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Abstract
Alcohol is a major cause of chronic pancreatitis. About 
5% of alcoholics will ever suffer from pancreatitis, sug-
gesting that additional co-factors are required to trigger 
an overt disease. Experimental work has implicated 
lipopolysaccharide, from gut-derived bacteria, as a po-
tential co-factor of alcoholic pancreatitis. This review 
discusses the effects of alcohol on the gut flora, the gut 
barrier, the liver-and the pancreas and proposes poten-
tial interventional strategies. A better understanding of 
the interaction between the gut, the liver and the pan-
creas may provide valuable insight into the pathophysi-
ology of alcoholic pancreatitis.
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Core tip: There is now clear clinical and experimental 

evidence that bacteria and bacterial products (such as 
endotoxin) are associated with complications of pan-
creatitis. Furthermore, results of animal studies support 
the concept that bacterial endotoxin is an important 
factor in the initiation and progression of alcoholic pan-
creatitis.

Vonlaufen A, Spahr L, Apte MV, Frossard JL. Alcoholic pan-
creatitis: A tale of spirits and bacteria. World J Gastrointest 
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INTRODUCTION
Chronic alcohol consumption is a known cause of  injury 
to several organs, most commonly the liver and the pan-
creas, but also to the heart, lungs and brain. However, it 
is well understood that only a minority of  alcoholics will 
ever develop clinically overt pancreatic or liver damage 
and even fewer numbers will develop clinically overt dis-
ease in both organs simultaneously although subclinical 
damage to both organs has been reported to coexist[1]. 
The fact that only some alcoholics appear to be suscep-
tible to clinical pancreatitis or hepatitis has led to a con-
certed search for additional trigger/initiating factors for 
alcohol-induced organ damage. 

Over the past two decades clinical and experimental 
studies have demonstrated that endotoxin lipopolysaccha-
ride (LPS), from the bacterial wall of  gram negative bac-
teria of  the human gut, plays a central role in the initia-
tion and progression of  alcoholic liver disease[2]. This was 
initially based on clinical observations of  elevated plasma 
endotoxin concentrations in alcoholics with and without 
liver disease[3,4]. Experimental evidence in support of  the 
association of  endotoxin and liver disease in humans was 
subsequently provided by animal studies demonstrating 
that alcohol-fed rats challenged with LPS developed he-
patic lesions resembling alcoholic hepatitis in humans[5,6]. 
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Conversely, targeted disruption of  the LPS receptor toll 
like receptor 4 (TLR4) in alcohol-fed animals protected 
against liver injury[7].

Reports of  increased endotoxinemia in pancreatitis 
emerged a decade later. Several studies have linked the 
degree of  endotoxinemia to the severity and prognosis 
of  acute pancreatitis, regardless of  its aetiology[8,9] and 
the impact of  endotoxinemia on multiple organ system 
failure, in particular pancreatitis-associated lung disease 
has been corroborated by animal studies[10]. However, it 
remained elusive whether endotoxinemia was a cause or a 
consequence of  pancreatitis, or both. It has only recently 
been shown that endotoxin initiates pancreatic necro-
inflammation in alcohol-fed rodents[11,12] and promotes 
pancreatic fibrosis[12]. 

In healthy subjects, small amounts of  endotoxin 
translocate from the gut lumen to the bloodstream and 
are naturally cleared by the reticulo-endothelial system. 
Under the influence of  alcohol, bacteria proliferate 
in the small intestine[13,14], intestinal permeability is in-
creased[15,16], while endotoxin clearance by the reticulo-
endothelial system-in particular Kupffer cells in the liver - 
is diminished[17]. As a result, excess endotoxin is available 
in the blood stream and exerts its harmful effects on vari-
ous organs. 

This review aims to summarise the mechanisms un-
derlying increased endotoxinemia in alcoholics, describes 
the role of  endotoxin both as an initiating and aggravat-
ing factor of  pancreatitis and attempts to define a role for 
the liver as a mediator in pancreatic end-organ damage.

