
number of factors including pancreatic duct obstruction, 
alcoholism, and mutation in the cationic trypsinogen 
gene. Pancreatitis is represented as acute pancreatitis 
with acute inflammatory responses and; chronic pan
creatitis characterized by marked stroma formation 
with a high number of infiltrating granulocytes (such 
as neutrophils, eosinophils), monocytes, macrophages 
and pancreatic stellate cells (PSCs). These inflammatory 
cells are known to play a central role in initiating and 
promoting inflammation including pancreatic fibrosis, 
i.e. , a major risk factor for pancreatic cancer. A number 
of inflammatory cytokines are known to involve in pro
moting pancreatic pathogenesis that lead pancreatic 
fibrosis. Pancreatic fibrosis is a dynamic phenomenon 
that requires an intricate network of several autocrine 
and paracrine signaling pathways. In this review, we 
have provided the details of various cytokines and 
molecular mechanistic pathways (i.e. , Transforming 
growth factorβ/SMAD, mitogenactivated protein 
kinases, Rho kinase, Janus kinase/signal transducers 
and activators, and phosphatidylinositol 3 kinase) that 
have a critical role in the activation of PSCs to promote 
chronic pancreatitis and trigger the phenomenon of 
pancreatic fibrogenesis. In this review of literature, we 
discuss the involvement of several proinflammatory and 
antiinflammatory cytokines, such as in interleukin (IL)1, 
IL1β, IL6, IL8 IL10, IL18, IL33 and tumor necrosis 
factorα, in the pathogenesis of disease. Our review 
also highlights the significance of several experimental 
animal models that have an important role in dissecting 
the mechanistic pathways operating in the development 
of chronic pancreatitis, including pancreatic fibrosis. 
Additionally, we provided several intermediary molecules 
that are involved in major signaling pathways that 
might provide target molecules for future therapeutic 
treatment strategies for pancreatic pathogenesis.

Key words: Pancreatitis; Pancreatic stellate cells; 
Transforming growth factorβ/SMAD; Janus kinase/
signal transducers and activators; Mitogenactivated 
protein kinases
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Abstract
Pancreatitis is inflammation of pancreas and caused by a 
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Core tip: Pancreatitis is an acute or chronic inflam
matory disease of the pancreas and characterized 
by destruction of acinar cells, which lead activation 
of several inflammatory cells like macrophages and 
granulocytes which secrete number of proinflammatory 
cytokines. These proinflammatory cytokines activate 
pancreatic stellate cells, i.e. , the key cells of pancreatic 
fibrosis. Various molecular signaling pathways (i.e. , 
transforming growth factorβ/SMAD, mitogenactivated 
protein kinases, Rho kinase, Janus kinase/signal 
transducers and activators, and phosphatidylinositol 3 
kinase) are known to have critical role in the activation 
of pancreatic stellate cells in chronic pancreatitis and 
development of pancreatic fibrosis that lead to the 
pancreatic carcinoma.

Manohar M, Verma AK, Venkateshaiah SU, Sanders NL, Mishra 
A. Pathogenic mechanisms of pancreatitis. World J Gastrointest 
Pharmacol Ther 2017; 8(1): 10-25  Available from: URL: http://
www.wjgnet.com/2150-5349/full/v8/i1/10.htm  DOI: http://
dx.doi.org/10.4292/wjgpt.v8.i1.10

INTRODUCTION
Pancreatitis is a disease defined as acute or chronic 
inflammatory process of the pancreas characterized by 
premature activation of digestive enzymes within the 
pancreatic acinar cells and causing pancreatic auto-
digestion[1]. In pancreatitis, a local inflammatory process 
initiated by release of pro- and anti-inflammatory 
cytokines and chemokines recruits granulocytes, 
monocytes and lymphocytes[2]. Annual incidence of 
acute pancreatitis varies from 13 to 45 per 100000 
people in United States[3], whereas chronic pancreatitis 
ranges from 4.4 to 11.9 per 100000 per year, with a 
higher occurrence in Japan as compared to the United 
States[4-7]. Men are up to 1.5 times more likely to have 
chronic pancreatitis compared to women in the United 
States[7]. In 2009, there were 19724 admissions for 
chronic pancreatitis in the United States, with associated 
annual hospitalization costs of $172 million[5,8]. However, 
the pathogenesis of chronic pancreatitis is not fully 
understood, but it is believed that repeated episode 
of acute damage lead chronic pancreatitis. Recurrent 
pancreatic injury leads to scarring and remodeling that 
promotes fibrosis as well as calcification, and these 
calcifications develop into stones found within the tissue 
or pancreatic duct[5,9] (Figure 1). The main causes of 
pancreatitis are; obstruction in the main pancreatic duct, 
gallstones, alcohol misuse, smoking, hypercalcemia, 
hyperparathyroidism, drugs like valproate, thiazide 
toxicity, and genetic mutation[10-12]. During pancreatic 
injury, atrophic acinar cells activate several inflammatory 
key players like macrophages and granulocytes which 
release a number of pro-inflammatory cytokines [i.e., 
interleukin (IL)-1, IL-6, IL-8, IL-18, IL-33, and tumor 
necrosis factor (TNF)-α]. These pro-inflammatory 

cytokines further activate pancreatic stellate cells (PSCs) 
to promote chronic pancreatitis[13]. The detail of each 
cytokine involved in the pathogenesis of pancreatitis has 
been described independently. 

