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Abstract
Since the discovery of the Hedgehog (Hh) pathway in 
drosophila melanogaster, our knowledge of the role 
of Hh in embryonic development, inflammation, and 
cancerogenesis in humans has dramatically increased 
over the last decades. This is the case especially 
concerning the pancreas, however, real therapeutic 
breakthroughs are missing until now. In general, Hh 
signaling is essential for pancreatic organogenesis, 
development, and tissue maturation. In the case of 
acute pancreatitis, Hh has a protective role, whereas in 
chronic pancreatitis, Hh interacts with pancreatic stellate 
cells, leading to destructive parenchym fibrosis and 
atrophy, as well as to irregular tissue remodeling with 
potency of initiating cancerogenesis. In vitro  and in situ  
analysis of Hh in pancreatic cancer revealed that the Hh 
pathway participates in the development of pancreatic 
precursor lesions and ductal adenocarcinoma including 
critical interactions with the tumor microenvironment. 
The application of specific inhibitors of components of 
the Hh pathway is currently subject of ongoing clinical 
trials (phases 1 and 2). Furthermore, a combination of 
Hh pathway inhibitors and established chemotherapeutic 
drugs could also represent a promising therapeutic 
approach. In this review, we give a structured survey of 
the role of the Hh pathway in pancreatic development, 
pancreatitis, pancreatic carcinogenesis and pancreatic 
cancer as well as an overview of current clinical trials 
concerning Hh pathway inhibitors and pancreas cancer.
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Core tip: The Hedgehog (Hh) pathway is a ligand-
dependent and evolutionary conserved cellular signaling 
mechanism with various physiologic (development) 
and pathogenetic functions (especially carcinogenesis). 
Concerted Hh signaling is essential for human pancreatic 
development and homeostasis of the gastrointestinal 
tract. Aberrant expression within the Hh signaling 
pathway results in malformations like annular pancreas. 
The Janus aspect of Hh in pancreatitis is reflected by the 
protective role of Hh in acute pancreatitis vs  the disease-
progressive function of Hh in chronic pancreatitis (CP), 
whereby CP is linked to pancreatic cancerogenesis via  
pancreatic intraepithelial neoplasia (PanIn). Starting 
with PanIn and ending up at metastatic disease, Hh 
pathway is expressed in ductal pancreatic cancer thereby 
influencing and being paracrine influenced by the tumor 
microenvironment. 
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INTRODUCTION
Hedgehog (Hh) genes were originally identified in droso-
phila melanogaster as regulators of body patterning 
during embryonic development[1]. Today it is known that 
the Hh pathway plays a central role in diverse biological 
processes in mammals, such as embryonic development, 
cell proliferation, differentiation, tissue repair and main-
tenance of stem cell status in the adult[2]. 

In general, activation of the Hh pathway relies on the 
binding of a secreted ligand to its receptor. Three ligand 
homologues are known in mammals: Desert hedgehog 
(Dhh), Indian hedgehog (Ihh) and Sonic hedgehog (Shh). 
The ligands are produced as precursors and are secreted 
after extensive modifications to bind to their membrane 
bound receptor, called Patched. In mammals, two homo-
logues exist, Patched1 (Ptch1) and Patched2 (Ptch2). 
After signal transduction via the co-receptor Smoothened 
(Smo), the executing transcription factors of the Hh 
pathway are the Gli proteins, of which three homologues 
are known in mammals: Gli1, Gli2 and Gli3[3]. Using 
a simplified model, the canonical Hh signaling can be 
described as follows[2,4]: In the absence of a Hh ligand, 
Ptch inactivates Smo - probably by preventing its 
localization into the primary cilium, a cell organelle that 
is thought to be essential for proper Hh signaling[5,6]. 
As a consequence, the Gli proteins are processed in 
such a way that they act as transcriptional repressors of 
the Hh target genes. However, upon binding of the Hh 

ligand to the receptor Ptch, inactivation of Smo is ended, 
allowing Smo to translocate to the primary cilium and 
initiate a cascade of events that ultimately lead to the 
conversion of Gli factors into their active form. The latter 
then shuttle into the nucleus and enable transcription of 
Hh target genes, including components of the pathway 
itself, such as Ptch and Gli1, indicating a built-in feedback 
loop within the Hh signaling cascade[2]. In addition to the 
“classical and canonical” Hh signaling described above, 
also non-canonical (Gli-independent), non-classical 
(ligand-independent) and aberrant Hh signaling (driven 
by activating mutations) have been identified at different 
stages of carcinogenesis (Figure 1)[7]. 

