
marrow or spleen, especially in conditions of cancer, 
infections or inflammation. MDSC usually express 
CD11b, CD33, and low levels of human leukocyte 
antigen-DR in humans or CD11b and Gr1 (Ly6C/G) in 
mice, and they can be further divided into granulocytic 
or monocytic MDSC. The liver is an important organ 
for MDSC induction and accumulation in hepatic as 
well as extrahepatic diseases. Different hepatic cells, 
especially hepatic stellate cells, as well as liver-derived 
soluble factors, including hepatocyte growth factor 
and acute phase proteins (SAA, KC), can promote the 
differentiation of MDSC from myeloid cells. Importantly, 
hepatic myeloid cells like neutrophils, monocytes 
and macrophages fulfill essential roles in acute and 
chronic liver diseases. Recent data from patients 
with liver diseases and animal models linked MDSC 
to the pathogenesis of hepatic inflammation, fibrosis 
and hepatocellular carcinoma (HCC). In settings of 
acute hepatitis, MDSC can limit immunogenic T cell 
responses and subsequent tissue injury. In patients 
with chronic hepatitis C, MDSC increase and may 
favor viral persistence. Animal models of chronic liver 
injury, however, have not yet conclusively clarified the 
involvement of MDSC for hepatic fibrosis. In human HCC 
and mouse models of liver cancer, MDSC are induced 
in the tumor environment and suppress anti-tumoral 
immune responses. Thus, the liver is a primary site of 
MDSC in vivo , and modulating MDSC functionality might 
represent a promising novel therapeutic target for liver 
diseases.

Key words: Myeloid derived suppressor cells; Inter-
leukin-10; Treg; Liver cirrhosis; Macrophage; Hepatitis C 
virus
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Core tip: Myeloid derived suppressor cells (MDSC) are a 
heterogeneous population of immune-suppressive cells 
with important roles during inflammation, infection and 
cancer. The liver is a primary site for MDSC induction 
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Abstract
Myeloid derived suppressor cells (MDSC) are a hetero-
geneous population of immune cells that are potent 
suppressors of immune responses. MDSC emerge in 
various compartments in the body, such as blood, bone 
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and accumulation, and recent studies linked these cells 
to the pathogenesis of hepatic inflammation, fibrosis 
and hepatocellular carcinoma. MDSC can limit tissue 
injury during acute hepatitis, while they may favor viral 
persistence in chronic hepatitis. MDSC are also induced 
during development of liver cancer and suppress anti-
tumoral immunity, but their involvement in hepatic 
fibrosis is less clear. Thus, modulating MDSC functionality 
might represent a promising novel therapeutic target for 
liver diseases.

Hammerich L, Tacke F. Emerging roles of myeloid derived 
suppressor cells in hepatic inflammation and fibrosis. World J 
Gastrointest Pathophysiol 2015; 6(3): 43-50  Available from: 
URL: http://www.wjgnet.com/2150-5330/full/v6/i3/43.htm  DOI: 
http://dx.doi.org/10.4291/wjgp.v6.i3.43

INTRODUCTION
Myeloid-derived suppressor cells (MDSC) are a hetero-
geneous cell population of myeloid origin originally 
described in tumor-bearing hosts[1] that are also induced 
under various inflammatory conditions - including 
sepsis[2], hepatitis[3,4] and viral infections[5-7]. MDSC 
regulate immune responses by potently suppressing 
T cell function[8]; although these T cell suppressive 
activities have been functionally linked to tumor pro-
gression or evasion from immune responses, the exact 
roles of MDSC appear to be context-dependent and 
vary between infectious, autoimmune or malignant 
diseases. MDSC are usually identified as CD11b+ CD33+ 
HLA-DRlow cells in humans and CD11b+ Gr1+ cells in 
mice[9]. However, a specific marker for MDSC has not 
been described so far, which can make identification of 
these cells difficult as all those surface molecules are 
shared with other myeloid cell types such as neutrophils, 
monocytes or myeloid dendritic cells. Therefore, the 
most reliable feature to distinguish MDSC from other 
myeloid cells seems to be their suppressive function.

