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Abstract
Acute pancreatitis (AP) is a common and potentially 
lethal acute inflammatory process. Although the major-
ity of patients have a mild episode of AP, 10%-20% 
develop a severe acute pancreatitis (SAP) and suffer sys-
temic inflammatory response syndrome (SIRS) and/or  
pancreatic necrosis. The main aim of this article is to 
review the set of events, first localized in the pancreas, 
that lead to pancreatic inflammation and to the spread 
to other organs contributing to multiorganic shock. The 
early pathogenic mechanisms in SAP are not completely 
understood but both premature activation of enzymes 
inside the pancreas, related to an impaired cytosolic Ca2+ 
homeostasis, as well as release of pancreatic enzymes 
into the bloodstream are considered important events 
in the onset of pancreatitis disease. Moreover, afferent 
fibers within the pancreas release neurotransmitters in 
response to tissue damage. The vasodilator effects of 
these neurotransmitters and the activation of pro-inflam-
matory substances play a crucial role in amplifying the 
inflammatory response, which leads to systemic manifes-
tation of AP. Damage extension to other organs leads to 
SIRS, which is usually associated with cardiocirculatory 

physiology impairment and a hypotensive state. Hypo-
tension is a risk factor for death and is associated with a 
significant hyporesponsiveness to vasoconstrictors. This 
indicates that stabilization of the patient, once this path-
ological situation has been established, would be a very 
difficult task. Therefore, it seems particularly necessary 
to understand the pathological mechanisms involved in 
the first phases of AP to avoid damage beyond the pan-
creas. Moreover, efforts must also be directed to identify 
those patients who are at risk of developing SAP.
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INTRODUCTION
According to the Atlanta Symposium held in 1992, acute pa­
ncreatitis (AP) is defined as an acute inflammatory process 
of  the pancreas that frequently spreads to peripancreatic 
tissues and/or remote organ systems[1].

Alcohol abuse and gallstone migration are the esta­
blished risk factors for the development of  AP. Moreover, 
in recent years, genetic factors and obesity have also 
been identified as risk factors for the development of  
this disease[2]. AP normally runs a benign course causing 
minimum organ dysfunction and an uneventful recovery 
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in most patients. However, 10%-20% of  patients develop 
severe acute pancreatitis (SAP) and suffer systemic 
inflammatory response syndrome (SIRS) and/or pancreatic 
necrosis[3]. Despite improvements in clinical care, SAP 
causes death in 10%-25% of  patients[4,5].

AP occurs when pancreatic enzymes are prematurely 
activated inside the pancreas leading to autodigestion of  
the gland and local inflammation[6]. These enzymes can 
also reach the bloodstream, stimulating the production 
of  inflammatory cytokines and tumor necrosis factor-α 
(TNF-α) from leukocytes. The release of  those substances 
triggers an inflammatory cascade, which leads to the SIRS[7].

Morbidity of  SAP takes place in two phases: the first 
phase normally characterizes the first 14 d of  the disease. 
It is related to organ or multiorgan failure, secondary to 
SIRS, and is not necessarily related to the presence of  pan­
creatic necrosis[8]. The late phase, starts 14 d after the onset 
of  the disease and is marked by infected necrosis of  the 
gland, septic systemic complications and multiorgan failure 
syndrome, causing a significant increase in mortality[9,10]. 
Reports from various countries have shown an increase 
in AP incidence[11,12], perhaps in relation to rising obesity 
rates, which would increase the development of  gallstone 
pancreatitis[13]. Moreover, although fatalities associated with 
AP have decreased over time, the population mortality rate 
has remained unchanged[10,14].

The lack of  advances in the management of  AP 
reflects both the limited understanding of  the early AP 
pathophysiological mechanisms and the difficulty in 
identifying the patients who are at risk of  developing 
severe disease[3,10]. Accurate diagnosis of  SAP on admission 
to the hospital is of  paramount importance[15] and there is, 
therefore, agreement about the need for finding predictors 
of  severe disease to identify patients who are at risk of  
morbidity and death.

The main aim of  this article is to review the set of  
events, first localized in the pancreas, that contribute 
to pancreatic inflammation, and then explain how this 
local reaction spreads to other organs and contributes to 
multiorganic shock.

