “extrusion zone” (Figure 1)[23]. 
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These stem cells also differentiate into Paneth cells that 
migrate downward to the bottom of  the crypt, as well as 
into goblet cells and enteroendocrine cells in the epithe-
lial layer that migrate upwards to the villous tips. The cell 
migration process along the crypt-villus axis is depen-
dent on dynamic turnover of  focal cell-matrix adhesions. 
Although the order of  apoptosis and sloughing of  cells 
on villous tips is still in debate, accumulating evidence 
indicates that the apoptotic signaling cascade proceeds 
along with the purse-string action of  cell extrusion[24,25].

During the differentiation and migration process, epi-
thelial tight junctional proteins are formed at the cell-cell 
contact sites to seal off  gaps between cells. The physi-
cal barrier constituted by these closely linked epithelial 
cells is the rate-limiting factor that determines intestinal 
permeability. Physiological epithelial apoptosis and ex-
trusion at the villous tips does not compromise barrier 
function[26,27]. Abundant studies have indicated that tight 
junctional proteins are present at the base of  basolateral 
membranes between two neighboring enterocytes flank-
ing the extruding cells, and thus barrier functions are 
sustained at the villous tips[26,27]. Nevertheless, excessive 
epithelial cell death caused by pathogenic microbes[28-32], 
metabolic stress[15,16], and nonsteroidal anti-inflammatory 

drugs, acidic or enzymatic agents[33,34], may lead to villous 
surface denudation and gut leakiness if  crypt prolifera-
tion and enterocytic migration were not sufficient to 
cover the wounded area. Conversely, high rates of  cell 
proliferation and resistance to cell apoptosis are known 
to be two equally important determining factors during 
the early stages of  colorectal carcinogenesis[35,36]. The 
balance between these two events, i.e. cell death and pro-
liferation of  epithelial cells, is now recognized as a single 
key determinant for gut homeostasis.

Paracellular epithelial permeability: The intestinal 
epithelial cells are joined at their apical side by tight junc-
tions (TJs). The tight junctional complexes form the nar-
rowest distance between plasma membranes of  two cells, 
thus excluding the influx of  bacteria through paracellular 
routes. The transmembranous junctional proteins, e.g., 
claudins, occludin or junction-associated molecule, are 
linked to intracellular zonula occludens (ZO) which are 
bridges to cytoskeletal actin and myosin filaments[37,38].

The organization of  TJ proteins and perijunctional 
actinomyosins are regulated by a complex network of  
signaling pathways. Contraction of  the actinomyosin 
filaments that open up paracellular junctions is mediated 
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Figure 1  Intestinal crypt-villus axis and formation of intestinal barriers for luminal confinement of commensal bacteria. A: Stem cells in the crypt regions 
undergo proliferation and differentiation into columnar epithelial cells (enterocytes) with high expression of brush border enzymes and transporters, and concurrently 
migrate upward to the apex of the villi where cell apoptosis and shedding occurs at the so-called “extrusion zone”. The stem cells also differentiate into Paneth cells 
that migrate downward to the crypt bottom, as well as into mucin-secreting goblet cells and enteroendocrine cells that migrate upwards to the villous tips. During the 
differentiation and migration process, tight junctional proteins are formed at the cell-cell contact sites to seal off gaps between enterocytes; B: Enteric microbes are re-
stricted in the gut lumen by physical barriers composed of epithelium and mucus, chemical barriers with antimicrobial peptides, and immune barriers such as secretory 
immunoglobulin A (IgA). The tight junctional complexes between plasma membranes of two cells exclude the influx of bacteria and molecules larger than 500 dalton 
through paracellular routes, whereas endosomal degradation limits transcellular transport of particles and proteins. If the epithelial barrier is breached and invasion of 
bacteria occurs, the underlying immune cells in the lamina propria such as phagocytes (macrophages and neutrophils) and lymphocytes are responsible for antimicro-
bial and inflammatory responses.
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by the phosphorylation of  myosin light chain (MLC) via 
activation of  myosin light chain kinase (MLCK) or Rho-
associated kinase (ROCK)[17,39]. In addition to the physi-
cal opening of  TJs, ROCK also mediates the endocytosis 
of  TJ proteins into vacuolar apical compartments[39]. 
Different isoforms of  protein kinase C (PKC) are in-
volved in the processes of  TJ opening and assembly[40]. 
The atypical PKC zeta is the sole isoform found located 
at intercellular contact sites[41,42]. Recent evidence shows 
that PKC zeta directly interacts with and phosphorylates 
occludin, causing the redistribution of  occludin away 
from intercellular junctions in cell culture monolayers[43]. 
A large body of  evidence showed that abnormal passage 
of  bacteria across the epithelial layer may occur via the 
paracellular routes in disease states. Increased epithelial 
MLC-dependent paracellular permeability was associated 
with enhanced bacterial translocation to extraintestinal 
organ routes in experimental models of  colitis and bowel 
obstruction[17,18,44-46]. Increased paracellular permeability 
and tight junctional disruption were also documented 
in in vitro cultures of  human intestinal epithelial Caco-2 
cells challenged with Gram-negative bacterial lipopoly-
saccharide (LPS)[31].

Transcellular epithelial permeability: Transcellular 
transport of  particles and proteins are limited by endo-
somal degradation within enterocytes. Dietary proteins 
are mostly digested by gastric and pancreatic proteases, 
as well as integral brush border enzymes, and converted 
to small peptides and amino acids, which are then ab-
sorbed by enterocytes via electrogenic or sodium-depen-
dent transporters. Although a small amount of  intact 
protein may be endocytosed into epithelial cells in physi-
ological conditions, most of  it is sorted into lysosomal 
compartments for degradation and therefore, transcyto-
sis of  whole proteins is prevented[47-49]. 