PRO-INflammaTORy CyTOkINes 
IL-1
Induction of IL-1 has been reported in acute pancrea-
titis and numerous reports implicated the role of IL-1, 
and IL-1 receptor (IL-1R) in the pancreatic patho-
genesis[14-18]. Interestingly, it has been shown that IL-
1R gene-deficient mice or treatment with IL-1 receptor 
antagonist (rhIL-1Ra) attenuates cerulein-induced 
chronic pancreatitis in mice[16]. IL-1 converting enzyme 
(ICE) is responsible for the secretion of IL-1β from 
pro-IL-1β and experimental pancreatitis was signifi-
cantly attenuated by pre-treatment with an ICE inacti-
vator (VE-13045), resulting in reduced histological 
grading of pancreatitis and mortality. These findings 
were further supported by using ICE-knock out mice 
or intraperitoneal (i.p.) injection of ICE-inhibitor[19]. 
Additionally, IL-1β is also believed to play a role in the 
pathogenesis of pancreatitis. An elevated serum level 
of IL-1β has been associated with the development of 
acute pancreatitis[20]. Recently, Xu et al[20] have revealed 
that IL-1β can induce trypsin activation and decreases 
the cellular viability of pancreatic acinar cells. These 
effects depend on impaired autophagy via intracellular 
calcium changes. Ca2+ signaling may be a promising 
therapeutic target for the treatment of pancreatitis[20]. 

IL-6
IL-6 is a very important pro-inflammatory cytokine 
involved in inflammation and immune responses[21]. 
An important role of IL-6 has been shown in the deve-
lopment of acute and chronic pancreatitis as well 
as in pancreatic cancer. IL-6 mediates its action via 
gp130 protein and leads activation of Janus kinase/
signal transducers and activators (JAK/STAT) signaling 
pathway[21]. Reported data have revealed that patients 
with pancreatitis indicated high serum levels of IL-6 
as compare to healthy individuals[22,23]. In vitro studies 
have shown enhanced secretion of IL-6 from human 
pancreatic peri-acinar myofibroblast cells in the presence 
of several inflammatory mediators (i.e., TNF-α, IL-17, 
IL-1beta) and growth factors (i.e., fibroblast growth 
factor-2) and this data further supports the crucial role 
of IL-6 in the pathogenesis of acute pancreatitis[24,25]. 
Interestingly, neutralization of IL-6 by anti-IL-6 antibody 
therapy revealed suppression of STAT-3 activation 
in pancreatic acinar cells and consequently reduces 
the severity of acute pancreatitis[26]. The abnormal 
expression and deregulation of IL-6 in pancreatitis 
suggested that IL-6 serves as a valuable early marker 
for pancreatitis. 

IL-8
IL-8, known as chemokine (C-X-C motif) ligand 8 or 
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CXCL8, acts as a potent chemo-attractor of neutrophils 
and affects neutrophil function during onset of inflam-
matory responses by regulating the trafficking of 
various types of leukocytes through interaction with 
transmembrane receptors. IL-8 is produced by several 
types of cells such as monocytes/macrophages and 
epithelial cells[27,28]. Systemic complications of acute pan-
creatitis are associated with higher levels of IL-8[29-31]. 
Induction of IL-8 was also reported in a patient with 
aggravation of pancreatitis which suggests that IL-8 
takes part in the pathogenesis of pancreatitis[32]. Severity 
of acute pancreatitis is associated with polymorphisms 
of the IL-8 gene[33]. However, the mechanism of IL-8 
mediated severity of acute pancreatitis is not yet well 
understood and requires further study in this area. 

IL-18
Induction of IL-18 is now identified in a number of dis-
orders, such as autoimmunity[34], cutaneous[35] and 
allergen-induced allergic responses[36]. IL-18 is a member 
of IL-1 family cytokine and implicated in numerous 
aspects of the innate and adaptive immune system, with 
some analogy to IL-1β[37]. Evidences indicate that IL-18 is 
induced in the blood of acute[38] and chronic pancreatitis 
patients[39,40]. Furthermore, higher serum level of IL-18 
was also reported during mild and severe forms of acute 
pancreatitis compared to healthy controls[41]. Additionally, 
the induced IL-18 level was also reported in taurocholic 
acid and endotoxin-induced acute pancreatitis in rat[42]. 
Interestingly, IL-18 along with IL-12 induces severe 
acute pancreatitis in obese mice[43]. Notably, it is also 
reported that the IL-18 has an important role in the 
progression of disease from acute to chronic stages[40]. 
Overall, IL-18 seems to be released early during the 
course of acute pancreatitis and may act as a key 
immunomodulator of the inflammatory response in 
severe pancreatitis and associated fibrosis. However, the 
mechanistic pathway of IL-18-induced chronic pancreatic 
pathogenesis is yet not understood. 

IL-33
IL-33, a new member of the IL-1 superfamily of 
cytokine, binds to a complex of the ST2L/IL1 receptor 
accessory protein (IL1RAcP), which mediates its 
function[44]. Several investigations suggest a crucial 
role of IL-33 in the pathogenesis of chronic pancreatitis 
and possibly pancreatic cancer[45,46]. IL-33 was found 
to activate acinar cell pro-inflammatory pathways 
and to exacerbate acute pancreatic inflammation in 
mice[47]. However, the activated PSCs express IL-33 in 
the nucleus and regulate the platelet-derived growth 
factor (PDGF)-induced proliferation in PSCs[48]. IL-33 
also acts as a pro-inflammatory cytokine and modulates 
its receptor gene expression in Colo357 cells, i.e., 
human pancreatic carcinoma cells[45]. IL-33 and its 
receptor complex (ST2L and IL1RAcP) constitute a 
novel signaling system; therefore, this pathway may be 
important in promoting acute and chronic pancreatitis. 
Additionally, a role for IL-33 in the stimulation, proli-
feration and migration of pancreatic myofibroblasts is 
also reported[46].

