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Abstract
Computer-aided diagnosis (CAD) has become one of 
the major research subjects in medical imaging and 
diagnostic radiology. The basic concept of CAD is to 
provide computer output as a second opinion to assist 
radiologists’ image interpretations by improving the ac-
curacy and consistency of radiologic diagnosis and also 
by reducing the image-reading time. To date, research 
on CAD in ultrasound (US)-based diagnosis has been 
carried out mostly for breast lesions and has been 
limited in the fields of gastroenterology and hepatol-
ogy, with most studies being conducted using B-mode 
US images. Two CAD schemes with contrast-enhanced 
US (CEUS) that are used in classifying focal liver le-
sions (FLLs) as liver metastasis, hemangioma, or three 
histologically differentiated types of hepatocellular 
carcinoma (HCC) are introduced in this article: one is 
based on physicians’ subjective pattern classifications 
(subjective analysis) and the other is a computerized 

scheme for classification of FLLs (quantitative analy-
sis). Classification accuracies for FLLs for each CAD 
scheme were 84.8% and 88.5% for metastasis, 93.3% 
and 93.8% for hemangioma, and 98.6% and 86.9% 
for all HCCs, respectively. In addition, the classifica-
tion accuracies for histologic differentiation of HCCs 
were 65.2% and 79.2% for well-differentiated HCCs, 
41.7% and 50.0% for moderately differentiated HCCs, 
and 80.0% and 77.8% for poorly differentiated HCCs, 
respectively. There are a number of issues concerning 
the clinical application of CAD for CEUS, however, it is 
likely that CAD for CEUS of the liver will make great 
progress in the future.
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INTRODUCTION
Ultrasound (US) is an easy-to-use and minimally invasive 
imaging modality that is useful for detection and qualita-
tive diagnosis of  focal liver lesions (FLLs). In addition, 
the detection and qualitative diagnosis of  FLLs have been 
markedly improved by the development of  US contrast 
agents consisting of  microbubbles[1-5] and by harmonic 
imaging that can visualize nonlinear scattering of  micro-
bubbles[6-12].
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It is well known that a major problem with US ex-
aminations is their operator-dependent nature, as com-
pared with computed tomography (CT) and magnetic 
resonance (MR) imaging[13]. It is therefore necessary to 
reduce the operator-dependent limitations of  US exami-
nations. Computer-aided diagnosis (CAD) may be an ap-
proach that overcomes this problem.

To date, research on CAD in US-based diagnosis has 
been carried out mostly on breast lesions[14-19] and has been 
limited in the fields of  gastroenterology and hepatology. In 
this article, we introduce CAD aimed at differential diag-
nosis of  FLLs by use of  contrast-enhanced US (CEUS), in 
addition to reviewing CAD on US in liver research.

WHAT IS CAD?
Recently, CAD has become a major research subject in 
medical imaging and diagnostic radiology[20-24]. Many 
different types of  CAD schemes are being developed 
for the detection and/or characterization of  lesions in 
various tissues using medical imaging, including conven-
tional projection radiography, CT, MR imaging, and US. 
CAD research is being carried out on detecting lesions 
in breast, chest, colon, brain, liver and kidney, as well as 
the vascular and skeletal systems.

CAD is defined as a diagnosis made by a physician 
who takes into account the computer output based on 
quantitative analysis of  radiologic images. This definition 
is clearly distinct from automated computerized diag-
nosis[25-27], which was attempted in the 1960s and 1970s 
and included replacing radiologists by computers. Subse-
quently, Doi et al[20-22] began their investigations on CAD 
at the University of  Chicago in the 1980s with a clear goal 
of  assisting radiologists with computerized information. 
The goal of  CAD research is to improve the quality and 
productivity of  radiologists’ tasks by improving the accu-
racy and consistency of  radiologic diagnoses and also by 
reducing the image-reading time.

