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Core tip: Genetically engineered probiotic bacteria, 
with improved in vivo  stress survival and persistence, 
have the potential to enhance, and in some instances 
replace, conventional prophylactic and therapeutic 
measures. This is particularly relevant in the developing 
world, where chronic and acute infections, and their 
associated sequelae impose a significant clinical and 
economic burden.
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INTRODUCTION
Probiotics are commensal organisms that can be 
harnessed for therapeutic benefit[1]. In acute infections 
probiotics may enhance protection mediated by com
mensal flora through direct antagonism, i.e., completion 
for niches and nutrients, or via the production of 
antimicrobials, such as bacteriocins[2]. In chronic clinical 
conditions, such as immuno-suppression, microbe-
host signalling is likely more relevant to effective 
probiotic function. This bacterialhost dialogue within 
the gut lumen, functions to maintain an effective 
mucosal barrier while also priming the host for further 
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Abstract
Given the increasing commercial and clinical relevance 
of probiotics, improving their stress tolerance profile 
and ability to overcome the physiochemical defences of 
the host is an important biological goal. Herein, I review 
the current state of the art in the design of engineered 
probiotic cultures, with a specific focus on their utility 
as therapeutics for the developing world; from the 
treatment of chronic and acute enteric infections, and 

73 August 15, 2015|Volume 6|Issue 3|WJGP|www.wjgnet.com

MINIREVIEWS

World J Gastrointest Pathophysiol  2015 August 15; 6(3): 73-78
ISSN 2150-5330 (online) 

© 2015 Baishideng Publishing Group Inc. All rights reserved.

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.4291/wjgp.v6.i3.73

Roy D Sleator 



responses to injury[3]. These health promoting benefits 
of probiotics, coupled with fact that they are cheap to 
produce, transport and store, makes them an attractive 
alternative to traditional therapies, especially in 
underdeveloped and wartorn territories.

Herein, I review key milestones in the development 
of probiotic based therapies, focusing particularly on 
problems encountered in developing countries such 
as acute and chronic enteric infections, as well HIV 
(AIDS) which continues to devastate subSaharan 
Africa[4]. Little or no access to appropriate medical care, 
often coupled with compromised immunity means that 
the malnourished are significantly more predisposed 
to infections by enteric pathogens, leading to inca-
pacitating and dehydrating diarrhoea which in turn 
leads to a dramatic worsening of an already severely 
compromised nutritional status. Superimposing the HIV 
(AIDS) pandemic on an already distressed situation has 
created a state of affairs which needs to be urgently 
addressed[5]. 

Probiotic therapy, specifically the use of engineered 
probiotic strains, is a viable alternative to traditional 
approaches to alleviate suffering, to fight existing 
diseases and to protect against future infections[6]. 
Herein, I review the current state of the art in the design 
and application of probiotic cultures as therapeutics for 
the developing world. 

Probiotics as therapeutics for the developing world
Almost a third of the world’s population are malnu
rished[7], a quarter of which are children in the de-
veloping world. Malnutrition significantly reduces 
cell-mediated immunity, immunoglobulin A (IgA) 
concentrations and cytokine production[7]. This in turn 
leads to an increased risk of infection, accompanied by 
bouts of acute and recurrent diarrhoea – which further 
exasperates an already depressed nutritional status. 
Indeed, almost half of all diarrhoea-related mortalities 
are linked to malnutrition[8], while morbidity is also 
disturbingly high (approximately 4 times more episodes 
per child per annum in developing countries than in 
the developed world). Diarrhoeal disorders exists as 
either acute diarrhoea; associated with sudden onset 
infections, characterized by recovery within two weeks, 
and chronic diarrhoea which lasts more than two weeks 
and usually arises as a symptom of malnutrition or 
immunodeficiency[9]. 

Probiotic bacteria have been shown to considerably 
limit the incidence and duration of diarrhoea associated 
with both acute infectious illness and chronic episodes 
linked to malnutrition[10]. Shornikova et al[11] showed 
that Lactobacillus reuteri can reduce the duration of 
acute diarrhoea in infants by one full day. Guandalini[12] 
observed similar effects with Lactobacillus rhamnosus, 
which also decreased the duration of hospital stays. 
Furthermore, in addition to alleviating the symptoms 
of malnutrition and diarrhoea, probiotics have also 
been used to specifically target bacterial and viral 
pathogens[1316]. Lb. casei Shirota, for example was 