The pancreas is a fundamental organ of the diges-
tive system with specialized endocrine and exocrine 
functions. The acinar cells within the exocrine pancreatic 
compartment produce and secrete numerous digestive 
enzymes into the duodenum. In the endocrine compart-
ment, specialized cells produce hormones and directly 
release them into the blood stream - most importantly 
to control and regulate the blood glucose concentration. 
It is known from previous studies that physiologic Hh 
pathway signaling is crucial for correct development of 
the pancreas[8,9]. With this review, we give an overview 
of the current understanding of the role of Hh signaling 
in pancreatic development, cell differentiation and 
functional specialization. In a second part, the pathome-
chanistic implications of deregulated Hh signaling are 
discussed for the clinically most important pancreatic 
pathologies.

Hh SIGNALING IN HUMAN PANCREATIC 
DEVELOPMENT
Development of the pancreas
Pancreatic development is based on: (1) The fusion of 
two evaginations of the foregut to one single organ; 
and (2) endodermal growth by dichotomy branching. 
According the classical Carnegie stages[10,11], in stage 13, 
the dorsal pancreatic bud arises at first as a thickening 
of the endodermal tube, which proliferates, into the 
dorsal mesogastrium. In close, in stage 14, the ventral 
pancreatic bud evaginates to the liver primordium. 
As a result of differential growth of the duodenum, 
which rotates 90 degrees clockwise and becomes “C”-
shaped, the ventral pancreatic bud comes to lie below 
and behind the dorsal pancreatic bud in stage 15. Until 
stage 17, both pancreatic buds have fused: The ventral 
pancreatic bud forms the posterior part of the head and 
the posterior part of the uncinated process, whereas the 
rest of the pancreas is formed by the dorsal pancreatic 
bud (the anterior part of the head, the body and the 
tail). Failure of the ventral pancreatic bud to migrate will 
result in an annular pancreas with consequent duodenal 
stenosis[12]. The main pancreatic duct (of Wirsung) is 
formed by the fusion of the distal part of the dorsal 
pancreatic duct and the entire ventral pancreatic duct 
and enters the duodenum combined with the bile duct at 
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the major papilla. Until the postnatal period, the proximal 
portion of the dorsal pancreatic duct either obliterates or 
persists as an accessory duct (of Santorini), entering the 
duodenum at the minor papilla (10% adults), so-called 
pancreatic divisum. 

Cellular development of the pancreas
Differentiation and early specification of pancreatic 
endoderm is induced by fibroblast growth factor 2 and 
activin [a transforming growth factor beta (TGF-β) 
family member], both produced by the notochord 
and endothelium of the dorsal aorta. Both repress the 
expression of the transcription factor Shh locally in the 
gut endoderm, destined to form the dorsal pancreatic 
bud. Endoderm lying caudally to the pancreatic region 
does not respond to those signals[13]. The ventral bud is 
induced by upregulation of the pancreatic and duodenal 
homeobox 1 (PDX1) gene from the splanchnic mesoderm.

From 10th to 15th week, the primitive endodermal 
ductal epithelium provides the stem cell population for 
all the secretory cells, which are initially located in the 
duct walls or in the buds, from which they arise. Islet 
differentiation proceeds in two phases[13]: Phase Ⅰ (9th-
15th week) is characterized by the proliferation of 
polyhormonal cells, whereas the differentiation of 
monohormonal cells is seen from week 16 onwards, 
referred to as phase Ⅱ. Later, these endocrine cells 
accumulate in pancreatic islets (of Langerhans) and 
scatter throughout the pancreas, starting with insulin 
and amylin secretion by β-cells approximately at 
the 5th month until neonatal period. The dorsal bud 
gives rise mostly to α-cells, which produce glucagon; 
however, most of the pancreatic polypeptide producing 
γ-cells develop from the ventral bud. After week 30, 
somatostatin-producing δ-cells are seen. The remaining 
primitive duct cells will either differentiate into definitive 
duct cells with microvilli and cilia or into acinar cells in 
which zymogen granules or acinar cell markers can be 
detected at weeks 12-16[13].

Correct ductal branching pattern and formation of 

acinar structures is determined by pancreatic mesen-
chyme which gives rise to connective tissue between 
the ducts resulting in pancreatic proliferation and 
maintaining the relative proportions of acinar, α-and 
β-cells. Additionally, it provides cell lines for smooth 
muscle within the pancreatic tissue, and angiogenic 
mesenchyme produces blood and lymphatic vessels.

Molecular regulation of pancreatic development by Hh 
signaling
Pancreas development is regulated by the activation/
inactivation of Hh signaling members, which are ex-/
repressed either within pancreatic tissue (e.g., Ihh) 
or in adjacent tissue (e.g., Shh)[14]. Initial absence of 
Shh signaling is required for regular pancreatic deve-
lopment, because ectopic expression of Shh leads to 
transformation of pancreatic mesoderm into intestinal 
mesenchyme in mice[15]. In single mutant mice (i.e., 
Shh-/- or Ihh-/-), gastrointestinal defects of the developing 
endoderm like annular pancreas or other malformations 
have been reported, suggesting similarities to human gut 
malformations[8,16]. 