CURRENT STATUS OF RESEARCH ON 
CAD BASED ON US OF THE LIVER
To date, CAD based on US of  the liver has been fre-
quently used in diffuse liver disease for quantifying the 
degree of  liver fibrosis and fat deposition[28-30]. In addition, 
CAD for FLLs has been reported[31-34]; however, the num-
ber of  such reports is small compared with the reports on 
CAD for diffuse liver disease. This is somewhat surprising 
because computers are, in general, superior to humans in 
quantitative measurements and in differential diagnosis, 
but inferior in lesion detection because of  a large number 
of  false positives. However, CAD has been used for quan-
titative evaluation of  liver volume for support treatment, 
which included liver resection and radiofrequency ablation 
therapy applied to hepatocellular carcinoma (HCC) by ap-
plication of  volume measurements in 3D-US images[35,36]. 
All such applications have been developed based on 
B-mode US images.

Second-generation US contrast agents have been de-
veloped recently. Definity (Lantheus Inc., MA, USA) and 
SonoVue (Bracco, Milan, Italy) became available com-
mercially in Canada and Europe, respectively, in 2001, 
whereas SonoVue became available in China in 2006, 
followed by Sonazoid (Daiichi Sankyo, Tokyo, Japan) in 
Japan in 2007 and SonoVue in Korea in 2008. Their util-
ity for the diagnosis of  FLLs has been reported[1-5]. In 
parallel, CAD with CEUS images for differentiating FLLs 
has been reported[33,34]. In these studies, FLLs were diag-
nosed by analysis of  relatively simple blood flow param-
eters obtained from measurements of  the time-intensity 
curve (TIC), which reflects tumor hemodynamics. Thus, 
research on CAD with CEUS images of  the liver has just 
begun worldwide. In the next section, we introduce two 
different types of  CAD schemes aimed at the differential 
diagnosis of  FLLs, which were developed in collabora-
tion with colleagues at the University of  Chicago as ex-
amples of  CAD[31,32].

SUBJECTIVE CLASSIFICATION OF 
FLLs USING PHYSICIANS’ SUBJECTIVE 
PATTERN CLASSIFICATIONS 
(SUBJECTIVE ANALYSIS)
In this study, a total of  137 nodules in 137 cases were 
used for the development of  CAD; specifically, there 
were 74 HCCs [23 well-differentiated (w-HCC), 36 
moderately differentiated (m-HCC) and 15 poorly dif-
ferentiated (p-HCC)], 33 liver metastases and 30 liver 
hemangiomas. HCC and liver metastasis were diagnosed 
based on histology after liver resection or liver biopsy in 
all cases. Liver hemangioma was diagnosed by contrast-
enhanced CT and/or MR imaging. The US equipment 
used in this study was an SSA-790A (Aplio™XG; Toshi-
ba Medical Systems Co., Otawara, Japan). The imaging 
mode was wideband harmonic imaging (commercially 
called Pulse subtraction) with transmission and reception 
frequencies of  3.75 MHz and 7.5 MHz, respectively. The 
contrast agent used was Sonazoid, which consists of  
perflubutane-based microbubbles surrounded by phos-
pholipids with a median diameter of  2-3 μm.

From the baseline US features of  an FLL, three ex-
perienced physicians were requested to classify the echo-
genic patterns of  the FLL into one of  the following eight 
patterns: (1) hyperechoic; (2) hypoechoic; (3) anechoic; (4) 
thin hypoechoic rim; (5) thick hypoechoic rim (bull’s eye); 
(6) hyperechoic rim; (7) mosaic; and (8) others (Figure 1A).  
These patterns were proposed by Itai et al[37] for describing 
the characteristics of  FLLs from baseline US.

After rating the echogenic patterns of  FLLs from base-
line US, the physicians were asked to classify the contrast-
enhancement patterns of  FLLs into one of  the following 
eight patterns: (1) absent; (2) dotted; (3) peripheral rimlike; 
(4) peripheral nodular; (5) central with spoke wheel-shape; 
(6) diffuse heterogeneous; (7) diffuse homogeneous; and 
(8) others (Figure 1B). These patterns were proposed by 
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Quaia et al[38]. The physicians were not asked to provide a 
diagnosis in this study. 

For analysis of  the subjective ratings obtained by the 
three physicians, we created a matrix of  137 FLLs and 16 
patterns, which indicated the total number of  physicians 
who rated lesions in each pattern.