MDSC consist of at least two major subpopulations 
that are termed monocytic MDSC (mMDSC) and granu-
locytic MDSC (gMDSC) according to their side scatter 
(SSC) profile and Gr1 (Ly6C/G) expression in mice[10]. 
Whereas murine mMDSC have a low SSC profile and 
are Ly6Chi Ly6G-, gMDSC are Ly6Clo Ly6Ghi and show a 
higher SSC profile. In humans, CD14 and CD15 have 
been suggested as markers for mMDSC and gMDSC, 
respectively, but further investigation is needed to verify 
this hypothesis[11]. The two subsets seem to differ in 
their suppressive capacity and functional mechanism(s) 
depending on the disease studied. 

As MDSC are heterogeneous myeloid cells with 
immune suppressive functions, several mechanisms 
of T cell suppression have been described. These 
mechanisms include L-arginine depletion by the 
enzymes arginase 1 (Arg1) or inducible nitric oxide 
synthase (iNOS) and generation of reactive oxygen 

species (ROS)[8,10,12]. Furthermore, MDSC have also 
been shown to secrete anti-inflammatory cytokines 
like IL-10[13]. Again, the suppressive mechanisms used 
by the different subsets as well as the requirement of 
cell-cell-contacts vs secretion of soluble factors seem 
to be highly dependent on the underlying pathology 
(Table 1). A recent study on the development of murine 
MDSC suggested that the two subsets depend on the 
expression of distinct anti-apoptotic proteins and that T 
cell suppressive functions are restricted to the mMDSC 
subset[14].

THE LIVER AS A SITE OF MDSC 
ACCUMULATION AND INDUCTION
The liver has been shown to be a site of MDSC accu-
mulation, and this seems to apply to hepatic and also 
to extrahepatic diseases. Different hepatic cell types 
as well as liver-derived soluble factors have been 
implicated in the recruitment and differentiation of 
MDSC under various conditions (Figure 1). In tumor-
bearing mice with various types of cancer - including 
breast, lung and skin cancer - MDSC numbers increased 
in the liver irrespective of whether the mice had tumor 
manifestation in the liver, namely hepatic metastasis, 
or not[15]. Furthermore, adoptively transferred MDSC 
homed to livers and spleens of tumor-bearing mice in 
a comparable fashion. Ilkovitch et al[15] could show that 
this increase in hepatic MDSC is at least in part due 
to elevated levels of GM-CSF, a hematopoietic growth 
factor produced by many different types of tumors and 
associated with splenic accumulation of MDSC.

Additionally, hepatic stellate cells (HSC), a cell type 
associated with various immune-modulatory func-
tions[16], have been shown to induce MDSC from myeloid 
cells in mice and men. Primary human HSC were able 
to induce differentiation of MDSC from PBMC in vitro[17]. 
This induction was dependent on direct cell-cell contacts 
as well as on the expression of CD44 by HSC and led 
to generation of CD14+ HLA-DRlo cells able to suppress 
T cell responses in an arginase 1-dependent manner. 
Similarly, murine hepatic stellate cells were proven to 
induce CD11b+Gr1+ MDSC from bone marrow-derived 
cells[18,19]. However, this induction seems to be mediated 
by soluble factors rather than cell-cell contact. Chou et 
al[18] implicated a critical role for IFNγ signaling in HSC, 
and an additional study from the same group showed 
that MDSC induction was mediated by complement 
component C3 released by HSC[19]. In addition, both 
studies demonstrated that HSC could also induce MDSC 
in vivo in the context of islet cell transplantation and 
therefore contribute to allograft survival.