TNf-α
TNF-α is a pleiotropic cytokine and acts as a central 
regulator of inflammation[49,50]. It is mainly secreted 
by monocytes and macrophages but is also released 
by pancreatic acinar cells after an inflammatory trig-
ger[51-54]. A number of studies have revealed TNF-α plays 
an essential role in the pathogenesis of pancreatitis 
and contributes inflammatory responses to disease 
pathogenesis[51-53,55]. An in vitro-based study indicates 
cultured pancreatic acinar cells are able to produce, 
release, and respond to TNF-α[56], leading to the 
activation of nuclear factor-kappa B (NFkB); interestingly, 
inhibition of NFkB activity decreases the inflammatory 
response during experimental pancreatitis[57,58]. Serum 
levels of TNF-α have not been considered to be a good 
indicator of disease severity because the liver is able 
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Figure 1  Structure of pancreas. A: The pancreas is a leaf-like structure and has two types of cells: Exocrine cells, that include acinar pancreatic duct cells, and 
endocrine cells, that include islets of Langerhans; B: The inflammatory process in the pancreas promotes fibrosis (scarring of tissue), calcifications or stones, and 
dilated pancreatic duct.
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several days, during which they control inflammatory 
responses and activate several pro-inflammatory 
mediators[75]. Trypsinogen activation is the key step 
for progression of pancreatitis; and a report suggested 
that initial trypsinogen activation is not regulated by 
neutrophils, whereas later activation of trypsinogen 
during pancreatitis is dependent on neutrophils[76]. 
In addition, several cases have been reported in the 
literature indicating the presence of increased number of 
eosinophils in patients with pancreatitis and termed this 
condition as “Eosinophilic Pancreatitis”[77,78]. Eosinophilic 
pancreatitis is a rarely occurring disorder and reports 
indicate that eosinophilic pancreatitis is frequently 
diagnosed only after “false positive” pancreatic rese-
ction for suspected pancreatic tumor and mimic 
pancreatic neoplasm[78,79]. The first report of peripheral 
blood eosinophilia in a patient with chronic relapsing 
pancreatitis with pleural effusion was published by 
Juniper[80] in 1955 and thereafter, several evidences 
came in the literature[81-84]. Tokoo et al[81] performed a 
study of 122 patients with chronic pancreatitis and found 
marked eosinophilia in approximately 21 cases (17.2%). 
All of the affected patients were males; no females were 
found affected. Endocrine pancreatic function was normal 
in the chronic pancreatitis patients with eosinophilia, 
whereas marked exocrine pancreatic dysfunction was 
observed in these patients. The eosinophilia of chronic 
pancreatitis has been frequently developed in association 
with severe damage to adjacent organs (pleural effusion, 
pericarditis, and ascites), as well as an association with 
pancreatic pseudocyst. This finding suggests that there 
may be a close correlation between marked eosinophilia 
and severe tissue injury during acute exacerbations 
of chronic pancreatitis[81]. Another study revealed 28 
cases (15.6%) of chronic pancreatitis with eosinophilia 
among 180 chronic pancreatitis patients and the ratio 
of male to female patients was 8.3:1. The occurrence 
of eosinophilia during the course of chronic pancreatitis 
might be responsible for the progression of pancreatic 
inflammation and fibrosis[82]. Additionally, reports 
indicate that peripheral eosinophilia, allergic disorders, 
and pancreatic eosinophil infiltration have been asso-
ciated with autoimmune pancreatitis[83,84]. Diagnosis and 
treatment of eosinophilic pancreatitis is important as it 
promotes pancreatic fibrosis and neoplasm.

exPeRImeNTal TOOls TO DIsseCT 
The meChaNIsm ThaT PROmOTes 
PaNCReaTITIs
Pathogenesis of pancreatitis is essentially understood 
by using experimental animal models, because of the 
anatomical location of the pancreas and the difficulty in 
procuring human tissue at different stages of the inflam-
matory process. Several animal models are reported 
to understand the pathogenesis of pancreatitis, which 
enable us to develop more effective treatment therapies 
to improve the quality of life of patients suffering 

to rapidly clear TNF-α before it reaches the general 
circulation; therefore, it is often difficult to detect TNF-α 
in the serum of acute pancreatitis patients[59]. One 
study indicates that TNF-α levels were higher in acute 
pancreatitis as compared to the chronic form of the 
disease, but its concentration did not correlate with 
the severity of disease[60]. In contrast to this, a recent 
study has shown levels of TNF-α are also increased in 
patients with chronic pancreatitis and the concentration 
of TNF-α coordinately increases in advanced chronic 
pancreatitis[61]. Furthermore, TNF-α mediates its effect 
by two surface receptors, TNF-α receptor 1 (TNFR1), 
or p55, and TNFR2, or p75, and both receptors are 
expressed in the pancreas[54,62]. Interestingly, genetic 
deletion of TNFR1 prevents the activity of TNF-α and 
revealed beneficial effects on symptom severity and 
mortality in cerulein-induced pancreatitis[63]. 

aNTI-INflammaTORy CyTOkINes 
IL-10
IL-10 is produced by a number of activated immune cells 
like monocytes/macrophages, Treg, and Th1 cells[64,65]. 
IL-10 gene deficient mice showed more inflammatory 
responses and lung injury during acute pancreatitis 
and chronic pancreatitis[66,67]. Pre-treatment of IL-10 
agonist (i.e., IT 9302) was found to reduce lung injury 
and mortality in a rabbit pancreatitis model[68]. Plasma 
IL-10 level was found to correlate with the severity of 
pancreatitis and could be used as a marker for severity 
prediction[22,69]. Initial studies based on several rodent 
models of acute pancreatitis revealed a protective role 
of IL-10 by reducing the production of inflammatory 
cytokines from macrophages and also diminished 
the level of serum amylase, serum lipase, edema, 
necrosis and hemorrhage[70-72]. However, recombinant 
IL-10 treatment in human pancreatitis has given mix 
responses[73]. In summary, IL-10 holds the promise 
of a global attenuation of the cytokine response, and 
more work is needed to establish its beneficial use in 
pancreatitis.