It was shown that the graded response to Hh-signaling 
controls regular pancreatic development in mice, in which 
Hh signaling occurs at low levels during early organo-
genesis to ensure the correct establishment of organ 
boundaries and tissue architecture, and is up-regulated 
at later developmental stages to promote proliferation 
and maturation of the tissue[9,17-19]. Nielsen et al[20] 
confirmed the suggested concerted Hh signaling also in 
human pancreatic organogenesis: In early pancreatic 
development (7.5 wk), Gli3 was highly expressed in 
developing pancreatic ducts - while Smo and Gli2 were 
absent. In contrast, Smo and Gli2 were highly expressed 
between weeks 14 to 18, whereas the expression of Gli3 
was reduced.

PDX1 (a pancreatic-promoting transcription factor; 
syn.: Insulin promotor factor 1) is also expressed in the 
preduodenal endoderm - including the sites of dorsal and 
ventral pancreatic bud formation. Total absence of the 
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Figure 1  Overview of the Hedgehog signaling cascade and different activation modes (for details see ref. [7]). As described in detail in chapters Ⅱ to 
Ⅳ, the Hh pathway exerts positive and negative (labeled with green and red color, respectively) functions during development, regeneration, inflammation and 
cancerogenesis in the pancreas. Hh: Hedgehog; TF: Transcription factors.
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pancreas is observed in homozygous PDX1 mutant mice 
that suggest that PDX1 is necessary for the formation of 
the pancreas and may be essential in the differentiation 
of pancreatic precursor cells[21,22]. Although all of the 
involved downstream effectors of human pancreas 
development have not been determined in detail yet, it 
appears that expression of the paired homeobox genes 
PAX4 and PAX6 specifies the endocrine cell lineage: Cells 
expressing both become β-, δ-, and γ-cells; whereas 
those expressing only PAX6 become α-cells. 

Hh IN PANCREATITIS 
The cellular and molecular processes in acute pancreatitis 
(AP) and chronic pancreatitis (CP) were intensively 
elucidated in the last years providing valuable detailed 
insights which could be important in the next years for 
a further therapeutical approach in this partially lethal 
disease entity (reviewed in detail in[23-25]). In short, 
in the phase of AP, the major cellular key players are 
neutrophils, monocytes and macrophages which interact 
by building and secretion of cytokines and inflammatory 
mediators, mainly tumor necrosis factor α, interleukin 
(IL) 1β and 6, and monocyte chemotactic protein. In 
the phase of CP, pancreatic stellate cells (PSC), tissue 
infiltrating myeloid cells, and particularly macrophages 
are coming to the fore by induced and increased 
progressive fibrosing of the pancreas tissue, being 
mediated mainly by nuclear factor (NF)-κB[26,27]. Finally, 
the crosstalk of the mentioned cells is linked to T-subsets 
(CD-8+/central memory cells as well as T-regulator 
cells) which are involved in the pathogenesis of CP[28,29]. 
Additionally, CP is commonly regarded as a relevant risk 
factor for ductal pancreatic cancer (DPC) by irregular 
ductal changes leading to acino-ductal metaplasia and 
pancreatic intraepithelial neoplasia (PanIn)[30,31].

Focusing on the linkage between the Hh pathway and 
AP as well CP, experimental investigations demonstrated 
that the members of the Hh pathway could be detected 
in different amounts in AP and CP, whereby the defini-
tive functional role of Hh in AP and CP seems to be very 
different. Additionally, in the process of CP forward to 
DPC an irregular expression pattern of the Hh members 
are observed compared to the normal and structured 
embryonic development of the pancreas[9,32,33].

AP
Compared to CP, the role of Hh in AP has been dealt with 
only in few studies. Summarizing these data, activation 
of the Hh signaling is linked to injury and repair using 
the cerulean-mediated model, whereby the unequivocal 
conclusion of the available experimental data is that the 
Hh has protective function in AP. In 2008, Fendrich et al[33] 
presented a functional analysis of the Hh pathway in AP 
using pharmacologic and genetic techniques (like Ptch1-
LacZ reporter mice and two different Cre-driven pancreas-
specific depletion mice models of Smo) demonstrating 
that Hh is essentially involved in effective regeneration 
of the exocrine pancreas. By this approach, Shh, Ihh, 