To classify the five types of  FLLs (i.e. w-HCCs, 
m-HCCs, p-HCCs, metastases and hemangiomas) in this 
CAD scheme, we employed four artificial neural networks 
(ANNs), as shown in Figure 2. ANNs are mathematical 
models based on biologic neural networks, which consist 
of  an interconnected group of  artificial neurons that can 
process information by using a connectionist approach 
to computation. The order of  the four decisions (labeled 
D1-D4) in each ANN was determined by considering the 
diagnostic difficulty, which was based on the physicians’ 
knowledge levels. The four decisions used in this study 
were the following: (1) D1: Is this lesion an HCC (yes) 
or other (no)? (2) D2: Is this lesion a hemangioma (yes) 
or metastasis (no)? (3)D3: Is this lesion a p-HCC (yes) or 
other HCC (no)? and (4) D4: Is this lesion a w-HCC (yes) 
or a m-HCC (no)?

All decisions were determined using each of  the 
ANNs with a two-alternative choice method. In the learn-
ing and testing process of  the ANNs, a leave-one-out test 
was employed in individual ANNs. In this method, one 

case is left out for a test, and the ANN is trained to learn 
using the remaining cases. The one case that was left out 
is used for testing the trained ANN. The same procedure 
was then repeated until all cases were tested. 

In the four ANNs, we did not use one of  the subjec-
tive classifications (i.e. others), because we assumed that 
uncertain data might have a detrimental effect on the 
training of  the ANNs. Thus, we used 14 input units cor-
responding to seven patterns of  subjective classification 
data in the matrix as described previously. 

The correct classification of  the CAD scheme for 
the five types of  FLLs was determined when the final 
outcome from the four ANNs agreed with the “gold 
standard”. The classification accuracies for each type of  
FLL and also for all 137 FLLs were determined with the 
percentages of  correctly classified cases among the total 
number of  cases.

Table 1 shows the performance of  the computerized 
scheme for the classification of  the five types of  FLLs. 
The classification accuracies for the 137 FLLs were 84.8% 
for metastasis, 93.3% for hemangioma, 65.2% for w-HCC, 
41.7% for m-HCC, and 80.0% for p-HCC. When the 
classification was conducted only for three types of  FLLs 
(i.e. HCCs, metastasis, and hemangioma), the classification 
accuracy for all HCCs was 98.6%, as shown in Table 2. 
The average classification accuracies for the three and five 
types of  FLLs were 94.2% and 71.5%, respectively.

COMPUTERIZED SCHEME FOR 
CLASSIFICATION OF FLLs
Micro-flow imaging with contrast-enhanced 
ultrasonography
Micro-flow imaging (MFI; Toshiba Medical Systems Co., 
Otawara, Japan) is a novel image-processing technique 
that is accompanied by high-mechanical-index (MI > 
1.0) disruptive flash frames and the maximum intensity 
projection (MIP) technique[32,39]. MIP processing is initi-
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(1) Hyperechoic               (2) Hypoechoic

(3) Anechoic           (4) Thin hypoechoic rim       (5) Thick hypoechoic rim

(6) Hyperechoic rim         (7) Mosaic                       (8) Others

(1) Absent                       (2) Doted                       (3) Peripheral rimlike

(4) Peripheral nodular            (5) Central with spoke wheel-shaped

(6) Diffuse heterogeneous    (7) Diffuse homogeneous        (8) Others

B

A

Figure 1  Hepatic tumors. A: Illustration of morphologic patterns of hepatic 
tumors in the B-mode ultrasonography; B: Illustration of enhancement patterns 
of hepatic tumors in the arterial phase.

B-mode and enhancement
patterns of FLL D1: HCC?

D2: p-HCC? D3: Hemangioma?

D4: m-HCC?