 Most commensal bacteria are separated from the ep-
ithelial surface by the mucus layer and these bacteria do 
not internalize into epithelial cells. However, increased 
translocation of  nonpathogenic bacteria via the trans-
cellular routes has been documented in epithelial cells 
under inflammatory situations and metabolic stresses, 
such as low dose immunoreactive fibronectin-gamma 
(IFNγ)[50], tumor necrosis factor-alpha (TNFα) during 
glutamine deprivation[51], uncoupling of  mitochondrial 
oxidative phosphorylation[52,53], low dose nitric oxide[54,55] 
and hypoxia[56]. Other studies[57-62] have documented the 
internalization of  bacterial LPS and their binding to in-
tracellular receptors in cell culture models and in mouse 
enterocytes. Recent reports also showed that commensal 
bacteria may be engulfed into intestinal epithelial cells 
in the presence of  pathogenic invasive bacterial strains. 
Using a polarized human intestinal epithelial cell model 
system, it was demonstrated that Campylobacteri jejuni (a 
common enteric pathogen identified in humans and 
chickens) not only penetrates into epithelial cells itself  
but also promotes the internalization and translocation 
of  non-invasive, nonpathogenic E. coli via a lipid raft-

dependent mechanism[63]. 
Antigen sampling and uptake of  bacterial particles 

by follicle-associated epithelium [mainly by microfold 
(M) cells] on Peyer’s patches (PP) is another route of  
transcellular transport for luminal substances. These PPs 
are specialized lymphoid follicles in the gut with a large 
number of  dendritic cells in the dome region[64]. This 
particular form of  luminal antigen transport across fol-
licle-associated epithelium has been implicated in induc-
tion of  oral tolerance and was reviewed previously[48,65]. 
Recent evidence shows that although most enteric bac-
teria resides in the mucus blanket, there are exceptions, 
i.e., segmented filamentous bacteria (SFB), a Clostridium-
related species that anchors on the gut epithelial cells 
adjacent to M cells[66,67].
 
Chemical and immune barriers shape the microbial 
population
The epithelial cells linked by tight junctions not only 
physically separate the microbiota from the lamina pro-
pria, but also secrete proinflammatory cytokines and 
reactive oxygen species in response to pathogen invasion 
and metabolic stress, and serves as a warning system to 
the underlying immune cells to combat microbes[68-71]. 
The epithelial layer is now considered as an active par-
ticipant in innate immunity. Other chemical and immune 
barriers to restrict and shape the enteric bacterial popu-
lation include antimicrobial peptides, sIgA, phagocytes 
and lymphocytes.

Antimicrobial peptides: Antimicrobial peptides (AMPs) 
or host defense peptides are small cationic peptides that 
exhibit broad-spectrum antibiotic activity against Gram-
positive and Gram-negative bacteria, fungi, yeasts and 
viruses[72]. Defensins (cryptdins) are stored in the gran-
ules of  Paneth cells situated besides the proliferative 
crypt stem cells, and are secreted into the luminal space 
in response to bacteria and microbial molecules, e.g., 
oligonucleotides and LPS[73-75]. Triggers for the produc-
tion of  cathelicidin-related AMPs in epithelial cells and 
neutrophils include bacterial flagellin and LPS[76,77].

Accumulating data indicate a crucial role of  AMPs 
in shaping the commensal bacterial population. A de-
velopmental switch of  gut AMP expression during the 
neonatal period is correlated with the establishment of  
commensal microflora. Previous studies showed that 
production of  mouse cathelin-related antimicrobial pep-
tides (mCRAMP) can be observed in the first two weeks 
after birth and gradually disappears with the onset of  
stem cell proliferation and establishment of  the crypt-
villus axis. The synthesis of  mCRAMP was found to play 
a role in the inhibition of  growth of  Listeria monocytogenes, 
which is a commensal bacteria populated in the mother’
s vaginal canal but a potential pathogen in the neonatal 
gut[78]. In addition, Paneth cells and defensin production 
appear after 2 wk of  birth, which accompanies the de-
velopment of  intestinal crypts[79,80].

Human Paneth cell defensins HD-5 and HD-6 are 
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stored in their inactive form and are activated by trypsin 
after secretion[81], whereas mouse procryptidins (α-de-
fensins) are activated by matrix metalloproteinase-7 
(MMP-7)[82]. An elegant study using mice overexpressing 
human α-defensin HD-5 and others lacking functional 
α-defensins by genetic deficiency of  MMP-7 showed 
that there is no change in the total number of  commen-
sal bacteria, but only alterations in the ratio of  the two 
major bacterial phyla Firmicutes and Bacteroides[83]. Inter-
estingly, overexpression of  HD-5 inhibited the adher-
ence of  SFB to epithelial cells close to M cells on PP in 
mice[83]. The physiological significance of  the attaching 
SFB has been discussed, including stimulation of  sIgA 
production and regulation of  T lymphocyte differentia-
tion[83-85]. Much exploration is needed to understand the 
interactions between AMP synthesis and the shaping of  
the commensal bacterial population.