Furthermore, liver-derived soluble factors can also 
promote the generation of MDSC (Figure 1). Human 
mesenchymal stromal cells and an osteosarcoma cell 
line are able to induce the expansion of CD11b+ CD33+ 
CD14- MDSC from peripheral blood leukocytes in 
vitro, an effect that is mediated by hepatocyte growth 
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factor (HGF) and its receptor c-Met[20]. Since the liver 
usually harbors high levels of HGF this might be an 
explanation for the high numbers of MDSC present in 
the liver even under steady state conditions. Indeed, 
inhibition of the HGF/c-Met pathway in mice led to a 
significant reduction in hepatic but not splenic MDSC[20]. 
In the context of polymicrobial sepsis in mice hepatic 
acute-phase proteins play a critical role for controlling 
the inflammatory reaction to infection. Both serum 
amyloid A (SAA) and the chemokine CXCL1/KC work 
synergistically to mobilize MDSC from the bone marrow 
and induce their accumulation in the spleen[2]. Mice 
lacking the production of acute phase proteins due to 
the deletion of the IL-6 cytokine family receptor gp130 
in hepatocytes showed less accumulation of MDSC 
and increased mortality during sepsis, which could be 
reversed by adoptive transfer of MDSC or administration 
of recombinant SAA and KC[2]. Consistently, the ectopic 
expression of IL-6 in the liver induced accumulation of 
MDSC in liver and spleen, which protected mice from 
CD8+ T cell-mediated liver injury[21]. 

Another factor that may contribute to for the 
accumulation of MDSC in the liver is activation of 
inflammasomes, proteolytic complexes activated by 
pattern recognition receptors (PRR), and resulting in 
the production of IL-1β and IL-18. In murine cancer 
models activation of the Nlrp3 inflammasome has been 
associated with the accumulation of MDSC and sup-
pression of anti-tumor immune responses[22,23]. This 
may also apply to liver diseases as inflammasome acti-
vation is important in a wide range of conditions[24,25]. 

Chronic human liver diseases are often associated with 
changes in the intestinal microbiome with the resulting 
inflammation leading to disruption and enhanced 
permeability of the intestinal epithelial barrier[26,27]. 
This enables the translocation of microbial products, 
which can travel to the liver via the portal vein and 
activate the inflammasome complex through PRRs. 
So far, this process has mainly been described for 
liver macrophages[28], but considering what has been 
observed for tumor-associated MDSC, inflammasome 
activation might also induce accumulation of hepatic 
MDSC.

MDSC IN THE REGULATION OF HUMAN 
LIVER DISEASES
While the above mentioned data demonstrated that 
the liver is an important site of MDSC induction for 
extrahepatic infections and cancer, more recent data 
implied hepatic MDSC as essential regulators of liver 
diseases as well. Several studies have concordantly 
reported that patients with hepatocellular carcinoma 
(HCC) or chronic hepatitis C virus (HCV) infection 
show increased frequencies of MDSC in the peripheral 
blood[6,7,29-32]. Human MDSC in HCC patients are mainly 
CD14+ HLA-DR-/low and able to inhibit T cell proliferation 
in an arginase dependent manner[29]. Furthermore, 
these cells induce a regulatory phenotype in CD4+ 
T cells and inhibit natural killer (NK) cell function in 
vitro[29,33]. Likewise, MDSC in the blood of patients 
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Figure 1  Myeloid derived suppressor cells in liver disease. Left: Myeloid derived suppressor cells (MDSC) accumulate during infectious, inflammatory or 
malignant diseases in several compartments of the body, including the liver. MDSC potently suppress immunogenic T cell responses, which is also relevant for liver 
diseases such as hepatic inflammation, fibrosis or HCC. Right: The induction of monocytic (mMDSC) or granulocytic (gMDSC) MDSC in the liver is promoted by 
different cell types in the liver via cell-cell-contact dependent mechanisms (e.g., CD44) as well as via various soluble mediators. Details are provided in the main text. 
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with chronic HCV were shown to be CD11b+ HLA-DRlow 
CD14+ CD33+ and suppress T cells using arginase[6]. 
In addition, ROS production may contribute to T cell 
inhibition by MDSC, and HCV-infected hepatocytes were 
found to promote MDSC differentiation from PBMC[7]. 
This might represent a mechanism of HCV-mediated 
immune suppression that leads to persistent infection. 