and Gli1 are increasingly expressed in caerulein treated 
mice, whereby the pharmacologic and genetic inhibition 
lead to persistence of PDX1 expressing metaplastic 
intermediates and impaired tissue repair. Additionally, 
the group of Zhou et al[34] used a Cerulein-induced AP 
model in mice to show elegantly that: (1) Shh, not Ihh 
or Dhh, is involved in this model; (2) Shh-inhibition 
aggravates the AP; and (3) the anti-inflammatory 
autocrine effect of Shh is mediated by IL-10. A recent 
experimental study from 2014 showed that Gli1, the 
downstream member of the Hh cascade, could essentially 
influence the inflammatory reaction in the circumstances 
of remodeling processes of the pancreas. Based on 
genetic analysis of deletion of a single allele of Gli1, 
the authors postulated that the canonical Hh pathway, 
respectively the transcription factor Gli1, is essential for 
pancreatic recovery in inflammatory processes via Gli1 
targeted cytokines, including IL-6, murine homolog of IL8, 
monocyte chemoattractant protein-1, and Macrophage 
colony-stimulating factor M-csf, leading to pancreatic 
tumorgenesis via improper stromal remodeling and 
persistence of the inflammatory infiltrate[35].

Chronic pancreatitis
Empiric studies in humans with CP demonstrated a hetero-
geneous upregulated expression of Ihh, its receptors 
Ptch and Hedgehog-Interacting Protein, and Smo in 
different histological distribution and cellular localization 
of human tissue with CP using Northern blotting, immuno-
histochemistry and Western-blotting[32,36,37]. Interestingly, 
the members of the Hh pathway were localized mainly in 
the islet cells, whereas the Hh signaling members were 
present in degenerated acinar and tubular complexes 
of CP[36,37]. In addition, Kayed et al[37] could show that the 
inhibition of the Hh pathway via Cyclopamin led to growth 
inhibition of TAKA-1 pancreatic ductal cells through cell 
cycle arrest in vitro.

Based on cDNA microarrays, Bhanot et al[31] could 
support the findings, that the Hh pathway is altered in 
microdissected ectatic ducts of CP whereby dysregula-
tion of Hh could enhance the probability of DPC via duct 
ectasia, acino-ductal metaplasia or intraepithelial neoplasia 
as reviewed by Bahnot et al[31] in 2008. 

As mentioned above, PSCs are essentially involved in 
the pathogenesis of the CP, whereby the main question 
is, how the Hh pathway regulates the activation of these 
PSCs.

The experimental analysis of the group of Shinozaki 
et al[38] revealed that Ihh has no evident effect on 
expression of collagen-1 or alpha-smooth muscle actin or 
on proliferation of PSCs, but Ihh modulates the migration 
potency by changing the amount of membrane-type 
1 matrix metalloproteinase and its localization on the 
plasma membrane leading to a pro-migration status of 
PSCs. Although the Ihh effects are mediated by Gli1, 
experimental overexpression of Gli1 using an adenovirus-
mediated or RNA interference techniques revealed a 
negatively regulation by Gli1 to Ihh effects in vitro.

But the question remains: Why is Hh pathway up-
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regulated within the fibrogenic process of CP? Based 
on in vitro and in situ studies with xenografts as well as 
in humans with pancreatitis, it is postulated that para- 
and partially autocrine activation of stromal cells by Hh 
ligands from epithelial components and vice versa are 
responsible[39-41]. The experimental data of Jung et al[42] 
are based on transgenic phenotypes in zebrafish with 
over-expression of either Ihh or Shh along with green 
fluorescence protein. Consecutive analysis of these 
transgenic phenotypes using quantitative and qualitative 
investigations of mRNA and protein levels including 
PCR, in situ hybridization, and immunohistochemistry 
revealed that myofibroblasts and ductal cells are 
activated and proliferate which is triggered by paracrine 
Hh signaling in a restricted expression of Ptc1, Smo 
and Gli1/2. Additionally, Hh ligands could induce matrix 
metallopeptidase 9 and TGF-β1 in this animal model[42].

Recent investigations by Tsang et al[43] could support 
the published findings of pro-fibrinogenic effects of 
Hh in CP by using an in vivo model. The application of 
Rhein, a natural anthraquinone derivative, reduces the 
activation of PSCs in mice with experimental induced CP. 
The morphological effect of Rhein in reduced pancreatic 
fibrosis was paralleled by reduced molecular expression 
of fibrogenic markers including alpha-smooth muscle 
actin, fibronectin 1, type Ⅰ collagen as well as the 
members of the Hh pathway Shh and Gli1.

Interestingly, the promoting fibrotic effect of Hh 
signaling is not only existent in pancreas, but also could 
be observed in other organs like lung, bile duct and liver 
implicating a tissue independent overriding principle of 
the Hh pathway in this pathogenesis[44-46].