Secretory IgA: The presence of  sIgA in the luminal space 
of  the gastrointestinal tract has long been associated 
with the prevention of  infection and dissemination by 
pathogen neutralization[86]. However, recent evidence 
shows that sIgA is also involved in homeostatic control 
of  the commensal microbiota. Enteric commensal bac-
teria were found to be coated with highly specific anti-
commensal sIgA[87]. The intestinal IgA production is pro-
foundly affected by the colonization of  commensal mi-
croflora, as evidenced by the low level of  IgA in germ-
free animals, which is corrected after inoculation with 
luminal bacteria[88,89]. Recent studies showed that luminal 
sIgA selectively adhered to M cells in the mouse and 
human intestinal PP via a novel IgA receptor and medi-
ated translocation of  bacteria and antigenic products to 
the underlying dendritic cells[90,91]. The luminal bacterial 
uptake by the sIgA into PPs induces naïve B cells to dif-
ferentiate into IgA-committed plasma cells[92] and causes 
a decrease in proinflammatory cytokine expression that 
accompanies the neutralization of  pathogenic bacteria[93]. 
These IgA-committed B cells in PPs and the mesenteric 
lymph nodes subsequently drain into the thoracic duct 
and bloodstream, and finally return home to the intesti-
nal mucosa[94]. The sIgA produced by these lamima pro-
pria plasma cells is then transported across the epithelial 
cells via the polymeric immunoglobulin receptor into gut 
lumen[95]. The roundtrip, bidirectional transport of  sIgA 
and the bacterial coating mediated by sIgA have been 
implicated in the mechanism of  antigen neutralization 
that curtails luminal bacterial overgrowth[96].  

Phagocytes and lymphocytes: Once the mucus and 
epithelial barrier are breached, phagocytes residing in 
and infiltrated into the lamina propria are next in line for 
mucosal defense. The phagocytic functions of  macro-
phages and neutrophils are just one part of  innate im-
munity, in which these cells also produce large amounts 
of  reactive oxygen species (ROS, e.g., superoxide and hy-
drogen peroxide) via catalytic activities of  nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase and 

myeloperoxidase. Aside from phagocytic sources, intes-
tinal epithelial cells also contain isoforms of  NADPH 
oxidase, e.g., NOX1, and generate superoxide upon 
stimulation with pro-inflammatory cytokines or with 
microbial molecules[69-71,97]. These oxidative free radicals 
are efficient in killing bacteria through lipid peroxidation, 
protein nitrosylation, and DNA strand breakage, which 
eventually leads to death of  the microbial targets[98,99].

The adaptive arm of  the gut immune system, termed 
gut-associated lymphoid tissues, include lymphocytes 
scattered in the lamina propria, intraepithelial lympho-
cytes and those aggregated into lymphoid nodules, such 
as PP and mesenteric lymph nodes. Depending on the 
cytokine production profile, the differentiated T helper 
lymphocytes are mainly subgrouped into Th1, Th2, 
Th3/Tr1 and Th17. The classical dichotomy of  Th1/
Th2 paradigm of  CD4(+) T-cell subsets are associated 
with inflammation and allergy, respectively; whereas the 
Th3/Tr1 subgroups are involved in immunoregulatory 
and suppressive events. The identification of  an addi-
tional subset, known as Th17 cells, has further illustrated 
the complexity and diversity of  effector T cells with pro-
inflammatory characteristics.

Studies using germ-free mice have shown that the 
frequency of  Th17 cells in the lamina propria of  the 
large intestine is significantly elevated in the absence of  
commensal bacteria[100], suggesting that enteric microbes 
are involved in the reduction of  the numbers of  this 
pro-inflammatory T lymphocyte subset. The differentia-
tion of  Th17 cells is promoted by interleukin 6 (IL-6) 
and transforming growth factor-beta, whereas IL-23 is 
required for the subsequent expansion of  committed 
Th17 cells and production of  IL-17[101]. An IL-25-IL-23-
IL-17 axis was recently implicated in abnormal reactions 
towards the individual’s own commensal bacteria that 
cause autoimmune chronic inflammation in the gut[100]. 
Commensal-dependent expression of  epithelial IL-25 
restricted the expansion of  Th17 cells by decreasing the 
expression of  macrophage-derived IL-23[100], suggest-
ing that commensal bacteria may promote immune cell 
hyporesponsiveness through epithelial signaling. Con-
versely, other reports have demonstrated that specific 
microbes, i.e., SFB, induce the differentiation of  Th17 
cells in the intestine of  gnotobiotic mice[85,102]. Taken to-
gether, these findings indicated that eco-imbalance with 
particular strains of  bacteria or dysbiosis may be a cause 
for inflammatory responses in the intestine.

COMMENSAL BACTERIA REGULATES 
INTESTINAL EPITHELIAL BARRIER 
FUNCTIONS
The traditional concept regarding commensal bacterial 
as a potential threat to the human body is now changed 
by evidence of  the beneficial effects of  gut microbiota in 
promoting epithelial barrier integrity (Figure 2). At this 
point, the various health-promoting effects of  commen-
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sal bacteria have justified the use of  the term “symbionts” 
for these microbes. These enteric bacteria are no longer 
regarded as an intruder of  the human body that requires 
annihilation and expulsion, but their presence is recog-
nized as part of  the human physiology. This consensus 
has been long-awaited, since the theory that “certain 
types of  bacteria especially those with lactic acid-pro-
ducing ability in the digestive tract could prolong life” 
was established by Dr. Eli Metchnikoff, the 1908 Nobel 
Prize Laureate. Of  course, there was no knowledge of  
the existence of  commensal bacteria at the turn of  the 
1920s, let alone the understanding that Lactobacillus spp. 
was a constituent of  the gut microbiota system. This 
early theory did lead to the much later recognition by 
the World Health Organization that particular types of  
microorganisms which, when administered in adequate 
amounts, confer a health benefit on the host and the 
coining of  the term “probiotics”.