ROLE OF MDSC FOR HEPATOCELLULAR 
CARCINOMA
Several studies have addressed the function of MDSC 
in liver cancer by investigating murine models of HCC. 
Mice bearing liver tumors show increased numbers of 
MDSC in liver, spleen, and bone marrow[34-37]. Remark-
ably, the timing of MDSC accumulation seems to be 
highly dependent on the tumor model studied. Mice 
with diethylnitrosamine (DEN) or transgenic myc-
overexpression induced liver tumors, in which primary 
liver cancer develops slowly in the “normal” hepatic 
microenvironment, showed increased MDSC numbers 
only during late stages of the disease, while mice with 
orthotopic or subcutaneous tumors displayed increased 
MDSC numbers early on[34]. In addition, MDSC from 
mice with transplantable tumors showed higher sup-
pressive capacity than MDSC from mice with DEN-

induced HCC. Several studies showed that treatment 
with the multi-kinase inhibitor sorafenib[34,35] or an 
agonistic anti-CD137 antibody[37] decreased frequency 
of MDSC in mice bearing HCC, thereby contributing to 
anti-tumoral immunity. 

Several soluble factors have been implicated in the 
recruitment of MDSC during HCC development. Tumor 
derived GM-CSF and KC mediated the accumulation of 
MDSC during hepatocarcinogenesis, and neutralization 
of these molecules reduced hepatic MDSC numbers[34]. 
Interleukin-17 (IL-17) produced by gamma/delta T 
cells (gd T cells) also indirectly mediated MDSC accu-
mulation[38]. Ma et al[38] showed that gd T cell-derived 
IL-17 induced secretion of CXCL5 by tumor cells, 
which then recruited MDSC via engagement of CXCR2. 
Moreover, IL-17 also acted on the MDSC directly 
by enhancing their suppressive capacity and MDSC 
enhanced the production of IL-17 by gd T cells through 
release of IL-23 and IL-1β. Similarly, gd T cell-derived 
IL-17 has also been shown to recruit MDSC to the liver 
in HBV-transgenic mice, where they induce CD8 T cell 
exhaustion and HBV tolerance[5].

In DEN-induced liver carcinogenesis IL-18, is also 
involved in recruitment of MDSC to the liver. Li et 
al[39] demonstrated recently that TLR2-deficient mice 
develop more aggressive HCC than wildtype (wt) mice 
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  Species Type of disease Surface phenotype Function of MDSC Mechanism Ref.

  Human Chronic HCV infection CD11b+ HLA-DRlo CD33+ CD14+ Inhibition of T cell proliferation and IFNg production Arginase1 [6]
  Human HCV-infected hepatocytes CD11b+/lo HLA-DRlo/- CD33+ 

CD14+
Inhibition of T cell cytokine production ROS

Cell-cell-
contact

[7]

  Human HCC CD11b+ HLA-DR- CD33+ CD14- Long-lasting inhibition of effector T cells [22-30] 
  Human HCC HLA-DRlo/- CD14+ Inhibition of natural killer cells Cell-cell-

contact
NKp30

[33]

  Human HCC HLA-DRlo/- CD14+ Induction of Treg and inhibition of effector T cells Arginase [29]
  Mouse CCl4-mediated fibrosis CD11b+Ly6G-Ly6ChiF4/80+ Amelioration of fibrosis through inhibition of HSC IL-10 

production
[13]

CD11b+Ly6G+Ly6CloF4/80-

  Mouse Th1-mediated 
inflammation

CD11b+Ly6G-Ly6Chi Inhibition of T cell proliferation (CD4+ and CD8+) iNOS
cell-cell-
contact

[48]
CD11b+Ly6G+Ly6Clo

  Mouse Sepsis CD11b+Gr1+ Inhibition of IL-12 and induction of IL-10 release by 
macrophages

Cell-cell-
contact

[2]

  Mouse Immune-mediated 
hepatitis

CD11b+Ly6GloLy6Chi Suppression of CD4+ T cell proliferation iNOS [46,47]
CD11b+Ly6G+Ly6Clo

  Mouse ConA-mediated hepatitis CD11b+Ly6G-Ly6C+ Protection against liver injury through inhibition of T 
cells

Arginase [4]
CD11b+Ly6G+Ly6C+(int)

  Mouse ConA/LPS-mediated 
hepatitis

CD11b+Ly6GloLy6Chi Suppression of CD4+ T cell proliferation and cytokine 
production

iNOS
cell-cell-
contact

[3,45]
CD11b+Ly6GhiLy6Cint

  Mouse CTL-mediated liver injury CD11b+Gr1+ Suppression of CTL proliferation and IFNg production [21]
  Mouse HBV (transgenics) CD11b+Gr1+ Suppression of HBV-specific CTL Arginase

iNOS
[5]