INITIAL PATHOPHYSIOLOGICAL EVENTS 
IN AP
AP is caused by the premature intracellular activation of  
trypsinogen and other zymogens within the pancreatic 
acinar cells, accompanied by disruption of  normal signal 
transduction and secretion[6,16,17]. Unregulated activation 
of  pancreatic enzymes is related to an impaired cytosolic 
Ca2+ homeostasis[18,19]. Thus, we have demonstrated, by 
using two different AP experimental models[20,21], that 
basal levels of  cytosolic Ca2+ are significantly increased in 
pancreatic acini isolated from pancreatitic rats with respect 
to control animals (Figure 1A). Moreover, an important 
reduction in calcium response to cholecystokinin is 
also observed in rats with AP (Figure 1B)[20,21]. Calcium 
signalling alteration seems to be one of  the earliest events 
in AP development since it is observed previous to enzy­
matic secretion impairment in pancreatic acini[21].

Sustained elevation of  cytosolic Ca2+, described as 
occurring during the onset of  AP, depend on both release 
of  Ca2+ from intracellular stores and uptake from the 
extracellular milieu[22-24]. Store-operated channels have 
been recently involved in Ca2+ influx in AP[25], while 
the acid granular calcium stores, regulated by inositol 
1,4,5-trisphosphate, as well as stores regulated by the 
ryanodine receptor, could be involved in intracellular 
Ca2+ release[23,26]. These mechanisms, and those previously 
described[27], may be involved in the pathological Ca2+ 

increase in the early phase of  AP. 
The effect of  Ca2+ on zymogen activation within 

acinar cells seems to be mediated by calcineurin, a Ca2+/
calmodulin-dependent serine/threonine phosphatase, 
which could be activated in the early phase of  AP leading 
to formation of  active trypsin[28,29].

In addition to cytosolic calcium impairment, oxidative 
stress has also been involved in abnormal enzyme acti­
vation during the early phase of  AP[30]. Excessive oxygen 
radical formation from activated leukocytes[31] leads to 
oxidative stress and pathological processes. In experimental 
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Figure 1  Basal and CCK-stimulated cytosolic calcium homeostasis are 
impaired in two different models of experimental AP. Experimental AP was 
induced in rats by infusing 5% (wt/vol) sodium taurocholate through the pancreatic 
duct (Taurocholate) or by subcutaneous injections of caerulein at a dose of 20 μg/kg  
(Caerulein). Cytosolic calcium concentration was measured in isolated pancreatic 
acini loaded with Fura-2 both in basal conditions and after CCK stimulation. 
A: Basal [Ca2+]i in acini isolated from control and pancreatitic rats. Results are 
mean ± SE and are expressed as calcium concentration in nmol/L. (bP < 0.01 
vs control, cP < 0.05 vs taurocholate, n = 6 for each treatment); B: Response of 
[Ca2+]i to 10-10 and 10-9 mol/L CCK in acini from control, taurocholate and caerulein-
induced acute pancreatitic rats. Results are mean ± SE and are expressed as 
increase over basal (set at 1) (bP < 0.01 vs control, n = 6 for each treatment). CCK: 
Cholecystokinin; AP: Acute pancreatitis.



AP, superoxide radical accumulation could lead to cell 
cytoskeleton dysfunction leading to intracellular transport 
impairment and premature activation of  digestive 
enzymes[30]. Moreover, increased oxidative stress causes 
an antioxidative capacity reduction and increases lipid 
peroxidation, and both effects could also play an important 
role in acinar cell damage[30].

Other early events that take place in the onset of  AP 
is cytoskeletal proteins breakdown, probably mediated by 
cytosolic proteases activation[32] and disruption of  acinar cell 
membranes, which could allow the influx of  calcium and 
the exit of  molecules, such as enzymes, from acinar cells[33].

Trypsin activation, which is a consequence of  the pro­
longed elevated cytosolic Ca2+ and also of  the deficient 
lysosomal degradation[34], occurs in post-exocytotic endo­
cytic vacuoles[35]. After this event, several enzymes such as 
elastase and phospholipases and other mediators are acti­
vated[36], with increased leukocyte migration to the pancreas. 