1st LN
w-HCC

2nd LN
m-HCC

3rd LN
p-HCC

4th LN
Metastasis

5th LN
Hemangioma

Yes No

No YesYes

No Yes

No

Figure 2  Illustration of the decision tree model used in this study. Four 
decision nodes in which alternative choice was determined by all five FLLs, 
leading to a final diagnostic decision for five liver lesions. D: Decision node; 
FLL: Focal liver lesion; HCC: Hepatocellular carcinoma; LN: Leaf node; m-HCC: 
Moderately differentiated HCC; p-HCC: Poorly differentiated HCC; w-HCC: 
Well-differentiated HCC.
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ated after a sonographic flash frame disrupts bubbles in 
the field of  view. Using this technique, we could obtain 
information about the microbubble pathway between 
frames and observe exquisite detail of  lesional vessels, 
with the potential to show both their morphology and 
their direction of  filling[32,39,40].

To date, some investigators[39,41] have reported that the 
intratumoral vasculature of  HCCs was clearly visualized 
using this technique and pattern classification was possible; 
these results suggested the possibility of  differential diag-
nosis of  the degree of  HCCs[39,41]. CEUS with MFI could 
be useful for diagnosis of  HCCs, and other FLLs, because 
MFI can depict the minute intratumoral vasculature of  
the tumor better than harmonic imaging. In this study, we 
therefore used various kinds of  image features that can be 
derived from MFI findings as input data for the CAD.

Image database
A total of  103 nodules in 97 cases were used for the devel-
opment of  CAD. In more detail, there were 61 HCCs (24 
w-HCC, 28 m-HCC and nine p-HCC), 26 liver metastases 
and 16 liver hemangiomas. HCCs and liver metastases 
were diagnosed based on histology after liver resection or 
liver biopsy in all cases. Liver hemangioma was diagnosed 
by contrast-enhanced CT and/or MR imaging. The US 
equipment used in this study was SSA-770A (Aplio™XV; 
Toshiba Medical Systems Co., Otawara, Japan). The imag-
ing mode was wideband harmonic imaging (commercially 
called Pulse subtraction) with transmission and reception 
frequencies of  3.75 MHz and 7.5 MHz, respectively. The 

contrast agent we used was SonoVue, which consists of  
sulfur hexafluoride microbubbles surrounded by phos-
pholipids with a median diameter of  2.5 μm.

Computerized scheme for classification of FLLs
A series of  image-processing steps in CAD, which basi-
cally consisted of  three major parts, were as follows: (1) 
image data input and construction of  processed images; (2) 
extraction of  image feature values; and (3) application of  
ANNs and output for differential diagnosis. Please note 
that we simplified  into three major steps (although six 
major steps were described in the referenced paper[32]).

Image data input and construction of  processed im-
ages: After irrelevant information, such as patient names, 
IDs, and other symbols, was removed from the cine clips 
in the audio-video interleaving format as the input data, 
only continuous MFI images were reconstructed, and then 
four kinds of  processed images were constructed. Figure 
3A-H shows examples of  the processed images. Image 
feature values were determined by use of  the MFI image 
and the four processed images, and were used as input 
data for the CAD.

Extraction of  image feature values: The image feature 
value is defined as the objective value by computer anal-
ysis of  the subjective criteria that are used for diagnosing 
an FLL accurately in clinical practice, such as quick (slow) 
contrast-enhancement of  an FLL, stronger (weaker) 
contrast enhancement of  an FLL compared with liver 
parenchyma, and homogeneous (heterogeneous) con-
trast-enhancement of  an FLL. For example, with regard 
to the speed of  contrast enhancement, changes in aver-
age pixel values in an FLL are plotted against the time 
axis, and the slope (β value) is calculated. The steeper 
the slope, the faster the speed of  contrast enhancement 
would be. Similarly, the maximum level of  the average 
pixel value is compared between an FLL and a liver pa-
renchyma for determining which region showed stronger 
contrast enhancement.