GRaNUlOCyTes INfIlTRaTION Is 
CRITICal IN The PaThOGeNesIs Of 
ChRONIC PaNCReaTITIs
Granulocytes infiltration in the pancreas is implicated 
in the initiation and progression of pancreatic inflam-
mation. The major granulocytes identified in acute 
and chronic pancreatitis patients are neutrophils and 
eosinophils. Neutrophils play a crucial role in acute 
inflammatory pancreatitis, are attracted to the site of 
injury by the help of chemokines such as CXCL8 in 
humans as well as CXCL1 in mouse, and further regulate 
the immune responses. Neutrophils remain in the blood 
circulation and have a very short life of approximately 
24 h[74]. However, in an inflammatory condition they 
became activated and their lifespan is prolonged for 
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from obstruction by gallstone or bile reflux into the 
pancreatic duct, which causes induction of acute pan-
creatitis. The rat model shows that due to high pan-
creatic duct pressure, pancreatic juice refluxes into the 
bile duct in the presence of ampullary orifice obstruction, 
resulting in pancreatic edema, inflammatory cell infil-
tration, increased amylase production[103]. Chronic pan-
creatitis develops in these mice with time that includes 
atrophy, loss of acinar cells, and fibrosis[103,104].

Alcohol-induced pancreatitis model
Alcohol is another accountable factor for the patho-
genesis of pancreatitis, and it has been used to trigger 
chronic pancreatitis in animal models[85,105,106]. Lieber 
and DeCarli have investigated the effects of ethanol on 
several organs by giving repeated feedings of ethanol 
as a part of the diet to rats and baboons[107] and the 
animals developed fatty liver disease, alcoholic hepatitis, 
and later on cirrhosis. Undesirably, alcohol ingestion 
alone did not induce chronic pancreatitis despite long 
experimental durations. However, the combination of 
alcohol with various agents such as cerulein or lipopo-
lysaccharide exacerbated pancreatitis and resulted in 
fibrosis[108]. Activation of pancreatic stellate cells and 
fibrosis has been observed in the rat given isocaloric 
Lieber-DeCarli liquid diets along with alcohol for up 
to 10 wk and challenged with 1 or 3 repeated doses 
of lipopolysaccharide[109]. Alcohol-induced pancreatic 
damage is thought to be mediated by its metabolites, 
which activates ROS to cause acinar cells injury and 
activate pancreatic stellate cells, leading to fibrosis[110].

SNARE proteins mediating basolateral exocytosis in 
alcohol-induced pancreatitis
The important role of SNAREs [soluble NSF (N-ethyl-
maleimide-sensitive fusion proteins) attachment pro-
teins receptors] mediating basolateral exocytosis in 
alcohol-induced pancreatic injury has been reported[111]. 
SNARE proteins are of two types (1) t-SNAREs present 
on the target membrane, and (2) v-SNAREs, positioned 
on the membrane of vesicles. The t-SNAREs, syntaxin 
and synaptosome-associated proteins, together make 
a SNARE complex which binds to v-SNAREs and trig-
gers the fusion of vesicle and target membranes. In the 
pancreas, this leads to release of zymogen granules 
into the ducts for transport to the duodenum for their 
activation[112]. Additionally, a study indicates ethanol/
cholecystokinin-evoked pancreatic acinar basolateral 
exocytosis has been mediated via protein kinase C alpha 
phosphorylation of Munc18c, which enables Syntaxin-4 
to become receptive in forming a SNARE complex in 
the basolateral plasma membrane. The authors also 
considered this phenomenon as an operating mechanism 
contributing to alcoholic pancreatitis[111]. Importantly, 
displacement of Munc18c from the pancreatic acinar 
basal membrane surface has been observed in tissue 
samples from a patient suffering from alcohol-induced 
chronic pancreatitis[113].

from pancreatitis-associated complications. In brief, 
we summarize some experimental models used for 
understanding the disease initiation and progression.

Cerulein-induced pancreatitis model
The most widely used acute and chronic pancreatitis 
model, the cerulein-induced model is a highly repro-
ducible and economical model in rats and mice[85-87]. 
Acute pancreatitis can be induced by intraperitoneal 
(i.p.) injection of cerulein (5 μg/kg per hour in rats and 
50 μg/kg in mice) several times at hourly intervals, 
and repeated doses of cerulein can induce chronic 
pancreatitis[88,89]. Cerulein is an analog of cholecysto-
kinin[90] and induces the secretion of digestive pancreatic 
enzymes from pancreatic acinar cells like amylase and 
lipase. Cerulein treatment further causes infiltration 
of inflammatory cells within the pancreas, pancreatic 
edema, and acinar cells vacuolization that are com-
parable to acute pancreatitis in humans. Cerulein-
induced pancreatitis model has been considered as 
a representative model of mild acute pancreatitis of 
human. 

L-arginine-induced pancreatitis model
Another experimental and reproducible pancreatitis 
model is L-arginine-induced model. This model is also 
widely used to study the pathophysiology of acute 
necrotizing pancreatitis to produce acinar cells necrosis. 
Initially, Mizunuma et al[91] and Tani et al[92] have de-
monstrated i.p. administration of excessive doses of 
L-arginine (500 mg/100 g body weight) in rat caused 
damage of pancreatic acinar cells. A single i.p. dose 
of 500 mg/100 g revealed necrosis in 70%-80% of 
acinar cells within 3 d[91,92]. Since, these observations, 
the L-arginine-induced acute pancreatitis rat model has 
been used by several investigators[93,94].