ALCOHOL AND THE GUT FLORA
A human being harbours up to 500 different bacterial 
species[18], the overall bacterial cell count being 10 times 
more abundant than the number of  eukaryotic cells in 
the body[19]. The combination of  species-which is estab-
lished during the first year of  life and shaped by host 
genotype[20] as well as dietary factors-varies from individ-
ual to individual[21]. Moreover, there is evidence indicating 
that certain strains of  bacteria may be unique to their 
host[22]. Bacterial concentrations are lowest in the upper 
gastrointestinal tract due to gastric acid, biliary and pan-
creatic secretion while the highest density of  bacteria is 
found in the colon. In healthy humans, the gut flora pre-
vents the growth of  potential injurious bacteria[18,23], ex-
erts metabolic activities such as the fermentation of  non-
digestible carbohydrates[24] or vitamin synthesis[25] and 
plays a role in intestinal cell growth and differentiation[26]. 
Several factors may influence bacterial luminal content. 
These include altered gut motility[27], drugs, in particular 
antibiotics[28] and dietary factors such as alcohol. 

Alcohol has been shown to alter the jejunal micro-
flora, since almost 50% of  alcoholics with documented 
recent ethanol abuse displayed an increase in total num-
ber of  bacteria most of  which originated from the faecal 
flora[13]. These data were confirmed in duodenal juice 
samples obtained by oesogastroduodenoscopy[14] as well 
as H2-breath tests, as a surrogate marker of  bacterial pro-

liferation in the proximal gut, in alcoholic subjects[29]. The 
mechanisms underlying bacterial overgrowth in alcohol-
ism are unknown, but reduction of  orocaecal transit time 
observed in chronic alcoholics[30,31] may offer a partial ex-
planation. It is noteworthy, that alcohol gavage in rodents 
for 10 wk has the capacity to alter the composition of  
colonic bacteria[32]. 

Interestingly, certain bacteria of  the gut flora have 
the capacity to metabolise alcohol to acetaldehyde[33,34]. In 
alcohol-fed rats, ethanol metabolism by colonic bacteria 
could be suppressed by ciprofloxacin[35] or a combination 
of  ampicillin and neomycin[36]. In a similar animal model, 
administration of  metronidazole increased alcohol dehy-
drogenase-containing bacteria and hence colonic acetal-
dehyde content[37]. While acetaldehyde has been measured 
in the rodent colon[36] and human gut bacteria have the 
capacity to metabolise ethanol, there is, to date, no report 
on acetaldehyde content of  the human colon in alcoholics. 
Nonetheless, the above studies suggest that it would not be 
unreasonable to implicate acetaldehyde, as the compound 
that mediates most of  the toxic effects of  ethanol. 

ALCOHOL AND GUT PERMEABILITY
In order for bacteria or bacterial products such as endo-
toxin to pass into the bloodstream and exert their sys-
temic effects, they are required to cross the gut barrier. 
In its physiological state, the gut represents an effective 
barrier, made of  a single continuous cell layer from the 
stomach to the rectum. The cells are sealed together by 
two sets of  highly complex junctions, the more apical 
tight junction and the adherens junction. Physiologically, 
tight junctions may allow the passage of  small molecules 
up to a molecular weight of  2000 Da but prevents the 
translocation of  larger molecules, in particular bacterial 
products or bacteria[38]. In addition to this mechanical 
barrier, passage of  bacteria or bacterial products is pre-
vented by mucus, immunoglobulins, defensins and other 
antimicrobial products produced by the gut. 

Intestinal permeability can be measured non-invasive-
ly using oral probes such as ethylene glycol polymers of  
varying molecular sizes, oligosaccharides (e.g., lactulose), 
monosaccharides (mannitol) and radiolabeled chelates 
such as chromium-ethylenediaminetetraacetic acid (Cr-
EDTA). All these compounds are poorly absorbed by the 
normal bowel mucosa and display absent or negligible 
metabolism. Hence, increased urinary excretion correlates 
with increased intestinal permeability. It is now acknowl-
edged that the probes are absorbed via the paracellular 
route, implying that competence of  the gut barrier de-
pends on the integrity of  intercellular junctions[39,40]. 