In this study, four kinds of  major image feature val-
ues were used as CAD input data. Their image character-
istics were as follows: (1) temporal feature; (2) morpho-
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Table 1  Performance of CAD scheme for classification in five categories using physicians’ pattern classification  n (%)

Lesion n Classification with CAD

HCC Metastasis Hemangioma

w-HCC m-HCC p-HCC

HCC 74
w-HCC 23 15 (65.2)   4 (17.4)   4 (17.4) 0 (0.0) 0 (0.0)
m-HCC 36 16 (44.4) 15 (41.7)   5 (13.9) 0 (0.0) 1 (2.7)
p-HCC 15 1 (6.7) 1 (6.7) 12 (80.0) 1 (6.7) 0 (0.0)
Metastasis 33 1 (3.0) 0 (0.0) 1 (3.0) 28 (84.8) 3 (9.1)
Hemangioma 30 0 (0.0) 0 (0.0) 1 (3.3) 1 (3.3) 28 (93.3)

Overall diagnostic accuracy: 98/137 (71.5%). CAD performance was evaluated by a leave-one-case-out methods. Reproduced, with 
modification, form Sugimoto et al[31], Acad Radiol 2009; 16: 401-411. CAD: Computer-aided diagnosis; HCC: Hepatocellular carcinoma; 
w-HCC: Well-differentiated HCC; m-HCC: Moderately differentiated HCC; p-HCC: Poorly differentiated HCC.

Table 2  Performance of CAD scheme for classification in three 
categories using physicians’ subjective pattern classification   
n  (%)

Lesion n Classification with CAD

HCC Metastasis Hemangioma

HCC 74 73 (98.6) 1 (1.4) 0 (0.0)
Metastasis 33 2 (6.1) 28 (84.8) 3 (9.1)
Hemangioma 30 1 (3.3) 1 (3.3) 28 (93.3)

Overall diagnostic accuracy: 129/137 (94.2%). CAD performance was 
evaluated by a leave-one-case out method. Reproduced, with modification, 
form Sugimoto et al[31], Acad Radiol 2009; 16: 401-411.

Sugimoto K et al . CAD for CEUS in the liver



logic feature; (3) gray-level feature; and (4) features for a 
hypoechoic region. The details are shown in Table 3.

Feature 1 is an image feature value obtained from 

TIC, such as replenishment time, the peak pixel value, 
and the slope factor (β). In CEUS, for example, a hem-
angioma is characterized by a typical pattern, namely, a 
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DC

BA

HG

FE Delayed-enhancement regions

Hypoechoic region
at the early phase

Figure 3  Extraction of morphologic and gray-level image features. A: Original MFI image at the early phase including one FLL (shown as the contour) and a portal 
vein; B: Vessel-like pattern enhanced image; C: Segmented adjacent liver parenchyma regions obtained from the original MFI image; D: Skeleton of vessel-like pattern 
enhanced image for estimating the average size of vessel-like patterns on the MFI image; Example of original MFI image at the delayed phase (E) and its segmented 
images for hyperechoic regions at the early (G) and delayed phase (H). The difference in the regions between two images at two phases was defined as delayed-
enhancement region (F). Please note that we defined an “early phase” and a “delayed phase” in the MFI as a replenishment time for reaching 50% and 98% of the 
maximum average pixel value within a FLL, respectively. MFI: Micro-flow imaging. Reproduced, with modification, from Shiraishi et al[32], Med Phys 2008; 35: 1734-1746.
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peripheral globular enhancement with centripetal filling, 
whereas HCC and metastatic liver tumor are character-
ized by rapid contrast enhancement in an arterial phase. 
Use of  the temporal feature as an image feature value, 
therefore, may be useful for differentiation of  FLLs with 
different speeds of  blood flow. 

Feature 2 is an image feature value representing the 
morphologic characteristics of  FLLs and intratumoral 
blood vessels, such as the effective diameter of  an FLL, 
the average size of  vessel-like patterns and the area ratio 
of  vessel-like patterns. It has been reported that HCC 
with a larger tumor diameter exhibits poorer histological 
differentiation (i.e. higher percentages of  p-HCC)[42], and 
thus the effective diameter of  an FLL may be useful for 
diagnosis of  histological grades of  HCC. In addition, 
previous reports showed that the intratumoral vascula-
ture visualized by MFI was dependent on the histological 
grade of  HCC[39,41]. Thus, use of  the morphologic image 
feature values obtained from the vessel-like pattern and 
the skeleton of  a vessel-like pattern image may be useful 
for diagnosis of  the histologic grade of  HCC. 