CP and pancreatic carcinogenesis 
Since chronic recurrent inflammation has been linked to 
carcinogenesis, especially in pancreas, some findings of 
Hh in AP/CP and pancreatic carcinogenesis are presented 
in the following for supporting this already emphasized 
linkage[47,48]. First of all, Hh modulates the axis between 
inflammation and cancerogenesis via activation and 
production of cytokines by human peripheral CD4+ T 
cells[49]. Furthermore, experimental studies of Hh in 
AP and CP revealed morphological changes like ductal 
metaplasia promoted by Shh, which are per se no 

pre-tumorous conditions[33,50]. Nevertheless, during 
progression of CP, morphological changes of the ductal 
pancreatic tissue like papillary lesions with nuclear atypia 
resulting in PanIn lesions could be observed which 
have a high association to aberrant Hh expression and 
pancreatic cancer[31,50]. 

In conclusion (summarized in Table 1), members of 
the Hh pathway have protective properties in case of 
AP, whereby the face of Hh changes to a progressive 
and disease-promoting function in CP. Especially in CP, 
the negative effects of Hh on tissue remodeling and 
repair favored the possibility of cancerogenesis via de- 
and trans-differentiation[51-54].

Hh IN PANCREATIC CANCER: FROM IN 
VITRO TO IN SITU 
In vitro: Findings in cell culture experiments and 
xenografts
Hh signaling in the normal pancreas and in pancreatic 
ductal adenocarcinoma is exclusively paracrine with 
expression of Shh (tumor cell and stroma signal circle as 
shown in Figure 2)[55]. The silencing of Smo in pancreatic 
cancer epithelium in mice showed no altered tumor 
spread or development, so the Hh signaling does not 
occur in an autocrine way[55].

In paracrine signaling, the Hh ligand sends signals 
directly to the stroma and provides a selective tumor 
growth advantage. This was established through a 
pancreatic cancer model where Hh signal was needed 
for overall tumor growth while the particular tumor cells 
themselves did not respond to Hh ligand[56]. 

The existence of cancer stem cells (CSC) in different 
tumors, including pancreatic cancer, offers an explanation 
why some therapy assessments are ineffective[57,58]. 
Therefore, a good knowledge base for new therapies, 
which target pancreatic CSCs, is very important. The 
Hh signaling pathway plays a vital role in pancreatic and 
embryonic development; autocrine or paracrine secreted 
Shh activates a signal transduction cascade that includes 
other Hh members like Ptch and Smo, which then 
activates the canonical Hh pathway through Gli. 

This leads to transcription of multiple targets like 

Acute pancreatitis Chronic pancreatitis

Pathogenetic effect of Hh Protective Progressive
Detected members of Hh ↑ Shh (Ihh, Dhh), Gli1 ↑ Ihh (Shh), Ptc, Hip, SMO, Gli1, Gli2
Interactive cells (auto-and paracrine effects) Acinar/ductal cells with; acute inflammatory cells Acinar/ductal cells with; PSC
(Immune) mediators of inflammation IL-10, IL-6, mIL-8, Mcp-1, and M-csf (Csf1) MT1-MMP, MMP9, TGF-β1, smooth muscle actin, 

fibronectin 1, type Ⅰ collagen
Association to cancerogenesis No Yes, possibly via ADM and PanIn

Table 1  Summary of the role of Hedgehog signaling in pancreatitis, indicating the protective role in acute pancreatitis vs  disease-
progressive function in chronic pancreatitis as well the possible association to pancreatic cancerogenesis[32-38,42,43]

Hh: Hedgehog; Shh: Sonic Hh; Ihh: Indian Hh; Dhh: Desert hedgehog; IL: Interleukin; mIL-8: Murine homolog of IL8; Mcp-1: Monocyte chemoattractant 
protein-1; M-csf: Macrophage colony-stimulating factor; Ptc: Patched; Hip: Hh-interacting protein; SMO: Smoothened; MT1-MMP: Membrane-type 1 
matrix metalloproteinase; MMP-9: Matrix metallopeptidase 9; TGF-β: Transforming growth factor beta; ADM: Acino-ductal metaplasia; PanIn: Pancreatic 
intraductal neoplasia; PSC: Pancreatic stellate cells.
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Nanog, Cyclin D1, Ptch, Gli1 and Gli2. Activation of 
Shh signaling seems to precede the transformation of 
pancreatic tissue stem cells to cancerous stem cells. This 
was shown in mice, which were treated with sulforaphane 
to inhibit the growth of these stem cells. Sulforaphane is 
a natural compound found in cruciferous vegetables like 
broccoli that as an inhibitor acts on various receptors and 
pathways with anti-cancerous properties like apoptosis 
induction and cell proliferation[59]. This experimental 
study showed that human pancreatic stem cells need the 
activity of the Hh-Gli pathway for proliferation, survival, 
self-renewal and tumorigenicity[60].