  Mouse HCC/primary liver 
tumors

CD11b+Gr1+ Suppression of anti-tumor CTL [35,36,38]

  Mouse Gastrointestinal cancer 
with liver metastasis

CD11b+Gr1+/int Inhibition of T cell proliferation and tumor cell lysis [40]

Table 1  Functional role of myeloid derived suppressor cells in the regulation of human and murine liver diseases

ConA: Concanavalin A; CTL: Cytotoxic T lymphocyte; HCC: Hepatocellular carcinoma; HCV: Hepatitis C virus; IFN: Interferon; IL: Interleukin; iNOS: 
Inducible nitric oxide synthase; ROS: Reactive oxygen species; Treg: Regulatory T cell; MDSC: Myeloid derived suppressor cells.
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associated with increased numbers of MDSC in the liver. 
This was mediated by IL-18 produced by hepatocytes 
and could be reversed through silencing of IL-18. 

Interestingly, MDSC have also been associated 
with the development of liver metastasis. Mice with 
different types of intra-abdominal tumors showed a 
significant accumulation of MDSC in the liver that were 
able to potently suppress cytotoxic T cells and induce 
regulatory T cells[40]. Hepatic MDSC also differed from 
splenic MDSC in these models, expressing higher levels 
of immune-modulatory cytokines and being primarily of 
a monocytic phenotype. Similarly to HCC development, 
hepatic accumulation of MDSC was mediated by tumor-
derived KC. This suggests that MDSC promote the 
development of liver metastases and may provide 
an explanation why human intra-abdominal cancers 
metastasize preferentially to the liver[41].

ROLE OF MDSC IN MOUSE MODELS OF 
LIVER INFLAMMATION AND FIBROSIS
The accumulation of neutrophils, monocytes and 
macrophages is a hallmark of acute and chronic liver 
inflammation. For instance, hepatic neutrophils are 
associated with drug-induced liver injury, alcoholic 
hepatitis or ischemia-reperfusion injury[42]. Hepatic 
macrophages are a remarkably heterogeneous popu-
lation comprising myeloid cells with different origins 
(e.g., resident Kupffer cells vs infiltrating monocyte-
derived macrophages) and distinct properties[43]. Some 
of these neutrophils and macrophages have a clear 
immunosuppressive phenotype, prompting research on 
MDSC in acute and chronic liver injury.

Recently, MDSC have been studied in the context 
of acute liver inflammation and are usually associated 
with protective functions in this setting. We and others 
could show that MDSC accumulate in the liver during 
Concanavalin A (ConA)-, D-galactosamine (D-gal) and 
picryl chloride-induced hepatitis[3,4,44-47] and protect the 
liver from excessive damage. However, there seems to 
be controversy about which subsets are preferentially 
involved and which suppressive mechanisms they use. 
Two independent studies showed that administration of 
cannabidiol[4] or IL-25[3] increases the number of hepatic 
CD11b+ Gr1+ cells that ameliorated organ damage 
upon immune-mediated hepatitis. In this setting, the 
ratio of gMDSC to mMDSC was about 2:1, and T cell 
responses were inhibited in an arginase-dependent 
manner with mMDSC being more suppressive than 
gMDSC[4]. Consistently, we have shown that inhibiting 
the suppressive capacity specifically in the mMDSC 
subset led to severely aggravated hepatitis upon 
ConA-challenge[44]. Similar observations were also 
made by another group studying the role of FTY720, 
a sphingosine-1-phosphate receptor agonist, in 
recruitment of MDSC to the liver[46,47]. However, the 
suppressive function of these cells was dependent on 
iNOS and NO production rather than arginine depletion 

by Arg1. Furthermore, these studies also provided some 
insight into how MDSC are recruited to the liver. Similarly 
to what has been observed in liver cancer, MDSC 
accumulation was mediated via CXCR2[46,47]. In contrast 
to the aforementioned studies, Zhu et al[45] showed 
that, although both MDSC subtypes were recruited, 
only mMDSC were able to suppress T cell responses 
and limit liver damage in ConA-mediated hepatitis. This 
was also observed in acutely inflamed livers of Tgfβ1-/- 
mice[48], where both subtypes of MDSC accumulated 
but only mMDSC were capable of suppressing T cells 
utilizing iNOS.