NEUROGENIC INFLAMMATION IN AP
Initial events, described above, take place within the 
pancreas and lead to the damage of  gland tissue and 
pain arising in the damaged area. The detection and 
transmission of  painful stimuli depend on stimulation of  
sensory neurons. These neurons have their bodies located 
at dorsal root ganglia, their axonal projections running 
centrally to the spinal chord and their dendrite projections 
innervating specific organs, including the pancreas. 
Stimulation of  these primary sensory neurons activates 
second neurons in the spinal chord, relaying the signal pain, 
but this can also lead to neurotransmitter release from their 
ends in the peripheral tissues. These neurotransmitters 
exert bioactive actions, especially vasodilator effects, which 
could lead to neurogenic inflammation[37].

Substance P (SP) and calcitonin gene-related peptide 
(CGRP) are neurotransmitters that are released from these 
sensitive neurons, which seem to account for neurogenic 
inflammation in the pancreas. They can interact with 
endothelial cells, arterioles, mast cells and other immune 
cells to induce vasodilation, edema and inflammatory cell 
infiltration[38].

Concerning SP, it has been shown to play an important 
role in many inflammatory states[38]. SP has been detected 
within the pancreas and its levels are increased in caerulein-
induced AP[38]. Moreover, we have recently shown that both 
neurotransmitters, SP and CGRP, are massively released 
from sensitive fibers within the pancreas of  rats with 
taurocholate-induced SAP[21] suggesting that neurogenic 
inflammation is important in SAP development. 

Vasodilator peptides release is supposed to be a prot­
ective mechanism since these molecules could improve 
pancreatic blood perfusion, avoiding ischemic damage. 
However, in a way that is not completely understood, they 
can also lead to deleterious effects in AP, which contribute 
to later SAP damage. During the last years, a set of  expe­
rimental studies have confirmed the hypothesis that 
microcirculatory derangement plays a pivotal role in the 
pathogenesis of  SAP[39,40].

Both SP and CGRP, and possibly other vasodilators, 
could be involved in this microcirculatory impairment. 
It has been recently shown that SP mediates pancreatic 
microcirculatory dysfunction during the development of  
experimental AP[41]. Thus, SP, through the neurokinin 1 
receptor, would lead to vasodilation and plasma extravasation 
causing leukocyte adhesion, infiltration, and edema[42]. 

However, actions of  these vasodilator neurotransmit­
ters can go further. SP can specifically stimulate infiltrated 
leukocytes promoting inflammatory mediators release[43]. 
Pro-inflammatory molecules, such as cytokines, hista­
mine or TNF-α, produced by lymphocytes, monocytes, 
macrophages and mast cells, would enhance tissue dam­
age and further increase leukocyte recruitment. All these 
mechanisms contribute to amplify the inflammatory and 
systemic manifestation of  AP[44].

Furthermore, SP could mediate the inflammatory 
response by directly activating tachykinin receptors in 
pancreatic acinar cells, leading to release of  both enzyme 
and inflammatory mediators from these cells[45,46].

In this early phase of  AP, acinar cells would be the pri­
mary source of  inflammatory mediators and the relative im­
balance between pro-inflammatory and anti-inflammatory 
responses could be the crucial issue for the progression and 
severity of  the disease[44]. Damage, which is first confined 
in the pancreas, can finally be disseminated throughout the 
body and may cause the feared multiorganic failure. 

SAP progression includes different events that lead 
to the vascular endothelial barrier dysfunction with an 
increased permeability and transendothelial migration of  
leukocytes and harmful enzymes to various tissues[47,48]. In 
the following section, we will describe the different path­
ways that can lead to this injury. 

FROM LOCAL PANCREATIC DAMAGE TO 
SYSTEMIC EFFECTS
Despite all the research on pathophysiological mechanisms 
involved in SAP development, the explanation for how 
the inflammatory process extends and affects different 
organs is unknown. SIRS, which is the main life-threaten­
ing complication in patients with SAP[7,8], is characterized 
by pulmonary, cardiovascular and renal insufficiency[49]. 
Moreover, SIRS can be associated with an impaired car­
diovascular function characterized by hypotension, which 
has been considered as a risk factor for death on admis­
sion at the hospital[50].

A recent review focusing on the reasons for multiple 
organ dysfunction in SAP concluded that injury incidence 
is lower in organs located farther from the pancreas[51]. 
The authors suggested that enzymatic proteases, especially 
trypsin, are the main culprits in damage spread. In mild 
cases, trypsin remains confined to the pancreas, whereas 
in SAP it enters the blood circulation and could affect 
other tissues[51].