In 2002, Chen et al[61] modulated mammalian embry-
onic pancreas development in vitro using cyclopamine 
treated pancreatic explants. A recombinant form of 
Shh was added to pancreatic buds to activate the Hh 
signaling pathway. The fluorescently labeled epithelium 
of the pancreatic explants underwent extensive growth 
and branching when treated by cyclopamine, which 
indicates that Hh inhibition did not block branching in 
the epithelium[61].

Walter et al[62] isolated pancreatic fibroblasts from 
benign and malignant primary pancreatic resection 
specimens by immunohistochemistry marker selection 
through vimentin. Together with two fibroblast cell 
lines, SC2 and SC3 (from non-neoplastic pancreas), the 
cancer-associated fibroblasts (CAF) were characterized 
for Hh activity. The fibroblast cell lines and the isolated 
CAFs where treated with Shh ligands to observe any 
expression changes on Gli mRNA. As a result they 
detected overexpression of Smo in pancreatic CAFs, 

which could transduce the Shh signal followed by Gli1 
activation. The Hh pathway has been identified as 
activated in cancer associated stromal fibroblasts in 
mouse models of pancreatic cancer. CAFs can actively 
transduce the Hh signal to induce Gli expression. CAFs 
expressing Smo respond to exogenous Hh ligand, 
whereas control fibroblasts lacking Smo expression are 
unresponsive to Hh ligand, and downregulation of Smo 
in CAFs inhibits transduction of the Hh signal[62].

In human tumor xenografts, expression of Shh by 
tumor cells correlated with increased expression of GLi1 
and Ptch1 in the stromal compartment. Pathway inhibi-
tion affected only stromal Gli1 and Ptch1 expression and 
resulted in decreased tumor growth exclusively in Hh 
ligand-expressing tumors[63].

Tian et al[64] demonstrated that the expression of an 
oncogenic allele of Smo (SmoM2) in mouse pancreas 
neither activated Hh signaling in epithelial cells nor 
promoted their neoplastic transformation. In murine pan-
creatic cancer models as well as in human pancreatic 
cancer specimens, activation of the Hh pathway was 
observed only in stromal cells surrounding Hh ligand-
expressing tumor cells[64].

In-situ: Findings in human specimen of pancreas
Tumors of the pancreas can develop either from ductal, 
neuroendocrine or acinar cell populations. Due to a lack 
of information about the role of the Hh signaling pathway 
in acinar and neuroendocrine tumors of the pancreas, 
the following paragraphs will concentrate on DPC. 

Among all cancers, DPC has one of the worst pro-
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Figure 2  Illustrated summary of Hedgehog pathway and its effetcs at different stages in the formation and progression of ductal pancreatic carcinoma. 
Stromal cells secrete CXCL12 that binds to its receptor CXCR4 of ductal pancreatic cancer (DPC) cells (paracrine) and of stromal cells themselves (autocrine) 
resulting in Shh  expression. Shh , secreted by DPC cells, binds in a paracrine manner Smo on stromal cells of the tumor microenvironment ending up in IL-6 secretion, 
which is known to regulate the progression of precursor lesions and tumor formation. For details see chapter Ⅳ. Based on[63,77,85]. CXCL12/CXCR4: CXC-motif-
chemokine 12/CXC chemokine receptor type 4; ECM: Extracellular matrix; ERK: Extracellular signal-regulated kinases; Hh: Hedgehog; IκB: Inhibitor of kappa B; IKK: 
Inhibitor of nuclear factor kappa-B kinase; IL-6: Interleukin-6; MEK: Mitogen-activated protein kinase; NF-κB: nuclear factor-κB; Ptch: Patched; RAF1: V-Raf-1 murine 
leukemia viral oncogene homolog 1; Shh : Sonic Hh; Smo: Smoothened; STAT3: Signal transducer and activator of transcription 3; VEGF: Vascular endothelial growth 
factor.
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gnoses among all cancers with an overall 5-year survival 
rate of less than 5%[65]. Chemo- and radiotherapy are 
largely ineffective; furthermore, metastatic spread 
frequently occurs even after complete surgical resection[66]. 
The Hh pathway is one highly promising signaling 
transduction pathway for a better understanding of the 
origin of DPC.