Overall, the liver provides a unique tolerogenic micro-
environment, and several antigen-presenting cells 
contribute to the suppression of immunogenic T cell 
responses in the liver[49]. It has become increasingly 
clear that immune tolerance can also occur during chro-
nic liver diseases. On the one hand, such tolerogenic 
mechanisms may limit intrahepatic immune responses 
and subsequent tissue injury, but on the other hand, 
immune tolerance may restrain eradication of pathogens 
and favor chronic infections[50]. Only limited data is 
available on the involvement of MDSC in chronic liver 
injury and the development of liver fibrosis. A recent 
study by Suh et al[13] indicates that bone marrow-derived 
MDSC can ameliorate hepatofibrogenesis through 
the production of IL-10, which downregulates pro-
fibrotic functions of activated HSC. Interestingly, IL-10 
production was induced upon contact with activated 
HSC in vitro, suggesting a mechanism for the beneficial 
effects observed in patients and mice with hepatic 
fibrosis treated with infusion of bone marrow cells[51]. 
On the contrary, liver fibrosis development upon chronic 
injury was not affected in a mouse model of transgenic 
overexpression of the transcription factor crem-alpha, 
which impairs the functionality of hepatic mMDSC[44]. 
Thus, more data are needed to define the possible role 
of MDSC in chronic inflammatory settings in the liver, 
and their involvement may likely vary depending on the 
etiology of the underlying disease, e.g., autoimmunity, 
chronic viral hepatitis or metabolic injury.

MDSC AS THERAPEUTIC TARGETS FOR 
THE TREATMENT OF LIVER DISEASES
Given that MDSC are mainly associated with pathoge-
nic functions in human chronic liver diseases such as 
chronic viral infections or liver cancer development, 
depletion of these cells and/or inhibition of their deve-
lopment may hold high potential in the treatment of 
such diseases. It has been shown that MDSC can be 
differentiated from murine bone-marrow cells and 
human PBMC in vitro in the presence of GM-CSF and 
IL-6[52-54]. Thus, these cytokines might be therapeutically 
targeted to avoid development of MDSC in vivo, but 
due to the various other functions of these cytokines, 
systemic inhibition might not be feasible and methods 
of local inhibition should be explored. In tumor bearing 
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mice depletion of MDSC using a Gr-1 specific antibody 
has proven to help with eradication of tumors and 
prevention of recurrence[55,56]. However, a more recent 
study reported that this antibody failed to completely 
eliminate hepatic MDSC[57], challenging the feasibility of 
this approach for liver disease therapy. Since MDSC are 
considered immature cells, influencing the differentiation 
of these cells into other myeloid cells that promote 
rather than inhibit immune responses could be a differ-
ent therapeutic approach. Retinoic acid and vitamin 
D3 have both been implicated in the differentiation of 
MDSC to dendritic cells in vitro and administrations of 
these agents to tumor-bearing mice or cancer patients 
resulted in the significant improvement of anti-tumor 
immune responses[58-61].

In murine models of acute liver inflammation MDSC 
have been associated with protective rather than 
pathogenic functions. Therefore, it might be helpful to 
enhance hepatic MDSC numbers for the treatment of 
patients with acute inflammation or autoimmunity in 
the liver. The previously mentioned induction of MDSC 
from PBMC using GM-CSF and IL-6 would allow for the 
generation and expansion of autologous MDSC that 
can then be retransferred to the patient. The fact that 
adoptively transferred MDSC preferentially home to the 
liver[15] acts in favor of this approach allowing directed 
delivery of MDSC to the site of inflammation. However, 
migration of MDSC and “off-target” T cell suppression 
cannot be ruled out and should be considered in this 
setting.

Taken together, MDSC represent promising thera-
peutic targets in the treatment of liver diseases, but 
more extensive research is needed before these appro-
aches can be used in clinical settings.
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