Enteric microbes are responsible for numerous pro-
tective and metabolic functions, and are involved in vari-
ous structure- and immune-enhancing effects of  the gut 
(Table 1). The presence of  commensal bacteria protects 
against enteric pathogen colonization through competi-
tion for nutrients and receptors[103,104], and by synthesis or 
induction of  anti-microbial factors[105,106]. The metabolic 
role of  enteric bacteria involves degradation of  non-
digestible dietary substances, production of  essential 
vitamins, and generation of  short chain fatty acids (SC-
FAs)[107,108]. In addition, enteric microbes play an active 
role in the shaping of  mucosal immunity, an aspect that 
has been discussed in detail in other review papers[3,21]. 

Other important functions of  commensal microbes have 
just begun to emerge, suggesting that luminal bacteria 
signal the interfacing epithelial layer and control the 
turnover rate of  enterocytes[3,109], and fortify the epithe-
lial regenerative and barrier functions[109-114].
 
Microbial effects in intestinal epithelial cell turnover rates
When evaluating the effect of  commensal microbes on 
intestinal epithelial cell turnover rates and crypt-villus 
axis, it is important to consider the balance between 
cell proliferation and cell death. Increased epithelial cell 
apoptosis without sufficient proliferation or restitu-
tion results in barrier damage, whereas decreased cell 
death with hyperproliferation runs the risk of  tumor 
formation. A number of  reports comparing germ-free, 
gnotobiotic and conventionally-raised animals have in-
dicated that luminal bacteria signals the epithelial layer 
to control cell apoptosis, proliferation and differentia-
tion[109-113]. Germ-free piglets display aberrant intestinal 
morphology with longer villi and shorter crypts than 
their conventional counterparts. Decreased epithelial 
apoptosis and crypt cell proliferation were observed in 
the intestine of  germ-free animals compared to those 
raised conventionally[110,111]. Oral inoculation of  com-
mensal bacteria obtained from feces or administration 
of  non-pathogenic E.coli to these gnotobiotic pigs 
stimulates epithelial apoptosis, increases crypt depth for 
compensatory proliferation, and induces brush border 
enzyme activities compared to those raised in a germ-
free environment[109-112]. Previous studies also showed 
that commensals and non-pathogenic E.coli LPS mediate 
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microbes are capable of fermenting non-digestible dietary substances, generating short chain fatty acids and essential vitamins, and providing caloric sources for the 
host. These symbiotic bacteria also play important roles in pathogen competition, regulation of the turnover rate of enterocytes and fortification of epithelial barrier func-
tions, as well as shaping of the mucosal immunity. From the host's point of view, tight physical, chemical and immune barriers of intestines are pivotal in the keeping of 
the number and location of the microfloral population in check in order to maintain the health-promoting effects, and to prevent bacterial dissemination and the triggering 
of local and systemic inflammatory responses. The balance of Yin-Yang between the host intestine and commensal microbes is central to maintaining homeostasis.
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pro-apoptotic effects on epithelial cells in human colon 
explants depleted of  IL-10, as well as human intestinal 
epithelial cell lines[31,115,116].

Further evidence of  a role for commensal bacteria 
in regulation of  epithelial cell turnover and restitution 
was seen in colitis models with mucosal deformation by 
oral administration of  dextran sodium sulfate (DSS, a 
sulfated polysaccharide that is directly toxic to colonic 
epithelial cells[117]). Animals with commensal bacterial 
depletion are more susceptible to oral DSS-induced 
mucosal injury, with more extensive denudation of  the 
surface epithelium resulting in ulceration or erosion of  
mucosa compared to conventionalized counterparts[114]. 
Impaired epithelial proliferation and regenerative ability 
were seen in the intestines of  germ-free mice upon DSS-
induced injury[113]. Moreover, worsened histopathological 
score, decreased enterocyte proliferation and delayed 
wound healing were documented in DSS-induced colitis 
in mice deficient of  proinflammatory signal pathways in 
response to ligands of  bacterial LPS or lipoteichoic acid 
(LTA)[113,114]. Oral ingestion of  bacterial products LPS or 
LTA prior to DSS challenge conferred protection in wild 
type mice with colons depleted of  commensal micro-
flora[114], suggesting that luminally administered bacte-
rial products are important for protection against DSS-
induced epithelial injury. Contradictory data were seen in 
animals with colitis-prone genetic background, showing 
that IL-10-/- mice fail to develop spontaneous colitis 
and intestinal histopathology if  reared in germ-free 
conditions, suggesting that the presence of  commensal 
bacteria may trigger chronic intestinal inflammation in 
the background of  IL-10 deficiency[118]. The discrepancy 
further emphasizes the critical role of  commensal bacte-
ria in the shift between immune suppression and inflam-
mation in intestines, and they may stimulate differential 
responses in enterocytes and immune cells.

A recent study has indicated that commensal bac-
teria promote epithelial restitution and wound closure 

through mechanisms that involve ROS[119]. Epithelial 
restitution is dependent on cell migration, a process that 
requires phosphorylation of  focal adhesion kinase (FAK) 
for the dynamic turnover of  focal cell-matrix adhe-
sions[120]. It was demonstrated that commensal bacteria 
stimulate the production of  epithelial-derived oxidative 
free radicals that induce oxidation and inactivation of  
FAK phosphatases, which in turn results in increased 
phosphorylation of  FAK[119]. Another report has shown 
that hydrogen peroxide promotes intestinal epithelial 
cell migration via induction of  FAK phosphorylation 
by a phosphatidylinositol 3 kinase-dependent mecha-
nism[121]. In addition, NOX1 (a superoxide-generating 
oxidase which is highly expressed on colonic epithelial 
cells) plays a crucial role in regulation of  epithelial pro-
liferation and differentiation by modulating Wnt/Notch 
signaling[122]. It seems plausible that bacterial contact on 
epithelial surface or microbial influx to the mucosa due 
to barrier dysfunction may serve as triggers for ROS 
production from enterocytes and phagocytes to promote 
cell renewal and wound healing. 