Bile salt-induced pancreatitis model
The first experimental biliary acute pancreatitis model 
was established by Bernard in 1856 via retrograde 
injection of bile and olive oil into the pancreas of a 
canine[95]. Since then, various bile salts such as sodium 
chenodeoxycholate[96], sodium taurocholate, sodium 
glycodeoxycholic acid[97], sodium-taurodeoxycholate 
and taurolithocholic acid 3-sulphate have been reported 
to induce acute pancreatitis in different animal models. 
Among these bile salts, the taurine-conjugated bile 
salt sodium taurocholate was the most widely used 
and best characterized chemical for the induction of 
acute pancreatitis[98]. Furthermore, a choline-deficient, 
ethionine-supplemented diet model is another esta-
blished model to study the pathogenesis of acute and 
chronic pancreatitis[99,100].

Pancreatic duct ligation model
In the rat model of pancreatitis, bile reflux was first 
implicated in the disease pathogenesis and termed as 
biliary pancreatitis[101,102]. Biliary pancreatitis develops 
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Development of fibrosis is a dynamic phenomenon 
that requires an intricate network of several autocrine 
and paracrine signaling pathways[116]. In this process, 
ECM formation takes place in the interstitial spaces 
and in areas where the exocrine compartment, mainly 
acinar cells are damaged[121,122]. Pancreatic injury 
activates acinar cells, macrophages and neutrophils 
which induces pro-inflammatory cytokines (IL-1, IL-6, 
and IL-8), chemokines (monocyte chemoattractant 
protein-1, macrophage inflammatory protein-1) and 
growth factors, which further activate quiescent PSCs[2]. 
The available facts suggest that these activated PSCs 
are the main cells in the development of fibrosis 
during chronic pancreatitis via secretion of TGF-β, FGF 
and COX-2 which leads to synthesis of ECM[123,124]. 
A schematic mechanistic pathway involved in the 
progression of chronic pancreatitis is shown below in 
Figure 2.

Furthermore, activated PSCs have the ability to 
synthesize and secrete several matrix proteins, matrix 
metalloproteinases (MMPs) and tissue inhibitors 
of matrix metalloproteinases, thus indicating that 
PSCs have dual functions to regulate the physiology 
of the exocrine pancreas, i.e., they can synthesize 
as well as degrade the extracellular matrix[125,126]. 
This indicates that PSCs have the ability to make a 
balance between fibrogenesis and matrix degradation 
to regulate the health of pancreatic tissue; that is, 
conservation of normal architecture or development 
of progressive fibrosis. Fibrosis is a complex process 
and the mechanism of pancreatic fibrosis is still not 
well understood. Due to pancreatic fibrosis, a number 
of therapies in pancreatic cancer have failed. In our 
standing, for proposing or designing any therapeutic 
strategy for chronic pancreatitis or pancreatic cancer, 
the mechanism of fibrosis development in the pancreas 
is important. Herein, we provide a summary of various 
molecular signaling pathways [i.e., TGF-β/SMAD, mito-
gen-activated protein kinase (MAPK), Rho kinase, JAK/
STAT, and phosphatidylinositol 3 kinase (PI3K)] that 
have been shown to play a critical role in the activation 
of PSCs during chronic pancreatitis and trigger the 
phenomenon of fibrogenesis in pancreas (Figure 3). 

TGf-β1/smaD PaThway
TGF-β is a multipotent cytokine and exists in three 
isoforms (TGF-β1, TGF-β2 and TGF-β3) in mammals 
and plays an integral role in regulating immune respon-
ses, cell growth, cell differentiation and apoptosis[127,128]. 
TGF-β mediates its downstream signaling by binding 
to its specific receptors and triggers the activation 
of several SMAD proteins, which acts as chief trans-
ducers of the signal from the receptors to the nucleus. 
The receptor-regulated SMADs (R-SMADs), SMAD-2 
and SMAD-3, are directly phosphorylated by the 
TGF-β1 receptor and make a complex with the com-
mon mediator SMAD (i.e., co-SMAD; SMAD-4) that 

ChRONIC PaNCReaTITIs leaDs 
fIbROsIs aND PaNCReaTIC CaNCeR 
Chronic pancreatitis develops fibrosis and it is the com-
mon pathological characteristic feature and major risk 
factor for pancreatic cancer[114]. Recent data has shown 
48960 new cases of pancreatic cancer arise and 40560 
deaths occur annually in the United States because of 
pancreatic cancer[115]. Chronic pancreatitis is a long-
standing inflammation of the pancreas that often leads 
to permanent damage of pancreas and serious com-
plications, including pancreatic cancer. Chronic pancrea-
titis is characterized by marked stroma formation with 
an increased number of infiltrating macrophages and 
stellate cells, which are believed to play a central role in 
triggering inflammation and disease progression. The 
treatment of chronic pancreatitis and pancreatic cancer 
remains problematic as tissue becomes fibrotic due to 
injury that triggers several inflammatory, cellular as well 
as molecular signaling cascades that lead to formation 
and deposition of extra cellular matrix (ECM) at the site 
of injury. Several key cells are known to be involved 
in the process of fibrogenesis, such as inflammatory 
cells (e.g., macrophages and T cells), epithelial cells, 
fibrogenic effector cells, and endothelial cells. There 
are different types of effector cells in different organs, 
such as fibroblasts, myofibroblasts, and fibrocytes[116]. 
Among these cells, fibroblasts and myofibroblasts 
are the key cells in fibrosis and are responsible for 
secretion of ECM[117]. However, the function of fibrocytes 
is similar to the fibroblasts but to a lesser extent. 
Apart from this, macrophages have a more indirect 
contribution to fibrosis through their roles in chronic 
inflammation by producing a wide range of cytokines 
such as, transforming growth factor-β (TGF-β), PDGF, 
fibroblast growth factor 2 (FGF2) and insulin-like 
growth factor 1, all of them have pro-fibrotic effects on 
fibroblasts[118,119]. If fibrogenic processes persist for long 
time, parenchymal scarring, cellular dysfunction and 
organ failure take place[116]. Fibrosis is becoming a global 
problem and it can be of various types depending upon 
the tissue where it happened, such as cardiac, hepatic, 
renal, pulmonary, skin, liver and pancreatic fibrosis, 
etc. Fibrosis is an irreversible process and most of the 
drugs are not effective to treat fibrosis. Restriction of 
the progression of fibrogenesis might be a promising 
approach for the treatment of several fibrotic diseases.