Several studies have addressed the question whether 
alcohol increases gut permeability. Early studies with rats 
chronically administered alcohol revealed increased per-
meability to macromolecules such as hemoglobin with a 
known molecular weight of  17 kDa[41] and horseradish 
peroxidase with a molecular weight of  44 kDa[42]. Perme-
ability to smaller molecules also appears to be increased 
in rodents upon ethanol administration as exemplified by 
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increased lactulose/mannitol ratio. Increased absorption 
of  51Cr-EDTA, a small molecule of  340 Da, was also ob-
served in chronic alcoholics[42]. An increase in absorption 
of  a molecule of  similar size (PEG 400) was reported 
when alcohol was administered to volunteers with no his-
tory of  chronic ethanol abuse[16]. The latter data failed to 
be confirmed by Parlesak et al[43] who did not observe a 
difference in the absorption of  polyethylen glycol (PEG) 
400 when chronic alcoholics were compared to healthy 
subjects. In the same study, however, permeability to 
larger molecules of  polyethylene glycol (PEG 1500, 4000 
and 10000) was significantly enhanced and the perme-
ability to PEG 10000 in particular was 10-fold higher in 
alcoholics. Taken together there is experimental and clini-
cal evidence that gut permeability is enhanced by acute 
and chronic ethanol administration. Permeability seems 
to be increased for molecules of  higher molecular weight 
(from 1000 Da to at least 44 kDa), which is of  particular 
relevance to the translocation of  gut derived bacterial 
endotoxin, a large compound with a known molecular 
weight of  40 kDa, as a putative initiating and aggravating 
factor of  alcohol-induced organ damage. 

In order to explain increased gut permeability by al-
cohol, various morphological and molecular studies have 
been undertaken. There is evidence that alcohol exerts 
direct toxic effects on the gut mucosa. In an observa-
tional study by Gottfried et al[44], seven alcoholic subjects 
with a previously unremarkable oesogastroduodenoscopy 
were administered 1 g/kg body weight alcohol (35% w/v). 
Biopsy specimens taken during oesogastroduodenoscopy 
performed 3 h after alcohol exposure demonstrated tran-
sient focal subepithelial hemorrhage which disappeared 
within 3 d. These observations were corroborated by ex-
perimental data in rodents and dogs[45,46]. Studies of  histo-
logical alterations in patients chronically abusing alcohol 
have yielded conflicting results since both histological 
alterations and normal mucosal structure have been de-
scribed[47]. This may be related to the fact that alcohol-
induced mucosal lesions are short-lived due to rapid 
regeneration of  epithelial cells (in the study reporting 
normal mucosal structure, endoscopies were performed 
3-14 d after alcohol withdrawal). At the molecular level, 
different effects of  ethanol on interepithelial junctions in 
the gut have been described. 

Ethanol at high doses has been reported to lead to 
increased gut permeability via direct action on tight junc-
tions. Ma et al[48] measured epithelial resistance and para-
cellular permeability of  the human adenocarcinoma cell 
line Caco-2 exposed to ethanol. At ethanol concentration 
ranging from 1% to 10% a dose-dependent drop in elec-
trical resistance paralleled by an increase in permeability 
was observed. Ethanol produced a disruption of  the tight 
junction protein ZO-1 as well as disassembly of  cyto-
skeletal proteins such as actin and myosin. These changes 
proved reversible upon ethanol withdrawal. However, 
ethanol concentrations of  1% or above are only encoun-
tered in the duodenum/jejunum where concentrations 
of  up to 5% have been reported[49], while ethanol con-
centrations in the ileum and colon tend to be much lower 

(0.2%-0.25%). This would entail that most of  transloca-
tion of  bacteria or bacterial products occurs in the upper 
gastrointestinal tract. 

As mentioned above, human colonic bacteria have 
the capacity to metabolise alcohol to acetaldehyde[33,50] 
via bacterial alcohol dehydrogenase. Accordingly, colonic 
acetaldehyde concentrations in the millimolar range have 
been observed in rats[51] and piglets[52]. Acetaldehyde 
concentrations of  0.1-0.6 mmol/L led to a disruption of  
tight junctions and adherens junction via tyrosine phos-
phorylation of  their main components[53]. 