Feature 3 is an image feature value that represents 
tumor enhancement patterns, such as stronger contrast 
enhancement at the periphery of  the tumor than at the 
center and at the tumor compared to the liver paren-
chyma. It has been reported that metastatic liver tumors 
often exhibit ring-like enhancement, and thus use of  this 
image feature value may be useful for diagnosis of  tu-
mors with different contrast enhancement patterns. 

Feature 4 is an image feature value that represents 
intratumoral heterogeneity in contrast enhancement. For 
example, spatial and temporal heterogeneity of  a tumor 
in contrast enhancement can be evaluated by comparison 

of  hypoechoic areas (no enhanced areas) between the 
MFI early-phase image and the MFI delayed-phase im-
age. It has been reported that metastatic liver tumors and 
p-HCC often exhibit heterogeneous enhancement when 
compared with other liver tumors[38,43], and thus these im-
age features may be useful for the differentiation of  these 
tumors. 

In order to select appropriate combinations of  tem-
poral and morphologic image features for each of  the six 
ANNs, we used a stepwise method[44]. We thereby selected 
16 temporal and morphologic image features, which were 
selected from 43 initial extracted features, and used them 
as input data for the six different ANNs for making deci-
sions at each decision step in the cascade.

Application of  ANNs and output for differential di-
agnosis: In the CAD, image feature values extracted 
from MFI images were used for input data for ANNs. 
We used parameters in the ANNs to learn the relation-
ship between the repeated presentation of  input data in 
random order and their corresponding output “teacher” 
data. Our ANNs were constructed with the stratified six 
different ANNs in order to classify “unknown” FLL in-
put into one of  five types of  liver diseases (e.g. w-HCC, 
m-HCC, p-HCC, liver metastasis and liver hemangioma).

All decisions in each of  the stratified six different 
ANNs, shown in Figure 4, were determined using a two-
alternative choice. The six decisions used in the six ANNs 
were determined as follows: (1) D1: Does this lesion have 
hypoechoic regions (yes) or not (no)? (2) D2: Is this le-
sion a hypovascular hemangioma (yes) or a hypovascular-
ity metastasis (no)? (3) D3: Is this lesion a hypervascular 
hemangioma (yes) or other (no)? (4) D4: Is this lesion a 
p-HCC (yes) or other (no)? (5) D5: Is this lesion a w-HCC 
(yes) or other (no)? and (6) D6: Is this lesion a m-HCC (yes) 
or a hypervascular metastasis (no)?

A set of  image feature values was selected for each 
ANN, and learning processes and tests were carried out 
independently. In learning and testing tasks with ANNs, 
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Table 3  Image feature values used for CAD input data

Image feature values

Temporal features
   Replenishment time (s)
   Peak pixel value
   Slope factor (b)
Morphologic features
   Effective diameter of focal liver lesion
   Average size of vessel-like patterns
   Area ratio of vessel-like patterns
Gray-level features
   Average pixel value with vessel-like patterns
   Average pixel value without vessel-like patterns
   Standard deviation of pixel value with vessel-like patterns
   Standard deviation of pixel value without vessel-like patterns
   Average pixel value ratio (focal liver lesion/adjacent liver parenchyma)
   Average pixel value ratio (central/peripheral)
Features for hypoechoic region
   Average pixel value
   No. of hypoechoic regions
   Area ratio of hypoechoic region
   Difference in pixel value (delay-early)
   Change in pixel value (delay-early)/s

Reproduced, with modification, from Shiraishi et al[32], Med Phys 2008; 35: 
1734-1746.

Yes                No

Image feature values used in this study

HemangiomaMetastasism-HCCw-HCCp-HCC

DN4: p-HCC?

DN5: w-HCC?

DN6: m-HCC?

DN1: Hypoechoic region?

DN2: Hypo-vascularity
hemangioma?

DN3: Hyper-vascularity
hemangioma?

Figure 4  Illustration of the cascade of six artificial neural networks used 
in this. Six decisions in which alternative choices for specific groups of FLLs 
were determined by single ANN, leading a final diagnostic decision for five liver 
diseases.
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the leave-one-out test method was employed in individual 
ANNs.