Herein, our focus is on pancreatic fibrosis that hap-
pens during repeated injury to the pancreas. The nor-
mal pancreas has two major functions: (1) exocrine; 
and (2) endocrine. Exocrine pancreas comprises more 
than 95% of the pancreatic mass and consists of two 
types of pancreatic cells: (1) acinar cells, which produce 
digestive enzymes; and (2) ductal cells lining pancreatic 
ducts, which secrete a watery fluid to transport the 
digestive enzymes into the intestine. Endocrine pan-
creas mainly consists of the islets of Langerhans, which 
secrete insulin and other hormones[5,120] (Figure 1). 
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titis resulted from loss of TGF-β signaling in S100A4-
positive dendritic cells[142].

Plenty of evidence suggests the involvement of 
TGF-β in pancreatic fibrosis, however TGF-α was also 
found to increase the proliferation as well as migration 
of PSCs via up-regulation of MMP-1, which might con-
tribute to the pathogenesis of chronic pancreatitis[143]. 
A recent report has shown loss of SMAD-4 synergizes 
with TGF-α over-expression in promoting pancreatic 
metaplasia, PanIN development, and fibrosis[144]. Fur-
thermore, a higher level of TGF-β1 during pancreatic 
inflammation triggers the deregulation of the micro-
RNA-217-SIRT1 pathway and then promotes EMT and 
subsequent fibrosis in the pancreas[145]. Although, TGF-β 
still remains elusive in terms of our understanding of its 
multifunctional modes of action and TGF-β also activates 
SMAD-independent signaling pathways including MAPK 
pathways and phosphoinositide (PI) 3-kinase[129,146,147] 

but the detailed mechanisms are not well understood. 

maPk 
MAPK are of three types, ERK, JNK, and p-38, and play 
an important role in a variety of cellular processes, 
including cell proliferation, cell survival, apoptosis, and 
cytokine production[148]. In alcohol-induced pancreatic 
injury, ethanol and its metabolite acetaldehyde were 

translocate into the nucleus and activates the transcri-
ption of target genes[127,129,130]. Earlier studies have 
confirmed the involvement of TGF-β in the patho-
genesis of acute pancreatitis, chronic pancreatitis and 
development of fibrosis[131-136]. PSCs play a key role in 
triggering pancreatic fibrosis and interestingly TGF-β 
was found to regulate activation and proliferation 
of PSCs in an autocrine manner via involvement of 
SMAD-2, SMAD-3 and ERK pathways[137,138]. Amelio-
ration of pancreatic fibrosis in cerulein-treated mice 
was observed with defective TGF-β signaling by over-
expressing a dominant-negative mutant form of TGF-β 
type 2 receptor (pS2-dnR II) only in the pancreas 
under control of pS2/TFF1 promoter[139]. Subsequent 
study has revealed suppression of TGF-β signaling halts 
cerulein-induced pancreatitis[140]. These studies indicate 
a functional TGF-β signaling pathway might be required 
for cerulein to induce acute pancreatitis in these 
mice[139,140]. In contrast, deactivation of TGF-β signaling 
induces autoimmune pancreatitis in mice, indicating the 
important role of TGF-β either in maintaining immune 
homeostasis and suppressing autoimmunity or in 
preserving the integrity of pancreatic acinar cells[141]. 
Transgenic mice with an S100A4/fibroblast-specific 
protein 1 Cre-mediated conditional knockout of TGF-β 
type 2 receptor spontaneously developed autoimmune 
pancreatitis in 6 wk. This indicates autoimmune pancrea-

Figure 2  Pathogenesis of pancreatitis. Diagrammatic representation of the onset of pancreatitis by damaged pancreatic acinar cells which in turn activates 
quiescent pancreatic stellate cells (PSCs) to become activated PSCs and promote subsequent fibrosis of pancreas. TNF-α: Tumor necrosis factor-α; TGF-β: 
Transforming growth factor-β; PDGF: Platelet-derived growth factor; IL: Interleukin.
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RhO kINase PaThway
In chronic pancreatitis, activation of PSCs and induced 
stress fiber formation suggest the reorganization of 
cytoskeletal proteins is involved in this disease pro-
cess[159]. The Rho family proteins RhoA, Rac and Cdc42 
are considered the core molecules that induce stress 
fiber formation and regulate cellular adherence by 
remodeling of the cytoskeleton in response to external 
signals[160,161]. Further, the inhibition of Rho A signaling 
diminished the endothelial hyper-permeability that was 
induced by sera from severe acute pancreatitis patients 
with lung injury via inhibiting F-actin aggregates[162]. 
Inhibitors of Rho kinase such as Y-27632 and HA-1077 
(fasudil) block activity of PSCs, via reducing α-SMA, 
proliferation, chemotaxis, and type I collagen production 
in culture-activated PSCs[163]. During cerulein-induced 
pancreatitis in mice, Y-27632 caused induction of serum 
amylase levels, higher interstitial edema and vacuoli-
zation at 12-18 h after the first injection of cerulein. 
Y-27632 in turn inhibited the recovery of protein expres-
sion of ROCK-II at 18 h after the first cerulein injection. 
These results indicate that RhoA and ROCK-II accumulate 
in normal CCK-stimulated pancreatic enzyme secretion 
and prevent cerulein-induced acute pancreatitis[164]. 
Rho-kinase signaling was found to regulate trypsinogen 
activation and its release from the pancreatic acinar 
cells during acute pancreatitis and subsequent CXC 
chemokine formation, neutrophil infiltration and tissue 
injury[165]. Thus, these results indicate that Rho-kin-
ase may serve as a novel molecular target for future 
treatment of acute pancreatitis, but there is need for 