In summary, there is substantial evidence that alcohol 
increases gut permeability to large molecules of  the size 
of  endotoxin and these effects may be due to a direct 
toxic effect on the mucosa of  the proximal gut as well as 
molecular modifications at the level of  interendothelial 
junctions. Likewise, acetaldehyde, as a result of  alcohol 
metabolism by colonic bacteria, has the capacity to dis-
rupt epithelial junctions, suggesting that the increased 
serum endotoxin concentrations observed in alcoholics 
may also be of  colonic origin. 

BACTERIA AND LPS IN PANCREATITIS
In the Western society, alcohol represents 70%-80% of  
cases of  chronic pancreatitis. As stated earlier, experi-
mental evidence suggests that bacterial endotoxin is an 
initiating factor for alcoholic pancreatitis[11,12]. In addition, 
bacterial translocation or the passage of  bacterial prod-
ucts such as endotoxin into the systemic circulation ap-
pears to play a primary role in systemic spread, including 
multiple organ system failure and prognosis of  the dis-
ease[54]. While endotoxin may be a key player at both ends 
of  the disease spectrum, i.e., as an initiating and aggravat-
ing factor of  pancreatitis, the mechanisms leading to its 
increased presence in the blood may not be the same. In 
this chapter, both situations will be considered separately. 
The question as to whether bacteria or bacterial products 
(LPS) translocate will be addressed first. 

Sepsis, a consequence of  infected pancreatic necrosis, 
accounts for up to 80% of  deaths in severe acute pan-
creatitis[55]. The germs most commonly cultured from 
infected pancreatic necrosis are gram negative bacilli 
presumably as a result of  increased gut permeability[55,56]. 
Infection of  pancreatic necrosis appears to be an early 
event occurring within a week after initiation of  the 
disease in more than a quarter of  patients undergoing 
necrosectomy[55,57]. However, the translocation of  entire 
bacteria from the gut to the systemic circulation has not 
been proven so far in a setting of  human acute pancreati-
tis. Indeed, blood cultures from patients with severe acute 
pancreatitis are often sterile even with established in-
fected pancreatic necrosis[58]. Ammori et al[54] investigated 
the presence of  bacterial DNA in the systemic circulation 
of  26 patients with acute pancreatitis. No bacterial DNA 
was detected in any of  the samples. In one patient blood 
cultures subsequently turned out to be positive for E. 
Coli. This study suggests that translocation of  entire 
bacteria, as opposed to bacterial products, rarely occurs 
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in acute pancreatitis. However, it has to be noted that 
the administration of  prophylactic antibiotics to 9 of  19 
patients with mild attacks and all 7 patients with severe 
attacks of  pancreatitis may have prevented significant 
bacterial translocation. 

Endotoxin is detectable in the majority of  patients 
with established severe acute pancreatitis, in particular in 
more than 90% of  patients dying of  the disease[59,60]. Mea-
suring circulating anti-endotoxin antibodies Barclay et al[61] 
have observed a significant decrease in antibody titres in 
patients with severe acute pancreatitis compared to patients 
with mild disease, suggesting higher endotoxin exposure in 
the former. In a comprehensive study, Ammori et al[8] under-
took to measure intestinal barrier function (by measuring 
intestinal permeability using a PEG probe of  3350 Da) 
early in the course of  acute pancreatitis and to examine 
the correlation between intestinal permeability, endo-
toxinaemia and disease severity. Intestinal permeability 
was significantly increased in patients with severe acute 
pancreatitis in comparison to mild disease and disease-
free controls. Changes in permeability occured early in 
the course of  the disease, before the development of  
multiple organ system failure. Endotoxinaemia corre-
lated with intestinal permeability and was present more 
frequently and at higher concentrations in patients with 
severe disease. Similar observations were made by Wind-
sor et al[9] demonstrating that a significant fall in serum 
concentrations of  immunoglubulin G antiendotoxin 
core antibodies as a surrogate marker for endotoxemia 
in patients with acute pancreatitis was predictive of  pan-
creatitis severity and multiple organ system failure. 