The enteric microbiota thrives in a largely anaero-
bic luminal environment and generates a spectrum of  
SCFAs, including butyrate, succinate and propionate, as 
well as other terminal products such as lactate[107]. SCFAs 
are important energy sources for the colonic epithelium 
and for the host, and also regulate colonic epithelial cell 
growth and differentiation[108,123]. Butyrate was shown to 
increase alkaline phosphatase activity, a marker of  colo-
nocyte differentiation, in highly proliferative epithelial 
cells, correlated with cell cycle arrest[124,125]. Besides its 
role in promoting cell differentiation, butyrate plays a 
role in prevention of  colonic cancer by terminating cell 
cycle progression and promoting apoptosis of  trans-
formed colonocytes through mechanisms associated 
with inhibition of  histone deacetylase activity and induc-
tion of  p21WAF1/Cip1 proteins[124,126,127].
 
Microbial effects in fortification of epithelial tight 
junctional structures
Strong evidence that commensal bacteria regulate epi-
thelial permeability came from studies with probiotics in 
various disease models. Probiotics are defined as non-
pathogenic microorganisms that confer health benefits 
for the host[128] and several strains of  commensal bacteria 
have been included in the category so far. Pretreatment 
with multispecies or single strain of  probiotics (e.g., 
VSL3, nonpathogenic Escherichia coli Nissle 1917, or Lac-
tobacillus rhamnosus) inhibited gut leakiness and prevented 
the colonic cell apoptosis in colitis mice models induced 
by DSS challenge[129-131] and IL-10 gene deficiency[132]. 
The maintenance of  epithelial barrier was associated with 
restoration of  tight junctional structures and increased 
expression of  ZO-1 and MLCK[130,131]. Oral administration 
of  probiotics containing Lactobacillus sp., Enterococcus fae-
calis (previously Streptococcus faecalis) and Bifidobacterium brevis 
prevented the increase of  transepithelial macromolecular 
flux in rat intestines caused by acute or chronic psycho-
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  Protective functions
      Pathogen displacement
      Competition for nutrients
      Competition for receptors
      Production of anti-microbial factors
  Metabolic functions
      Fermentation of non-digestible dietary substances
      Generation of short chain fatty acids
      Salvage of energy source
      Synthesis of essential vitamins (vitamin K and B12, niacin,  biotin 
      and folate)
  Structural functions
      Regulation of epithelial cell turnover
      Promotion of epithelial cell differentiation
      Fortification of epithelial barrier
      Stabilization of tight junctions
  Immune functions
      Induction of secretory IgA
      Induction of oral tolerance
      Shaping of immune microenvironment

Table 1  Functions of commensal bacteria in the gut
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logical stress[133,134]. Studies in vitro have shown that pro-
biotics, such as E.coli strain Nissle 1917 and Lactobacillus 
plantarum, reduced the epithelial hyperpermeability caused 
by enteropathogenic Escherichia Coli in human intestinal 
epithelial cells by silencing PKCzeta and reorganizing 
ZO-2[135,136]. Beneficial effects of  probiotics in maintain-
ing colonic barrier function and reducing bacterial influx 
and plasma endotoxin levels were also seen in clinical 
studies and endotoxemic rat models[137,138]. Several strains 
of  lactobacillus stabilize tight junctional structures after 
free radical-induced or cyclooxygenase-dependent epi-
thelial barrier dysfunction[139-141]. It is noteworthy that ad-
ministration of  these probiotics does not lead to changes 
in intestinal epithelial permeability in healthy control 
animals[133], emphasizing that the presence of  probiotics 
is critical for the prevention of  intestinal barrier dysfunc-
tion only upon injury. In addition, bacterial fermentation 
products of  SCFAs also directly increase the transepi-
thelial resistance of  intestinal epithelial monolayers in 
vitro by accelerating the assembly of  tight junctions that 
is regulated by AMP-activated protein kinase and PI3K 
signaling pathways[142,143]. A lactobacillus-derived mol-
ecule, polyphosphate, was recently identified to suppress 
oxidant-induced intestinal permeability in mouse small 
intestine[144]. The findings of  specific molecules secreted 
by probiotics and/or commensal bacteria may benefit the 
development of  natural product supplementations to en-
hance the intestinal barrier functions.