Expression of Hh pathway members is usually not 
present in healthy adult pancreatic tissue[67]. In 2008, a 
global sequencing analysis revealed that the Hh pathway 
is one of the core signaling pathways that undergoes 
somatic alterations in nearly all pancreatic cancers[68]. 
Kayed et al[37] showed an aberrant activity of the Hh path-
way in chronic pancreatitis and pancreatic cancer. Later 
on, it was recognized that Shh expression enhances the 
proliferation of pancreatic duct epithelial cells[69] and is not 
only up-regulated in the setting of pancreatic injury, but 
also in noninvasive precursor lesions of DPC: (1) PanIn; 
and (2) intraductal papillary mucinous neoplasia (IPMN) 
starting with rising expression values up to Hh pathway 
persistence in metastatic state[67,70,71]. Additionally, it was 
stated that up-regulation of the Shh ligand is sufficient 
to misdirect the pancreatic ductal epithelium towards a 
gastrointestinal metaplastic phenotype, which explains 
the involvement in IPMN formation[50,63]. 

However, dysfunction, or rather re-activation of the 
Hh pathway is not the only reason for the development 
of PanIn and DPC. Lauth et al[72] described a synergistic 
molecular crosstalk between Hh pathway and activated 
V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 
(K-RAS) signaling pathway[72]. Over 90% of patients 
suffering from DPC showed a K-RAS mutation, thus 
identifying the K-RAS pathway as another key mediator 
of pancreatic carcinogenesis[68,73]. Patients with a K-RAS 
mutation developed PanIn; and an additional P53 loss 
of function leads to subsequent development of the 
lesion towards DPC[74]. According to various studies, the 
crosstalk between Hh and K-RAS takes place via the 
RAF/MEK/MAPK pathway[75,76]. 

In 2013, Mills et al[77] were able to identify Gli1 as 
an effector of K-RAS at early stages of pancreatic car-
cinogenesis. They showed in a mouse model that loss 
of Gli1 impairs K-RAS-induced carcinogenesis. Although 
the mice still developed PanIn, the incidence of PanIn 
decreased and as a result, no mice suffered from DPC[77]. 

In recent studies, another central role in pre-neop-
lastic lesions of the pancreas is awarded to the signal 
transducer and activator of transcription 3 (STAT3) and 
its upstream cytokine IL-6. It is supposed that STAT3 
activation is involved in driving early changes in the 
microenvironment promoting PanIn formation in the 
presence of oncogenic K-RAS[78,79]. Mills et al[77] stated 
that Gli1 also acts on CAF by paracrine regulation of 
the IL-6/STAT3 pathway in stromal cells of the tumor 
microenvironment (TME) and, thus, regulating the progre-
ssion of precursor lesions and tumor formation (Figure 2). 

DPC pathogenesis is characterized by a desmoplastic 
reaction to invading tumor cells, including a dense extra-
cellular matrix that was recently shown to be the result 

of epithelial to mesenchymal transition (EMT)[80,81]. The 
epithelial-mesenchymal interaction, especially in the 
paracrine model of the Hh pathway, plays a distinctive 
role in different carcinoma entities as well as in DPC. 
Deregulated Hh pathway in PanIn and DPC leads to 
the secretion of Hh ligands Shh and Ihh, followed by a 
paracrine activation of CAFs in the surrounding stroma 
leading to expansion and desmoplasia[40,82,83]. In detail, 
neoplastic epithelium secretes Shh, which binds to the 
cognate Ptch-receptor on stromal cells, followed by 
desmoplastic stromal expansion and microenvironment 
remodeling. Moreover, supporting the paracrine action 
model of Hh pathway in DPC, Yauch et al[83] showed 
that treatment with Hh pathway antagonist results in 
downregulation of Hh target genes only in the tumor 
stroma but not in the epithelial cancer cell. In the same 
way, Smo expression decreases in mesenchymal cells 
in the pancreas resulting in Hh pathway activation. 
However, Lee et al[80] described that Hh pathway activity 
controls the balance between epithelial and stromal 
elements: Pathway activation causes stromal hyperplasia 
and reduced epithelial growth, whereas Hh inhibition 
causes accelerated growth of epithelial elements and 
suppression of desmoplasia. 

It is suggested that the TME and extensive des-
moplasia are partly responsible for chemoresistance 
in DPC by creating a “fence” around the tumor cells, 
which protects them against therapeutic compounds[84]. 
Therefore, tearing down this barrier could be a promising 
strategy to improve therapeutic approaches. Singh 
et al[85] already showed that inhibition of Hh pathway 
depleted tumor-associated stromal tissue.