LPS has also been reported to be a disease modifier 
in experimental non-alcoholic pancreatitis induced by 
various treatments. In a rat model of  acute pancreatitis 
induced by the closed duodenal loop procedure[62] dis-
ease severity was significantly worsened by endotoxin ad-
ministration[62]. Pastor et al[63] studied the direct effect of  
bacterial endotoxin on the course of  caerulein-induced 
acute pancreatitis and pancreatitis-associated lung injury 
in TLR4 knockout mice and TLR4 sufficient controls. 
Administration of  LPS alone did not induce pancre-
atitis per se nor did it potentiate the effects of  cerulein 
on the pancreas in either mouse strain. However, there 
was a significant deterioration of  pancreatitis-associated 
lung injury when LPS was combined with cerulein in 
wild type mice; lung injury was significantly reduced in 
TLR4 knockout mice implying that the effect of  LPS 
was mediated via the TLR4 pathway[63]. Surprisingly, tar-
geted deletion of  TLR4 and CD14 in mouse models of  
cerulein- and Arginine-induced pancreatitis without LPS 
administration, resulted in attenuated pancreatitis and 
pancreatitis-associated lung injury[64]. The latter study 
suggests that “endogenous” endotoxin might play a role 
in the pathophysiology of  these models or that LPS re-
ceptors play additional roles other than LPS signal trans-
duction in pancreatitis.

The question whether endotoxinemia is an initiat-
ing event of  alcoholic pancreatitis, similar to alcoholic 
liver disease has been approached in animal models. As 

noted earlier, it is well known that only a minority of  
alcoholics will ever develop acute pancreatitis suggesting 
that additional factors are required to elicit overt dis-
ease. This is evidenced by experimental work in rodents 
where long-term administration of  ethanol did not lead 
to pancreatitis[65]. Fortunato et al[11] studied the effect of  
intravenous LPS administration on rats fed a Lieber-de 
Carli liquid diet with or without alcohol. Using single 
LPS doses of  up to 3 mg/kg body weight, the authors 
showed a dose-dependent increase in pancreatic lesions, 
while rats fed alcohol alone did not display significant 
pancreatic damage. In accordance with the hypothesis 
whereby repeated attacks of  acute pancreatitis lead to 
chronic disease (necrosis-fibrosis sequence proposed by 
Ammann et al[66]), Vonlaufen et al[12] showed that repeated 
weekly injections of  endotoxin to alcohol-fed rats led to 
significant pancreatic fibrosis via a TLR4 mediated effect 
on pancreatic stellate cells (PSCs), the main effectors of  
pancreatic fibrosis. Moreover, the presence of  TLR4 and 
its co-receptor CD14 was detected on disease-associated 
and normal human pancreatic stellate cells[12,67], suggest-
ing that PSCs are a relevant target for endotoxin in hu-
man alcoholic pancreatitis. 

Taken together, endotoxin (from gut derived bacte-
ria) appears to be an aggravating factor of  pancreatitis 
and associated extra-pancreatic organ damage regardless 
of  aetiology. Furthermore, there is increasing (experi-
mental) evidence that it may play a specific role in the 
initiation and progression of  alcoholic pancreatitis. 

THE GUT-LIVER-PANCREAS AXIS
In healthy humans, trace amounts of  endotoxin may 
transiently enter the portal circulation and are cleared 
by Kupffer cells in the liver. When alcohol is consumed, 
the detoxifying capacity of  the liver seems overwhelmed, 
since endotoxin is detected in the systemic circulation. 
In 1987, Bode et al[3] showed for the first time that gut-
derived endotoxin is increased in the systemic circula-
tion after acute alcohol consumption by subjects with or 
without liver damage. The authors evaluated peripheral 
venous blood endotoxin concentrations in patients with 
alcoholic and non-alcoholic cirrhosis and in a group 
of  alcoholics with no evidence of  chronic liver disease. 
Increased endotoxin concentrations were found in a 
significantly larger proportion of  patients with alcoholic 
liver disease (67.3%) than patients with liver disease of  
non-alcoholic aetiology (45.5%, P < 0.025). Moreover, al-
most half  of  all subjects without preexisting liver disease, 
presenting after a single alcoholic binge, were found to 
have endotoxin in the blood; importantly, in this group 
endotoxinemia appeared to be a transient phenomenon 
with no endotoxin detected after 5-8 d. Further work 
by the same group confirmed elevated blood endotoxin 
levels in a significantly higher proportion of  patients with 
alcoholic cirrhosis compared to patients with cirrhosis of  
a different cause. It is noteworthy, that mean blood endo-
toxin concentrations were significantly higher in cirrhot-
ics of  alcoholic aetiology (19 ± 2.3 vs 12 ± 3.1 pg/mL, P 
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< 0.025)[4].  
Early work in patients with cirrhosis has reported 