Moreover, the overwhelming production of  pro-inflam
matory mediators, as well as oxidative injury, has also been 
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involved in extending the inflammation to other organs 
different from the pancreas. Thus, inflammatory mediators, 
such as ICAM-1, could contribute to the exit of  activated 
pancreatic enzymes from the circulation by increasing 
capillary permeability[52] and a reduction of  hepatic dam­
age after antioxidant agentsadministration has been shown 
during experimental AP[53].

As we have mentioned above, inflammation of  differ­
ent organs and multiorganic failure is usually associated 
with a dramatic fall of  arterial blood pressure. Although the 
mechanisms underlying hypotension associated with SAP 
are still not completely understood, a failure in the physi­
ological equilibrium between vasodilator and vasoconstric­
tor mediators has been proposed[54]. In two recent studies, 
we have analyzed whether an overwhelming production of  
vasodilators or a diminished response to vasoconstrictors 
occur in SAP-associated hypotension[55,56] and in the follow­
ing paragraphs we will summarize our main conclusions.

Nitric oxide (NO), an important vasodilator, has been 
implicated in the pathophysiology of  AP. However, there 
is not agreement about its beneficial or detrimental role 
in this disease[57]; moreover, an increase in NO has been 
suggested in SAP in humans[58], but this issue is not yet 
clear[59]. We have demonstrated, by using an experimental 
model of  necrotizing AP in rats, that NO and other va­
sodilators may exert a beneficial effect on SAP when they 
are administered before induction of  pancreatitis[55]. Thus, 
retrograde infusion of  5% sodium taurocholate through 
the pancreatic duct caused SAP associated with a fall of  
approximately 25 mmHg in mean arterial pressure in rats 
2 or 3 h after pancreatitis induction (Figure 2). Treatment 
with a NO donor, S-nitroso-N-acetylpenicillamine (SNAP), 
previously to pancreatitis induction, led to a stabiliza­
tion of  arterial pressure in pancreatitic animals (Figure 2).  
Since enhancement of  capillary blood flow protects isch
emic areas in the pancreas from becoming necrotic[60], we 
postulated that NO, as well as other vasodilators, would 

reduce the systemic circulatory derangement derived from 
the development of  SAP by increasing blood flow in the 
gland[55]. Moreover, we have observed that in later phases 
of  SAP, when hemodynamic impairment is established, 
NO still plays an important role in regulating the vascular 
tone[56] and controlling arterial pressure in this condition. 
But, what is the physiological role of  vasodilators and va­
soconstrictors once the hypotensive phase associated with 
AP has been reached?

Our work has demonstrated that hypotension associ­
ated with SAP could be related to a marked decrease in 
the response to vasoconstrictor substances, such as endo­
thelin and angiotensin Ⅱ[56]. Both endothelin and renin-
angiotensin system (RAS) are increased in SAP[61,62]. The 
hypertensive response to exogenously administered vaso­
constrictors is lower in animals with pancreatitis than in 
control rats (Figure 3), perhaps due to the fact that their 
receptors are occupied by the endogenous endothelin and 
angiotensin Ⅱ released during AP. Although the pressor 
responsiveness to angiotensin Ⅱ is reduced in animals with 
pancreatitis, we have demonstrated that RAS plays a very 
important role in maintaining arterial pressure in these ani­
mals, since angiotensin Ⅱ synthesis inhibition aggravates 
the physiological homeostatic response of  the cardiovascu­
lar system in SAP[56], which could finally lead to the animal’
s death. This demonstrates the importance of  RAS in the 
hypotensive status.

In conclusion, AP is a common inflammatory disease 
with increasing incidence. Although the majority of  pa­
tients have a mild episode of  AP, some of  them develop 
a severe course and suffer SIRS. It seems that once hy­
potension is fully established, opportunities to ameliorate 
the disease state and reverse the situation are limited. This 
means that therapeutic efforts should be directed towards 
earlier phases of  the disease. It is particularly important to 
understand the pathophysiological mechanisms that occur 
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at the first phases of  AP to avoid damage spreading out 
of  the pancreas. Moreover, efforts should also be directed 
to know why AP develops to become a severe disease in 
some patients but not in others, and to identify the pa­
tients who are at risk for developing severe disease in the 
earliest phases of  AP.
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