shown by Ogawa et al[17] to reduce Escherichia coli 
O157:H7 colonization, while Pascual et al[18] observed 
complete exclusion of Salmonella enteritidis by Lb. 
salivarius. Furthermore, even more impressive effects 
have been observed with mixed probiotic cocktails. 
Casey et al[19] reported significant amelioration of clinical 
symptoms of Salmonella Typhimurium infection in pigs 
using LIVE5; a cocktail of two Lactobacillus murinus 
strains with one strain each of Lb. salivarius subsp. 
salivarius, Lb. pentosus and Pediococcus pentosaceous. 
Pigs administered this mixture exhibited significantly 
lower levels of Salmonella infection, reduced frequency, 
severity and duration of diarrhoea, and enhanced weight 
gain relative to animals fed on a skim milk placebo. 
Nisbet et al[20] observed similar decreases in Salmonella 
gallinarum mediated mortality using a commercial 
probiotic mixture, while Johnson-Henry et al[21] showed 
that a Lactobacillus mixture reduced inflammation 
in Helicobacter pylori-infected animals. Furthermore, 
clinical trials in colonized humans revealed significantly 
lower levels of H. pylori, and decreased adverse side 
effects[22]. Probiotics are also effective against rotavirus, 
an enteric virus which accounts for approximately 60% 
of all diarrhoeal episodes in developing countries[23,24]. 
Specifically, Lactobacillus casei subsp. casei strain GG 
(LGG) has been shown to stimulate a rotavirus-specific 
IgA antibody response, which may confer immunity 
against future rotavirus infections[25]. 

However, one of the most significant limitations in the 
clinical application of probiotics is that the most clinically 
relevant probiotics are often the most physiologically 
fragile. Improving probiotic stress tolerance is thus a 
biological imperative. Below we describe the application of 
the “Pathobiotechnology” concept for the development 
of improved probiotic cultures[2629] (Figure 1). 

DEVELOPMENT AND APPLICATION OF 
PROBIOTIC THERAPEUTICS
Fluctuations in temperature and water availability 
(aw) are the most common stresses associated with 
food production[30,31]. The ability to overcome these 
stresses is thus an important criterion in the selection of 
commercially viable and clinically effective probiotics[32]. 
A common strategy to overcome temperature and 
osmotic stress is the accumulation of compatible 
solutes, such as the plant derived trimethyl ammonium 
compound glycine betaine[33], which serves to stabilise 
cellular function under stressful conditions[34].

Improving compatible solutes accumulation is thus 
an important first step in the development of more 
physiologically robust probiotic strains[35]. Several 
sophisticated mechanisms for compatible solute accu
mulation have evolved over time[34]. Indeed, the intra-
cellular pathogen L. monocytogenes, which serves as 
a useful model for Gram positive osmotolerance[36], 
has three compatible solute uptake systems (BetL, 
Gbu and OpuC[37]), the first to be identified being the 
secondary betaine transporter BetL[3840]. By cloning 

74 August 15, 2015|Volume 6|Issue 3|WJGP|www.wjgnet.com

Sleator RD. Designer probiotics for improved gastrointestinal health



betL downstream of the nisin inducible promoter PnisA, 
we were able to assess the ability of BetL to contribute 
to probiotic survival under a variety of stresses[41,42]. 
As expected, the Lb. salivarius strain heterologously 
expressing BetL exhibited a significant increase in 
betaine uptake compared to the wild type, untrans-
formed control. Indeed, the increased betaine uptake 
was sufficient to confer improved resistance to chill 
and cryotolerance, freeze-drying, spray-drying and 
barotolerance[41,43-46]. 

In addition to ex vivo stresses, probiotic bacteria 
must also overcome the in vivo defences of the 
host[30,31,47,48]. We demonstrated heterologous expres-
sion of BetL in Bifidobacterium breve UCC2003, 
significantly improved survival of the probiotic in gas
tric juice[49]. In support of this, Termont et al[50] also 
reported similar effects in a L. lactis strain expressing 
the E. coli trehalose synthesis genes, suggesting a novel 
protective role for compatible solutes in the gastric 
environment. Furthermore, we have reported roles 
for carnitine and proline in contributing to bacterial 
gastrointestinal survival[5154]. Upon exiting the stomach, 
bacteria enter the upper small intestine where they 
are exposed to elevated osmolarity (equivalent to 0.3 
mol/L NaCl). As was observed with L. salivarius[41], a 
significant osmoprotective effect was evident following 
BetL expression in B. breve, facilitating growth of the 
probiotic in conditions similar to those encountered 
in vivo. Furthermore, whilst stable colonisation of the 
murine intestine was achieved by oral administration 
of B. breve UCC2003, strains expressing BetL were 
recovered at significantly higher levels than the parent 
in the faeces, intestines and caecum of inoculated 
animals. Additionally, BetL significantly improved the 
clinical efficacy of the probiotic; resulting in significantly 
reduced levels of systemic infection following oral 
inoculation with L. monocytogenes, compared to the 
control. 