toxic effects of  alcohol on the reticulo-endothelial sys-
tem, notably reduced phagocytic and metabolic activity 
of  macrophages[68]. Experimentally, Kupffer cells from 
alcohol-fed rodents treated in vitro with ethanol at con-
centrations ranging from 10 to 100 mmol/L (correspond-
ing to alcohol concentrations found in moderate drinkers 
and severe alcoholics respectively) displayed reduced 
endotoxin uptake and decreased production of  the proin-
flammatory cytokine tumor necrosis factor alpha (TNF-α), 

an effect that was dose-dependent[69]. Endotoxin alone 
activates Kupffer cells by increasing their phagocytic ca-
pacity and inducing the production of  proinflammatory 
cytokines (such as TNF-α and interleukin-6 )[70].

Whether concomitant liver disease is a co-factor for 
alcoholic pancreatitis remains elusive. It is well known 
that patients with cirrhosis are predisposed to episodes 
of  bacterial infections, including spontaneous bacterial 
peritonitis with bacteria of  gut origin[71,72]. Liver disease 
impacts on small bowel motility (and potentially bacte-
rial overgrowth), and this effect worsens with increasing 
severity of  liver disease[73]. Experimentally, CCl4-induced 
cirrhosis resulted in enterocyte oxidative stress, altered 
enterocyte mitochondrial function, increased lipid peroxi-
dation and altered intestinal transport[74]. Part of  the oxi-
dative stress occurring in the enterocyte appears to be re-
lated to increased xanthine oxidase activity and increased 
intestinal permeability, a mechanism that can be blocked 
experimentally by the administration of  xanthine oxidase 
inhibitors[75]. Accordingly, administration of  allopurinol 
to patients with established cirrhosis efficiently reduced 
(systemic) oxidant stress, but did not have a significant ef-
fect on intestinal permeability[76]. 

Do alcoholic liver and pancreas disease occur to-
gether? A recent study by Yang et al[77] reviewing the epi-
demiology of  alcohol-related pancreatic and liver disease 
in the United States, has reported that the prevalence of  
patients discharged with a diagnosis of  both acute alco-
holic pancreatitis and acute alcoholic hepatitis or both 
chronic alcoholic pancreatitis and chronic alcoholic liver 
disease was significantly lower than the prevalence of  
either disease alone. This is in conflict with necropsy data 
suggesting that subclinical damage to both organs often 
coexists[1].

PROPHYLAXIS AND SUPPORTIVE 
TREATMENT
Alcohol abstinence is the most obvious prophylaxis for 
alcoholic pancreatitis. Studies suggest that it reduces the 
incidence of  acute attacks and retards clinical progression 
of  the disease[78]. However, this goal is seldom reached 
and recurrence is common[79] (Figure 1).

Since bacteria or bacterial products appear to play 
a primary role in the initiation, progression and rate of  
complications of  alcoholic pancreatitis, it appears logical 
to target gut bacteria either within the lumen via bacterial 
decontamination with nonabsorbable antibiotics or once 
translocation has occurred, via systemic administration of  
antibiotics. 