ABERRANT RECOGNITION OF MICROBIAL 
PRODUCTS RESULTS IN INTESTINAL 
PATHOLOGY
Chronic inflammation
Intestinal epithelial cells are constantly bombarded with 
pathogenic, cytotoxic, metabolic stresses which trigger 
apoptotic and necrotic cell death, leading to gut barrier 
damage, microbial influx and inflammatory respons-
es[15,16,31,32,145,146]. Evidence supporting the notion that 
gut permeability defects precedes the onset of  mucosal 
inflammation was found in spontaneous enterocolitis 
models of  IL-10-/- and SAMP1/YitC mice[147-149]. More-
over, mucosal inflammation was seen in areas adjacent 
to epithelium with TJ disruption (loss of  endogenous 
E-cadherin) due to the expression of  a dominant nega-
tive N-cadherin mutant lacking an extracellular domain 
in mice[150]. Recent studies using epithelial-specific 
knockout models provide direct evidence of  the cause-
and-effect relationship between cell death-dependent ep-
ithelial barrier defects and intestinal inflammation. Mice 
with conditional deletion of  caspase-8 or Fas-Associated 
protein with Death Domain on intestinal epithelial cells 
spontaneously developed epithelial cell necrosis and in-
flammatory lesions in the ileum and colon[145,146]. On the 
other hand, a number of  studies have demonstrated that 
pro-inflammatory cytokines (e.g., IFNγ and TNFα) and 
phagocytic mediators (e.g., free radicals and proteases) 

cause tight junctional breakdown and intestinal perme-
ability rise[139,151,152], and thus argue in favor of  inflam-
mation as the cause for epithelial barrier disruption. 
Regardless of  the starting point, a feed-forward vicious 
cycle between barrier dysfunction and inflammatory re-
action is crucial for the perpetuation and aggravation of  
chronic inflammation in intestines.

Several lines of  evidence suggest a critical role of  
dysbiosis in the pathogenesis of  inflammatory bowel 
disease (IBD). In IBD patients, not only the quantity of  
commensal bacteria in the intestine is reduced (about ten-
fold lower than control subjects), but also the diversity 
of  the microbiota is altered[6,153,154]. Reduction of  major 
classes of  commensals, Firmicutes and Bacteroidetes, and 
increase of  mucosal adherent bacteria are documented in 
patients[6,153-155]. Experimental models such as IL-2- or IL-
10-deficient mice that spontaneously develop colitis do 
not develop disease when raised in a germ-free environ-
ment[156,157]. In addition, monoassociation with Bacteroides 
vulgatus or E. coli is sufficient to induce colitis in human 
leukocyte antigen-B27 transgenic rats[158]. Recent find-
ings that transmission of  colitogenic commensal bacteria 
is able to trigger colitis in the genetically intact recipient 
mice further strengthen this view. Mice with genetic defi-
ciency in RAG-1 and T-bet displayed dysbiosis and devel-
oped spontaneous colonic inflammation that resembles 
human ulcerative colitis[159]. Interestingly, T-bet-compe-
tent wild type pups develop colitis after being crossfos-
tered to female mutant mice, suggesting a communicable 
nature of  this form of  colitis by the gut microbiota[160].

Aberrant bacterial signaling by microbe-associated mo-
lecular pattern receptors, e.g., nucleotide-binding oligom-
erisation domain 2 (NOD2) and toll-like receptors (TLRs), 
on mucosal cells is incriminated in the development of  
chronic intestinal inflammation. Mutations in the gene 
encoding NOD2 were identified in patients with Crohn’
s disease[161,162]. NOD2 has been known as a cytosolic in-
nate receptor able to sense peptidoglycan from Gram-
positive and -negative bacteria inside enterocytes to trig-
ger RIP2- and nuclear factor kappa B (NF-κB)-mediated 
pro-inflammatory responses and to induce antimicrobial 
defensin synthesis[163,164]. Recent studies demonstrated that 
NOD2-deficient mice display altered microbiota composi-
tion, and elevated bacterial load in the feces and terminal 
ileum compared to their wild-type counterparts[165,166], 
supporting that NOD2 dysfunctions and its subsequent 
dysbiosis may result in the breakdown of  gut homeostasis 
and predispose to chronic inflammation. 

Accumulating evidence points out that changes in 
the expression levels of  receptors to Gram-negative 
bacterial LPS in the intestinal mucosa may be involved 
in the pathogenesis of  IBD and colorectal cancer[167-170]. 
The multi-unit receptor for LPS (CD14/TLR4/MD-2 
complex) was originally detected on blood monocytes 
in the context of  the pathogenesis of  septic shock[171,172]. 
It becomes clear now that intestinal epithelial cells and 
resident macrophages bear a distinct expression pattern 
of  receptors unlike circulating monocytes and perito-
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neal macrophages. Recent data show that in purified 
enterocytes isolated from normal human biopsy samples, 
CD14 protein is constitutively expressed, whereas TLR4 
is barely detectable[167-170,173]. Moreover, human intestinal 
macrophages isolated from normal jejunal specimens do 
not express innate immune receptors, such as receptors 
for LPS (CD14), Fcα (CD89), Fcγ (CD64, CD32, CD16), 
CR3 (CD11b/Cd18) and CR4 (CD11a/CD18)[174]. Low 
TLR4 levels have also been reported in the lamina pro-
pria macrophages in comparison to blood monocytes in 
normal human subjects[175]. It is noteworthy that these 
intestinal resident macrophages show downregulated 
LPS-induced production of  proinflammatory cytokines, 
but retain potent phagocytic and bactericidal activities in 
physiological conditions[174,176]. The distinct characteristics 
of  LPS receptors on enterocytes and mucosal macro-
phages may reflect its tolerance to the presence of  com-
mensal bacteria, which is crucial for limiting unwanted 
inflammation and for maintaining gut homeostasis.