The classification accuracies for each type of  FLL and 
also for all 103 FLLs were determined with percentages 
(%) of  correctly classified cases among the total number 
of  cases. 

CAD results
Table 4 shows the performance of  the computerized 
scheme for the classification of  five types of  FLLs (w-
HCCs, m-HCCs, p-HCCs, metastases and hemangiomas). 
The classification accuracies for the 103 FLLs were 88.5% 
for metastasis, 93.8% for hemangioma, 79.2% for w-HCC, 
50.0% for m-HCC and 77.8% for p-HCC. When the clas-
sification was done for three types of  FLLs (HCCs, me-
tastasis and hemangioma), the classification accuracies for 
all HCCs was 86.9%. The average classification accuracies 
for three and five types of  FLLs were 88.3% and 75.7%, 
respectively.

PRACTICAL ISSUES IN CAD AND 
PERSPECTIVES FOR THE FUTURE
In general, a reliable image database is indispensable for 
research and development of  CAD. In particular, an ap-
propriate number of  clinical cases should be used, and 
attention must be paid to the detection and/or charac-
terization of  lesions contained in the images and to the 
degrees of  diagnostic difficulty. For development of  a 
CAD scheme that will become available for clinical ap-
plication, cases in the database should include various 
degrees of  difficulty in diagnosis, from relatively easy to 
markedly difficult. Furthermore, the liver is the largest 
organ in the human body and part of  the liver is pro-
tected by ribs. Unlike CT and MR imaging, it is therefore 
difficult to scan the whole liver by US[45]. In addition, 
US scanning can be difficult in cases of  severe obesity. 
These factors seem to interfere with US on the liver, and 
also CAD for US on the liver.

One of  the most critical components for research on 
CAD is software development. To this end, program-
ming technology, image processing and knowledge of  
information processing are required. In general, however, 

physicians have insufficient knowledge of  these skills, and 
thus close collaboration with physicists is required. On 
the other hand, it is difficult for software to be developed 
by physicists alone, because they have insufficient medi-
cal knowledge about diagnosis and detection. Therefore, 
close collaboration with physicians is also necessary. 

As a characteristic of  CAD, it would be useful if  
CAD could detect and/or characterize lesions that phy-
sicians are likely to overlook and/or misdiagnose, even 
if  the performance of  CAD is not highly accurate; and 
conversely, CAD would not be useful if  physicians do 
not believe the results even when correct. Thus, once 
the algorithm of  CAD is developed, its objective evalua-
tion is necessary. To date, however, no paper on CAD in 
the liver has included an objective evaluation of  the per-
formance of  CAD. An observer performance study is a 
representative evaluation method; observers are required 
to carry out evaluations under two conditions, with and 
without the results of  computer analysis. Receiver oper-
ating characteristic curves can then be obtained based on 
the results for evaluation of  the performance of  CAD.

In addition, when the results of  evaluation are sat-
isfactory, based on the database in the laboratory, it is 
necessary to carry out practical tests on a number of  un-
explored clinical cases as the next step. It is also neces-
sary to develop a practical CAD prototype system and to 
install it in the workplace in the hospital for a prospec-
tive clinical trial. To this end, cooperation by the hospital 
and physicians would be required for reliable evaluation.

Eventually, to reap the advantages of  CAD, commer-
cialization by companies is required. When equipment, 
systems and software applicable for clinical practice be-
come available commercially, they can be used in hospi-
tals worldwide.

CONCLUSION
In this article, we provided an overview of  CAD based 
on US in the liver. Moreover, we introduced two differ-
ent types of  CAD schemes with CEUS images aimed at 
the differential diagnosis of  FLLs.