Experimental evidence in rodents suggests that selec-
tive bacterial decontamination by oral, non absorbable 
antibiotics significantly reduced the incidence of  pancre-
atic infection[80-82]. However, the application of  prophy-
lactic antibiotics in patients with acute pancreatitis has 
proven ineffective in a large randomized trial comparing 
the administration of  meropenem vs placebo[83]. Another 
way to influence bacterial luminal content and act on gut 
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Figure 1  Alcohol and lipopolysaccharide promote pancreatic necroin-
flammation and fibrosis via pancreatic stellate cell activation. A: Alcohol 
abstinence. In healthy, non-alcoholic subjects small amounts of lipopolysaccha-
ride (LPS) derived from the membrane of commensal gram negative bacteria 
(B) cross the gut epithelial barrier at the level of interendothelial junctions. LPS 
reaches the liver via the portal circulation where it is entirely cleared by Kupffer 
cells (KC) in the liver sinusoids (S), preventing it from entering the systemic cir-
culation and reaching systemic organs such as the pancreas; B: Chronic etha-
nol consumption. Chronic alcohol consumption promotes bacterial proliferation 
in the proximal small bowel, dissociation of interendothelial junctions (by direct 
toxicity of alcohol and its metabolites) and leads to increased translocation of 
LPS into the portal circulation. In the liver, alcohol decreases the phagocytic 
capacity of Kupffer cells. As a result, LPS enters the systemic circulation and 
exerts its harmful effects on the pancreas. Alcohol and LPS promote pancreatic 
necroinflammation and fibrosis via PSC activation. TJ: Tight junctions; AJ: Ad-
herens junctions; AC: Acinar cell; PSC: Pancreatic stellate cell.
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barrier integrity may be the application of  probiotics 
(mostly lactobacilli or bifidobacterium strains), that is 
bacteria which exert protective effects on gut epithelial 
integrity and prevent colonization by pathogens[84]. How-
ever, in a large multicentre randomized controlled trial 
administration of  a cocktail of  probiotic bacterial strains 
(4 lactobacilli and 2 bifidobacteria)[85] within 72 h after 
onset of  symptoms of  pancreatitis was of  no proven 
benefit. Moreover, excess mortality in the probiotic 
group was observed, with one third of  deaths related 
to bowel ischemia. All of  these patients presented with 
early organ failure. In a substudy it became apparent that 
administration of  these particular probiotic bacterial 
strains in patients with multiple organ failure resulted 
in increased gut mucosal damage and permeability, as 
assessed by urinary intestinal fatty acid binding protein 
IFABP and NOx concentrations, while bacterial translo-
cation was reduced in patients without organ failure[86]. 

Several animal and human studies have shown that 
enteral nutrition has a beneficial effect on gut mucosal 
integrity. In a recent meta-analysis by Petrov et al[87] in-
cluding 5 randomised controlled trials in patients with 
severe acute pancreatitis, it was concluded that enteral 
feeding led to a significant reduction of  pancreatic infec-
tions, other infectious complications and mortality, but 
not of  organ failure. Another meta-analysis including 8 
randomised controlled trials reached similar conclusions 
but also recorded a significant reduction in organ failure 
and need for surgical interventions in the total enteral 
nutrition (TEN) groups as compared to patients receiv-
ing total parenteral nutrition[87]. Despite overwhelming 
evidence in favour of  early TEN in a setting of  acute 
pancreatitis, the dogma that the diseased pancreas needs 
to be “put at rest” still prevails in many centers. 

Taken together, early enteral nutrition significantly re-
duces infectious complications and mortality in patients 
suffering from acute pancreatitis regardless of  aetiology. 
In contrast, the systematic administration of  systemic 
antibiotics or of  probiotics can not be recommended. To 
date, prophylactic studies aiming at inhibiting gut barrier 
dysfunction/bacterial translocation in alcoholic subjects 
are lacking.  

CONCLUSION
There is now clear clinical and experimental evidence that 
bacteria and bacterial products such as endotoxin are as-
sociated with complications of  pancreatitis. Furthermore, 
results of  animal studies support the concept that bacte-
rial endotoxin is an important factor in the initiation and 
progression of  alcoholic pancreatitis. 

Since all alcoholics may be expected to have bacte-
rial translocation, the fact that only a minority develops 
overt pancreatitis indicates that genetic polymorphism 
plays a primordial role. Nonetheless, only two candidate 
genes (carboxylester lipase[88] and chymotrypsin C[89])-
explaining a minoritiy of  cases of  alcoholic pancreatitis-
have been identified so far. Additional case-control stud-
ies, comparing alcoholics with pancreatitis to alcoholics 

without pancreatic disease, and targeting genes encoding 
tight junctional proteins or LPS-receptors are needed to 
clarify the issue. Moreover, particular attention should be 
paid to the assessment of  the quality of  the microbiome 
in these two populations. 
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