found to induce activator protein-1 (AP-1) and MAPK 
signaling in PSCs[149,150]. Furthermore, CX3CL1 is a 
chemokine that serves as an adhesion molecule as 
well as a migration factor, and was elevated in patients 
with alcoholic chronic pancreatitis[151]. A recent report 
indicates ethanol induces CX3CL1 release via ERK 
activation in PSCs[152]. However, H2O2 induces oxidative 
stress, AP-1, MAP-kinase pathway and expression of α (I) 
procollagen in PSCs[153]. Apart from this, PDGF induces 
rapid activation of Raf-1, ERK 1/2, and AP-1 protein 
and further indicates a correlation between ERK activity 
and PSC activation[154]. Furthermore, the involvement of 
protease-activated receptor-2 (PAR-2) was also found 
in the pathogenesis of pancreatitis and PAR-2 agonists 
increased collagen synthesis via activation of JNK and 
p-38 MAP kinase pathways in PSCs, suggesting the 
role of PAR-2 during induction of pancreatic fibrosis[155]. 
PD98059 is an inhibitor of MAP/ERK kinase-1 (MEK-1) 
pathway and was able to protect against cerulein-
induced acute pancreatitis in mice[156]. Apart from 
this, angiotensin II-treated PSCs start proliferation 
and increase DNA synthesis via an epidermal growth 
factor receptor transactivation-ERK activation pathway, 
indicating the possible role of angiotensin II in develop-
ment of pancreatic fibrosis[157,158]. Taken together, these 
studies have broadened our knowledge to understand 
the role of the MAP kinase signaling pathway in the 
development of pancreatitis-associated fibrosis, but still 
the existence of several molecular signaling pathways 
which may cross-talk to each other have an important 
role in the development of fibrosis and need to be 
explored further. 

Figure 3  Various signaling pathways involved in the development of pancreatic fibrosis. Diagrammatic representation of various molecular signaling pathways 
which are involved in the development of pancreatic fibrosis. TGF-β: Transforming growth factor-β; PDGF: Platelet-derived growth factor; IL: Interleukin; MAPK: 
Mitogen-activated protein kinase; PI3K: Phosphatidylinositol 3 kinase; AP-1: Activator protein-1; NFkB: Nuclear factor kappa B.
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ClINICal ChaRaCTeRIsTICs aND 
DIaGNOsIs Of PaNCReaTITIs
The major clinical characteristics of pancreatitis are 
abdominal pain localized to the upper-to-middle abdo-
men, abdominal distension, nausea, fever, flank pain, 
vomiting, back pain, jaundice, hematemesis, melena 
diarrhea with foul-smelling, oily bowel movements and 
weight loss[178]. Abdominal pain is the most common 
symptom found in 50% to 80% of cases, and it is the 
major cause for hospitalizations of patients related to 
pancreatitis. Although the pancreatic pain is low in the 
abdomen, following food intake it worsens and becomes 
localized to the epigastric area[179]. Ammann et al[180] 
have identified two types of pancreatic pain (type A 
and type B) on the basis of natural history of alcoholic 
chronic pancreatitis. In type A pain, there are short (< 
10 d) episodes of acute pain with long pain-free periods, 
whereas type B pain persists for a longer period of time 
(1-2 mo) with intervals of intense pain. Type A pain is 
experienced more often and is typically easier to treat. 
Several serum-based biomarkers have been identified 
for the diagnosis of acute pancreatitis such as amylase, 
lipase and trypsinogen[181]. In acute pancreatitis, the 
level of amylase (glycoside hydrolase) is rapidly induced 
within 4 to 6 h of disease onset, remains high for 3 to 4 
d and sensitivity decreases with time from onset[182-184]. 
Higher levels of lipase have been found during the 
onset of acute pancreatitis, and it is more specific and 
sensitive than amylase for detecting acute pancreatitis 
because serum level of lipase remain elevated for 
around 2 wk before it returns to the normal level[183,185]. 
The sensitivity and specificity of amylase is about 63.6% 
and 99.4%, whereas sensitivity and specificity of lipase 
were 95.5% and 99.2%, respectively[186,187]. Pancreatic 
lipase is four times more active than amylase and it is 
less affected by exocrine pancreatic deficiency occurring 
in patients with chronic pancreatitis[183,188]. Trypsinogen 
is the inactive form of the enzyme trypsin and is cleaved 
by duodenal enterokinase to produce the active enzyme 
trypsin and trypsinogen activated peptide[183,189]. 
Normally trypsinogen is secreted in very low levels 
from pancreatic acinar cells but during pancreatitis 
secreted trypsinogen enzyme moves into the systemic 
circulation due to increased vascular permeability, and 
consequently there is increased clearance in the urine. 
During the onset of disease, trypsinogen concentration 
is elevated in the serum as well as urine and declines to 
normal level within 3 to 5 d[183,185,190]. 