The performance of  our CAD system for the clas-
sification of  FLLs could be considered as comparable to 
those reported by Wilson et al[9]. Although their report 

Table 4  Performance of CAD scheme for classification in five categories using computerized scheme  n (%)

Lesion n Classification with CAD

HCC Metastasis Hemangioma

w-HCC m-HCC p-HCC

Total 103
w-HCC   24 19 (79.2) 1 (4.2) 2 (8.3) 2 (8.3) 0 (0.0)
m-HCC   28   5 (17.9) 14 (50.0)   4 (14.3)   3 (10.7) 2 (7.1)
P-HCC     9   1 (11.1) 0 (0.0)   7 (77.8)   1 (11.1) 0 (0.0)
Metastasis   26 2 (7.7) 1 (3.8) 0 (0.0) 23 (88.5) 0 (0.0)
Hemangioma   16 0 (0.0) 0 (0.0) 0 (0.0) 1 (6.3) 15 (93.8)

Overall diagnostic accuracy: 78/103 (75.7%). CAD performance was evaluated by a leave-one-case-out methods.Reproduced, with 
modification, from Shiraishi et al[32], Med Phys 2008; 35: 1734-1746.

Sugimoto K et al . CAD for CEUS in the liver



222 June 28, 2010|Volume 2|Issue 6|WJR|www.wjgnet.com

was not on results of  CAD, their algorithm used subjec-
tive assessment of  physicians for information on portal 
venous enhancement for the distinction between benign 
and malignant FLLs, and their results indicated a high 
classification accuracy (i.e. 92% for benign and 93% for 
malignant FLLs).

As shown in this article, the diagnostic accuracies of  
CAD based on the results of  physicians’ subjective pat-
tern classification could be considered as comparable to 
those of  CAD based on a computerized scheme. Inter-
estingly, the former CAD was, however, superior to the 
latter in the diagnosis of  three types of  FLLs (i.e. HCCs, 
metastasis, and hemangioma; 94.2% vs 88.3%). In con-
trast, the latter was superior to the former in the diagno-
sis of  five types of  FLLs (w-HCCs, m-HCCs, p-HCCs, 
metastases and hemangiomas; 75.7% vs 71.5%). These 
results suggest that human observers might differ in 
determining feature values from a computer in the diag-
nosis of  FLLs. Thus, if  we take advantage of  computer 
outputs, diagnostic accuracy could be greatly improved.

In our present studies, to establish CAD for FLLs, we 
used temporal and morphologic features, including physi-
cians’ subjective pattern classifications, as image features 
of  FLLs on the contrast-enhancement patterns in the 
arterial phase of  CEUS. However, we did not use findings 
from portal and late phases (i.e. the presence or absence of  
washout) as image features of  our CADs. That is because, 
as it is now, it is difficult to recognize automatically all of  
the data in a dynamic-imaging series for input data because 
of  the problem of  the timing of  patient breath holding.

Our CAD results showed that the accuracy of m-HCC 
in both CADs was quite low (subjective analysis: 41.7% 
and quantitative analysis: 50.0%). This can be related to 
the fact that we did not use portal and late phase images 
as input data of  CADs, because both w-HCC and m-HCC 
frequently show arterial enhancement in the same fash-
ion. It is a principal limitation of  our CADs. Thus, if  our 
CAD schemes would have portal and late phase informa-
tion, the performance of  our CADs would be much more 
improved. Our future work should be to recognize hole 
ultrasonographic image data (i.e. wash-in and wash-out in-
formation) automatically as input data to the CAD system.

The other limitation is that focal nodular hyperplasia 
(FNH) and hepatocellular adenoma were not included 
in these studies. Both FNH and hepatic adenoma tend 
to have FLLs presenting a hypervascular pattern in the 
arterial phase, and it can be difficult to distinguish from 
HCC, liver metastasis, and hemangioma. However, Kim 
et al[46] reported that monitoring the direction of  early ar-
terial filling or the vascular morphology continuously by 
CEUS enable one to differentiate, to some extent, among 
FLLs with hypervascularity, including FNH, heman-
gioma, HCCs, or metastases. However, hepatic adenoma 
lacks characteristic features even with CEUS, and differ-
entiation of  hepatic adenoma from other plethoric FLLs 
has been reported to be difficult. Hepatocellular adenoma 
is rare tumor, and therefore it seems extremely rare for 
this tumor to become a subject of  differential diagnosis.
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