Polymorphism of  CD14 and TLR4 genes was iden-
tified in subsets of  IBD patients[177-183], suggesting that 
abnormal bacterial LPS signaling may play a role in the 
pathogenesis. Since both intestinal epithelial cells and 
lamina propria macrophages express CD14 and TLR4 
proteins at variable levels, their changes related to chron-
ic colitis will be discussed in a cell type-specific fashion. 
Upregulated epithelial TLR4 expression was observed in 
IBD patients compared to normal subjects[167,168]. A simi-
lar increase in TLR4 was found in crypt epithelial cells 
in DSS-induced mouse colitis models[184,185]. Moreover, 
CD14 mRNA and protein levels in the intestinal epithe-
lial cells of  DSS-induced and spontaneous colitic mice 
were also higher than those in healthy animals[184,186]. 
These finding suggest that at the interface with com-
mensal microbes, altered expression of  LPS receptor 
components (CD14 and TLR4) on enterocytes may trig-
ger epithelial-derived proinflammatory signals.  

A wide array of  differential expression patterns and 
subcellular location of  LPS receptors was seen in differ-
ent intestinal epithelial cell lines that correlated with their 
responsiveness to LPS for proinflammatory cytokine syn-
thesis. For example, Caco-2 cells that express cell surface 
CD14 but have low levels of  TLR4 mRNA and proteins, 
similar to normal human enterocytes, neither activate 
their NF-κB pathway nor produce IL-8 after LPS chal-
lenge[57,68,116,187], showing one of  the possible mechanisms 
for endotoxin tolerance by enterocytes. Transfection of  
TLR4/MD2 to Caco-2 cells restores the responsiveness 
to LPS and synergistic activation of  NF-κB and IL-8 
reporter genes[187]. Moreover, HT29 cells that express 
membrane-bound CD14 and cytoplasmic TLR4 are re-
sponsive to IFNγ for upregulation of  intracellular TLR4 
levels and the cells are sensitized for LPS-induced IL-8 
production[57,116]. Among human intestinal epithelial cell 
lines that express constitutively high cell surface levels 
of  TLR4, such as SW480 and T84 cells, exposure to LPS 
stimulates the activation of  NF-κB and AP-1 signaling 
and the production of  TNFα and IL-8[57,8,187]. It is clear 

from in vitro data that induction or heightened expression 
of  individual LPS receptor components on intestinal 
epithelial cells may overrule their hyporesponsiveness to 
luminal bacterial LPS as a trigger for proinflammatory 
signals. Augmented expression of  LPS receptors was also 
noted in lamina propria macrophages in inflamed tissues 
of  IBD patients[168,175,188,189]. Heightened TLR4 expression 
was localized to intestinal macrophages in biopsy or sur-
gical specimens obtained from both ulcerative colitis and 
Crohn’s disease patients[175]. In Crohn’s disease patients, 
recent studies found increased subsets of  CD14

+

 macro-
phages in comparison to the typical resident macrophages 
(CD14

-

CD33
+

) in the intestinal lamina propria[168,188,189]. 
The CD14

+

 population of  macrophages exhibit potent 
antigen-presenting ability to evoke differentiation of  
Th17 cells[188] and produce large amounts of  proinflam-
matory cytokines (e.g., TNFα and IL-23) that stimulate 
lamina propria mononuclear cells to synthesize IFNγ in a 
positive feedback loop[189]. These abnormal CD14

+

 mac-
rophages may decrease the threshold to mount an inflam-
matory response upon exposure to low concentrations 
of  LPS and to commensal bacteria, and may amplify the 
production of  proinflammatory cytokines from different 
cell types through the positive feedback loop of  IL-23/
IFNγ[189,190].
    Other reports indicated that a decrease in IL-10-
producing intestinal macrophage subsets (CD11b

+

F4/
80

+

CD11c
-

) also plays a role in the development of  
chronic intestinal inflammation[191,192]. Studies in IL-
10-deficient colitis mouse models have demonstrated 
that bone marrow-derived macrophages from IL-10-/-

mice produce large amounts of  IL-12 and IL-23 upon 
stimulation with heat-killed bacterial antigens, whereas 
those from wild type mice produce high levels of  IL-10 
but neither IL-12 nor IL-23[190], which is correlated to the 
phenomenon where IL-10-/- mice fail to develop spon-
taneous colitis and intestinal histopathology if  reared 
in germ-free conditions[118]. These findings suggest that 
commensal microbes or bacterial LPS may stimulate 
different subsets of  macrophages, leading to varied pat-
terns of  macrophage-derived cytokine production (IL-10 
vs IL-12/IL-23) that determine the progress to immune 
hyporesponsiveness or development of  colitis[118,190]. It 
remains unknown whether the low baseline levels of  
Fcα and Fcγ on normal intestinal resident macrophages 
are also upregulated in IBD patients, which may increase 
opsonization and phagocytosis for more efficient anti-
gen presenting capability to stimulate long-term immune 
memory and chronic reactions.
 
Dysregulation of enterocytic apoptosis, proliferation 
and tumorigenesis
The abnormal TLR4 overexpression on enterocytes and 
intestinal macrophages in IBD patients suggests that 
bacterial LPS stimulation may initiate mucosal-derived 
proinflammatory signals in the pathogenesis of  chronic 
colitis. Based on this theory, a number of  laboratories 
investigated the possibility that targeted deficiency of  
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TLR4 signaling might decrease gut inflammation. Un-
expectedly, mice with spontaneous mutation or targeted 
knock-out of  TLR4 and MyD88 displayed poorer colitis 
scores and lower survival rates in DSS models[114,193,194]. 
Besides the heightened mucosal inflammatory responses, 
the lack of  TLR4 signaling also resulted in other ab-
normalities, such as elevated epithelial cell apoptosis, 
decreased crypt cell proliferation, and impaired epithe-
lial restitution accompanied with more severe mucosal 
ulceration in the DSS-induced colitis model[114,193,194]. 
The findings in these TLR4-/- and MyD88-/- mice were 
similar to those with commensal bacteria depletion in 
DSS-induced colonic injury, whereby more extensive de-
nudation of  the surface epithelium results in ulceration 
or erosion of  mucosa accompanied by pronounced 
compensatory crypt proliferation[114]. These novel obser-
vations point out that presence of  commensal bacteria 
and LPS-mediated TLR4 signaling may also be involved 
in epithelial cell survival that is critical in maintaining 
epithelial barrier integrity in physiological conditions and 
recovery to gut homeostasis in diseased states.