There are many other different tumor specific chara-
cteristics that are influenced by the interrelation of Hh 
pathway and the TME. Bailey et al[86] identified paracrine 
Shh-mediated fibroblasts within the TME as source 
of Hypoxia-inducible factor 1 alpha (HIF-1α), which is 
known to be a regulator of angiogenesis and metastasis 
in cancer. Another example is the CXC-motif-chemokine 
12/CXC chemokine receptor type 4 (CXCL12/CXCR4) 
pathway, which is on the one hand critical for normal 
cellular processes, but on the other hand contributes to 
metastasis, growth, survival and stem cell characteristics 
of cancer cells[87-89]. CXCL12, the sole ligand for CXCR4, is 
produced by tumor-associated stromal cells, is increased 
in DPC; and after binding to its receptor CXCR4, leads 
to activation of extracellular signal-regulated kinases 
resulting in release and nuclear translocation of NF-κB, 
which then directly binds the Shh promotor[85,90,91]. In 
summary, Hh pathway acts in a predominantly paracrine 
manner, thereby influencing and being influenced by 
the TME (for an overview of Hh-dependent interactions 
between tumor and stroma cells in DPC, Figure 2). 

CSC, also called tumor initiating cells are suggested 
to be responsible for cancer initiation, progression and 
chemo-resistance in several malignancies including 
DPC[92]. The transcription factors Nanog, octamer-
binding transcription factor 4 and BMI1 Proto-Oncogene, 
Polycomb Ring Finger (BMI-1) are essential for the 
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“stemness”, including characteristics like self-renewal 
of CSC[93-95]. The Hh pathway is implicated in the 
maintenance of pancreatic CSCs: For example, Li et 
al[96] stated that Shh expression was 46-fold greater in 
pancreatic CSCs (CD24+/CD44+/ESA+) as in other DPC 
cells (CD24-/CD44-/ESA-). Additionally, Gli1 is known to 
up-regulate genes that are crucial for many properties 
for stemness of CSC - like Nanog and BMI-1[97-99].

Recapitulating this chapter, Hh pathway plays an 
important role in DPC, beginning from PanIn precursors 
to progressed metastatic disease. Hh signaling cross 
talks with a variety of other signaling pathways, like 
K-RAS, requires the interaction with the EMT in particular 
via paracrine pathway stimulation in order to contribute 
to the development of DPC (Figure 1).

Hh-BASED CLINICAL TRIALS FOR 
PANCREATIC CANCER
At present, clinical trials using Hh inhibitors enroll patients 
with pancreatic malignancies including advanced, 
metastatic, recurrent or resectable pancreatic cancer. 
Currently, no trials are listed within the United States 
National Institutes of Health database (www.clinicaltrials.
gov) which target pancreatitis or other pancreatic non-
neoplastic conditions. As summarized in Table 2, most trials 
in the phase 1 or 2 setting use GDC-0449 (vismodegib) 
which is a small molecular weight inhibitor of Smo[100] 
thereby interfering with Hh signaling at the plasma 
membrane level similarly to cyclopamine, a naturally 
occurring Smo antagonist[101]. Other Hh-targeting drugs 
in current clinical trials on pancreatic cancer are the 
Smo-inhibitors LDE-225 (Sonidegib)[102] and IPI-926 
(Saridegib)[103]. 

For the latter, a preclinical study on pancreatic 
cancer in mice demonstrated that IPI-926 depletes 
tumor-associated stromal tissue and facilitated the 
delivery and increased the intratumoral concentration of 
gemcitabine[84]. In line with these results, all currently 
ongoing clinical trials combine selective Hh antagonists 
with established chemotherapies (gemcitabine, paclitaxel) 
or other targeted drugs (erlotinib epidermal growth factor 
receptor inhibitor) or BKM120 (Phosphatidylinositol-4,5-

bisphosphate 3-kinase inhibitor) to investigate possible 
therapeutic benefits of these drug combinations. Taken 
together, current clinical studies employ inhibitors of 
the Smo co-receptor in combination with established 
chemotherapeutic drugs. Novel experimental inhibitors 
targeting the Hh pathway at the level of the transcriptional 
regulation (e.g., Gant-61, Gant-58) have not yet entered 
the stage of clinical evaluation[104]. 

CONCLUSION
Besides its physiologic functions in human pancreatic 
development, the Hh pathway is activated in numerous 
pathological conditions, including carcinogenesis. However, 
the data on its functional aspects currently available draw 
a more nuanced picture. Progression from pancreatic 
cancer precursors lesions (PanIn) to DPC and metastatic 
disease is strongly influenced by a paracrine Hh signal 
modulating the interaction between DPC cells and CAFs. 
This Hh driven signaling predominantly includes the IL-6/
STAT3 and the CXCL12/CXCR4 pathways resulting in 
disease progression by invasion, angiogenesis, metastasis 
formation and chemoresistance as well as gaining of stem 
cell like characteristics. Therefore, therapeutic targeting 
of the Hh pathway may provide new therapeutic appro-
aches to improved disease control and prognosis for 
both, chronic pancreatitis and pancreatic carcinogenesis. 
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