CURReNT TReaTmeNTs sTRaTeGy
The first-line of treatment involves fasting along with 
intravenous fluids if the pancreatitis is very painful and 
this help the pancreas to rest and recover. Depending 
on the underlying cause of pancreatitis, management 
may vary to address the specific cause. Currently, 
several medications and treatment options are available 

vast effort to understand the Rho-Kinase signaling in 
pancreatitis. This area opens up a new avenue for future 
research. 

Jak/sTaT sIGNalING PaThway
The JAK/STAT signaling pathway regulates several 
cellular functions such as cell proliferation, differentiation, 
and inflammatory responses[166-168]. IL-6 is a well-known 
pro-inflammatory cytokine and mediates its action via 
JAK/STAT signaling pathway[21] and plays a crucial role 
in the progression of pancreatitis. Various reports have 
indicated higher serum levels of IL-6 in patients with 
pancreatitis as compared to healthy individuals[22,23]. 
Furthermore, an in-vitro study also indicates induced 
secretion of IL-6 from the human pancreatic peri-
acinar myofibroblast cells under the influence of several 
inflammatory mediators, such as TNF-α, IL-17, IL-1β 
and FGF-2; this data further indicates the crucial role 
of IL-6 in the pathogenesis of acute pancreatitis[24,25]. 
Interestingly, blockade of IL-6 using anti-IL-6 antibody 
suppresses STAT-3 activation in the pancreatic acinar 
cells and consequently diminishes the severity of 
acute pancreatitis by induction of pancreatic acinar cell 
apoptosis[26]. Apart from this, another report suggests 
that PDGF induces the proliferation of PSCs[169] by 
activating the JAK-2/STAT-3 pathway[155]. The inhibition 
of JAK-1/STAT-1 improves the severity of cerulein-
stimulated pancreatic injury by inhibiting the activation 
of NFĸB, and this indicates that activation of JAK-1/
STAT-1 is involved in the early events of pancreatic 
injury[170]. Still, a better understanding of the JAK/STAT 
signaling pathway is required to know its role in the 
proliferation of PSCs and progression of fibrosis in 
chronic pancreatitis.

PI3k-akT PaThway
PI3K-Akt is a major intracellular signaling pathway that 
belongs to a family of lipid and protein kinases. When 
growth factors bind to membrane bound receptor tyro-
sine kinase, it activates PI3K and its downstream regu-
lators Akt and mTOR and regulates several aspects 
such as cell growth, survival, apoptosis and inflamma-
tion[171-173]. Earlier, it has been shown the PI3K path-
way inhibitor wortmannin reduces the intra pancreatic 
activation of trypsinogen in acinar cells[174] and decreases 
inflammatory cytokines in severe acute pancreatitis in 
rats[175]. These reports suggest involvement of the PI3K 
pathway in the pathogenesis of acute pancreatitis. PI3Kγ 
is an isoform of PI3K known to regulate pathologic re-
sponses of the pancreatic acinar cells during pancrea-
titis[176]. The role of PI3Kγ was studied in two different 
models of acute pancreatitis, cerulein and choline-
deficient/ethionine-supplemented diet. Mice lacking the 
PI3Kγ gene are protected from acinar cell injury/necrosis 
and show reduced severity of acute pancreatitis, 
indicating PI3K inhibitors may provide a possible therapy 
for acute pancreatitis[172,177]. 
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such as analgesics likes paracetamol or non-steroidal 
anti-inflammatory drugs or both followed by tramadol, 
perhaps coupled with a neuroleptic antidepressant. 
Another option is steroid therapy in which predniso-
lone is used for the treatment of autoimmune pancrea-
titis[191,192]. Furthermore, micronutrient therapy seems 
to be promising and it includes vitamin C, E, B6, B12, 
folic acid, methionine, and β-carotene. Braganza et al[10] 
have revealed that micronutrient therapy is designed 
to supply methyl and thiol moieties, which are helpful 
to restrict the generation of reactive oxygen species 
and deactivate pro-inflammatory oxidation products, 
reduce mast cell degranulation, decrease necrosis of 
pancreatic acinar cells and lessen pro-fibrotic induction. 
The outcome of these six clinical trial-based studies 
revealed that micronutrient therapy controls the pain 
and curbs attacks in patients suffering with chronic 
pancreatitis[193-199]. If pancreatitis is due to an obstructing 
gallstone, surgical intervention may be needed to 
remove the gallstone. Intervention may also be required 
to treat a pseudocyst or surgically remove the part of 
affected pancreas. Micronutrient treatment seems to 
substantially reduce the need for surgery.

CONClUsION
The current review provides a comprehensive under-
standing of the development of chronic pancreatitis and 
the role of cells and cytokines involved in promoting 
pathogenesis. Briefly, we have discussed disease 
characteristics, molecular mechanisms involved in pan-
creatitis, the role of granulocytes such as neutrophils 
and eosinophils, the details of associated cytokines and 
chemokines implicated in the progression along with 
major signaling pathways such as TGF-β/SMAD, MAP 
kinase, PI3K, Rho kinase, and JAK/STAT that are crucial 
in the development of pancreatic fibrosis following 
pancreatic injury. This review will help to understand 
the intricate process of several autocrine and paracrine 
pathways involved in pancreatitis pathogenesis including 
remodeling. We provided details regarding the disease 
that might be useful for investigators to focus on, and 
cells and their associated mediators that might be helpful 
for future strategies for diagnostic and therapeutic 
interventions in the treatment of pancreatitis. 
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