Many studies have shown that a lack of  NF-κB sig-
naling leads to increased epithelial apoptosis and im-
paired epithelial restitution after DSS challenge in colitis 
development[114,193-196]. Mice with epithelial-specific defi-
ciency of  IKKγ/NEMO develop spontaneous chronic 
intestinal inflammation associated with increased epithe-
lial apoptosis and bacterial translocation[195]. Targeted ab-
lation of  IKKβ in intestinal epithelial cells also resulted 
in severe cell apoptosis upon radiation[197] or ischemic 
challenge[198], further supporting a universal role of  
IKKβ for cell survival against various types of  stresses. 
Another study also showed that enterocyte-specific 
knockout of  Raf-1 leads to NF-κB inactivation that is 
responsible for increased epithelial apoptosis and im-
paired epithelial proliferation and regeneration after oral 
DSS challenge[194]. Taken together, the aforementioned 
studies indicated that epithelial-derived TLR4/NF-κB 
pathways are involved in anti-apoptotic events.

From a physiological point of  view, LPS signaling 
in the normally tolerant gut epithelial cells may serve as 
a warning system to the underlying immune cells while 
trying to promote epithelial restitution and maintain epi-
thelial barrier functions via multiple pathways for proin-
flammatory, anti-apoptotic and proliferative effects. Short-
term epithelial TLR4/NF-κB signaling is crucial for pre-
venting pathogenic epithelial cell death and epithelial bar-
rier disruption, which may help limit the exposure of  the 
immune cells to bacterial antigens and toxins that could 
cause full-blown reactions. On the other hand, a chronic 
epithelial-derived LPS signaling may shift the normal cell 
cycle into tumorigenic phenotypes in the long run.

A strong link between inflammation and cancer forma-
tion was suggested by the higher incidence of  gastric and 
colorectal cancer in patients with early onset of  IBD[199,200].

 

Accumulating evidence indicates that TLR4 expression 
in intestinal epithelial cells is upregulated in patients with 
colorectal cancer[169,170], suggesting that altered expression 

pattern and malformed signals of  epithelial LPS receptor 
components may also play crucial roles in tumorigenesis. 
Aberrant reactions to bacterial LPS by CD14/TLR4 may 
induce an imbalance of  apoptosis and proliferation, result-
ing in cancer formation. Recent data showed that TLR4-/- 

and MyD88-/- mice failed to develop colitis-associated and 
carcinogen-induced colorectal tumors[201-204]. TLR4 may be 
responsible for upregulated production of  cyclooxygen-
ases and activation of  epidermal growth factor receptors 
which may contribute to cancer formation[193,201]. A recent 
study pointed out that MyD88-dependent signaling con-
trols the expression of  several key modifier genes of  in-
testinal tumorigenesis and has a critical role in both spon-
taneous and carcinogen-induced tumor development[202].

Mice with epithelial-specific IKKβ deficiency had a 
lower incidence of  tumor formation, partly due to in-
creased levels of  epithelial apoptosis, compared to wild 
type animals after injection with azoxymethane (AOM) 
followed by treatment with DSS[205]. It is noteworthy that 
deletion of  IKKβ in myeloid cells led to smaller tumor 
size, but no change of  tumor incidence compared to 
wild type mice after AOM-DSS challenge[205]. These find-
ings suggest that IKKβ in different cell types contributes 
to tumorigenesis via variable cellular functions, of  which 
epithelial-specific IKKβ promotes tumor formation by 
conferring resistance to cell apoptotic pathways, whereas 
IKKβ signals in myeloid cells are involved in boost-
ing epithelial cell cycle progression and cell division[205]. 
Therefore, it is important to identify the different types 
of  mucosal cells (enterocytes or macrophages) respond-
ing to LPS when explaining the pathogenesis of  intesti-
nal inflammation and colorectal cancer formation.

In summary, LPS/TLR4-mediated signals which are 
normally downregulated in the gut epithelium are now 
linked with various pathological phenomena and disease 
states such as chronic inflammation, anti-apoptosis, hyper-
proliferation and tumorigenesis in the gastrointestinal tract.
 
CONCLUSION
With such a variety of  species and the large numbers 
of  commensal bacteria which undergoes wax and wane 
processes throughout the host’s life, homeostasis of  
the gut is maintained by dynamic cross-talks between 
luminal microbes and intestinal epithelium. This delicate 
balance is complicated by the need to maintain both oral 
tolerance and mucosal defense. It remains to be resolved 
whether the expression of  pattern recognition receptors, 
such as NOD2, CD14 and TLR4, on enterocytes along 
the crypt-villus axis is differentially regulated in order to 
respond to microbes for proliferative, differentiative and 
apoptotic signals at different stages. Aberrant recogni-
tion and abnormal signaling caused by luminal bacteria 
may result in epithelial barrier dysfunction and/or carci-
nogenesis. The understanding of  the interaction between 
host epithelium and commensal bacteria will provide 
us with novel information for the development of  pro-
phylactic and therapeutic interventions for patients with 
chronic inflammation and colorectal cancer.
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