In addition to improving physiological stress tole
rance, “designer probiotics” have been designed to 
specifically inhibit enteric infections by blocking ligand-

receptor interactions between the pathogen and/or 
secreted toxins and the host[55]. Blocking receptor 
binding prevents infection, while toxin neutralization 
dampens clinical symptoms. Engineered to express 
receptormimic structures on their surface[56], orally 
administered probiotics neutralize toxins and inhibit  
pathogen adherence to the intestinal epithelium. 
Examples of such constructs include an E. coli strain 
expressing a chimeric lipopolysaccharide terminating in a 
shiga toxin (Stx) receptor, which binds to and neutralises 
Stx1 and Stx2[56], as well those with receptor blocking 
potential against cholera toxin (Ctx) and Enterotoxigenic 
E. coli (ETEC) toxin LT[57,58]. 

As well as treating enteric infections, “designer 
probiotics” have also been enlisted to target HIV. Every 
day approximately 14000 people become infected with 
HIV, a majority of which are in developing countries. 
Rao et al[59] recently described the construction of an E. 
coli strain engineered to secrete HIV-gp41-haemolysin 
A hybrid peptides, which block HIV fusion and entry 
into target cells. This “live microbicide”, administered 
either orally or via rectal suppository, colonizes the gut 
mucosa creating a protective barricade against HIV 
infection for four weeks[60]. Other anti-HIV probiotics 
include a human vaginal isolate of Lactobacillus jensenii 
engineered to secrete twodomain CD4 which inhibits 
HIV entry into target cells and Streptococcus gordonii 
modified to produce cyanovirin-N, a HIV-inactivating 
protein originally isolated from cyanobacterium[61]. 

PROBIOTICS BASED PROPHYLAXIS 
The most effective prophylaxis for infectious diseases is 
vaccination; resulting in the mobilisation of an immune 
response capable of specifically targeting invading 
pathogens[29]. In addition to the classical approach to 
vaccination, involving induction of acquired immunity to 
specific antigens, there is a growing awareness of the 
importance of innate immunity, associated primarily 
with our commensal microflora[2,62-64]. Indeed, optimal 
development and functioning of the mucosal immune 
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Figure 1  Overview the patho-biotechnology concept; enhancing probiotic delivery in the food matrix, gastrointestinal persistence and clinical efficacy.
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response is dependent on microbial exposure early in 
postnatal life[65]. In the absence of such stimulation, 
development of the intestinalassociated lymphoid tissue 
is stunted and immune responses are suboptimal[66]. 

The development of efficient vaccine delivery vehi-
cles remains challenging since traditional vaccines 
are typically based on either recombinant proteins or 
killed whole pathogens which, although safe, typically 
induce only weak immunity[6769]. The alternative is to 
use viable or attenuated pathogens[15]. However, while 
this approach improves targeted delivery, it carries 
with it the possibility of reversion to virulence[70]. Using 
a patho-biotechnology based approach, probiotics are 
being engineered to function as novel vaccine delivery 
vehicles which, lack the possibility of reversion to 
virulence, and effectively stimulate both the innate 
and acquired arms of the immune response[68,69]. In 
line with this approach, Guimarães et al[71] engineered 
a Lactococcus lactis strain capable of delivering either 
DNA or protein into the epithelial cells of the small 
intestine. Heterologous expression of inlA, encoding a 
listerial eukaryotic cell adhesion factor, converted the 
otherwise noninvasive L. lactis strain into a safe and 
effective vaccine delivery platform. Furthermore, the 
addition of hlyA (encoding listeriolysin) to L. lactis inlA+ 
enables phagosomal escape within the macrophage 
allowing MHC I and II stimulation[72].

Mucosal vaccine delivery, achieved using probiotic 
delivery platforms, has significant medical and metho-
dical advantages, particularly for use in the developing 
world, including: reduced pain and the possibility of 
cross contamination associated with intramuscular 
injection, no requirement for expensive medically trained 
personnel and no cold chain requirement - a significant 
advantage in the tropical climes most often associated 
with the developing world.

CONCLUSION
While conventional medical research continues to 
provide effective prophylactics and therapeutics, these 
often remain beyond the reach of the developing world. 
In this context, probiotics provide a viable and cost 
effective alternative to fighting infection, modulating 
the immune response and alleviating the symptoms of 
malnutrition and its associated sequelae, all of which 
will ultimately contribute to health and social gain, 
particularly in the developing world. 
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