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Abstract
AIM: To sufficiently improve magnetic resonance chol-
angiopancreatography (MRCP) quality to enable reli-
able computer-aided diagnosis (CAD).

METHODS: A set of image enhancement strategies 
that included filters (i.e. Gaussian, median, Wiener and 
Perona-Malik), wavelets (i.e. contourlet, ridgelet and 
a non-orthogonal noise compensation implementa-
tion), graph-cut approaches using lazy-snapping and 
Phase Unwrapping MAxflow, and binary thresholding 
using a fixed threshold and dynamic thresholding via  
histogram analysis were implemented to overcome the 
adverse characteristics of MRCP images such as acqui-
sition noise, artifacts, partial volume effect and large 
inter- and intra-patient image intensity variations, all 
of which pose problems in application development. 
Subjective evaluation of several popular pre-processing 
techniques was undertaken to improve the quality of 
the 2D MRCP images and enhance the detection of the 
significant biliary structures within them, with the pur-
pose of biliary disease detection.

RESULTS: The results varied as expected since each 
algorithm capitalized on different characteristics of the 

images. For denoising, the Perona-Malik and contour-
let approaches were found to be the most suitable. In 
terms of extraction of the significant biliary structures 
and removal of background, the thresholding approach-
es performed well. The interactive scheme performed 
the best, especially by using the strengths of the graph-
cut algorithm enhanced by user-friendly lazy-snapping 
for foreground and background marker selection.

CONCLUSION: Tests show promising results for some 
techniques, but not others, as viable image enhance-
ment modules for automatic CAD systems for biliary 
and liver diseases.

© 2010 Baishideng. All rights reserved.

Key words: Bile ducts; Liver diseases; Image enhance-
ment; Structure detection; Magnetic resonance cholan-
giopancreatography 

Peer reviewers: Herwig R Cerwenka, Professor, MD, Department 
of Surgery, Medical University of Graz, Auenbruggerplatz 29, 
A-8036 Graz, Austria; Anuj Mishra, MD, Professor, Department of 
Radiology,National Organ Transplant Program, Central Hospital, 
Tripoli, PO Box 7913, Libya

Logeswaran R. Magnetic resonance cholangiopancreatography 
image enhancement for automatic disease detection. World J 
Radiol 2010; 2(7): 269-279  Available from: URL: http://www.
wjgnet.com/1949-8470/full/v2/i7/269.htm  DOI: http://dx.doi.
org/10.4329/wjr.v2.i7.269

INTRODUCTION
Image enhancement is the first step in most image pro-
cessing applications. Collectively, it may consist of  several 
smaller tasks to serve one or more of  the following pur-
poses: (1) noise reduction; (2) background suppression; (3) 
size, intensity, color, brightness and contrast normaliza-
tion; (4) region-of-interest (ROI) enhancement; (5) artifact 
removal; (6) quality and resolution improvement; and (7) 
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pre-segmentation. The effectiveness of  the image enhance-
ment step greatly influences the subsequent steps to be 
undertaken. Ideally, this pre-processing step would enable 
elimination of  all image inconsistencies and result in only 
the ROI being presented for evaluation, thus empowering 
concentration on the task at hand (e.g. labelling and diag-
nosis) without any hindrances of  unwanted characteristics 
in the image.

In modern medical diagnosis of  diseases affecting 
the bile ducts, a sequence in magnetic resonance imaging 
(MRI), called magnetic resonance cholangiopancreatog-
raphy (MRCP), is used. Like MRI, MRCP is non-ionizing 
(no exposure to potentially harmful radiation), non-
invasive (does not require any surgical procedures, and in 
many cases is even undertaken without contrast medium), 
flexible (enables internal organs to be visualized in many 
orientations and with different parameter settings) and 
usually requires no hospitalization and minimal prepara-
tion before examination. As powerful electromagnets (1.5 
Tesla or higher) are used, this procedure is not applicable 
for patients with metallic and electronic implants. 

This modality, although producing better quality im-
ages than other modalities (e.g. ultrasound), suffers from a 
number of  shortcomings. These include: acquisition noise 
from the equipment, ambient noise from the environment, 
the presence of  background tissue, other organs and ana-
tomical influences such as body fat, and breathing motion. 
The amount of  fluid in the body, diseases, deformities, 
artifacts, orientation, partial volume effect (loss of  detailed 
structural information as a volume is represented in 2D) 
and acquisition settings can all significantly influence the 
image and make it very difficult for automated processing 
of  the images. The human mind and visual system, along 
with specialised training, allows for medical practitioners 
to comprehend and compensate for such issues when ex-
amining the images. In certain cases, the human specialist 
uses these characteristics to orientate the image and better 
understand the anatomical situation presented in the im-
age. The computer, however, especially when presented 
only with a single 2D MRCP image, is often defeated in 
such tasks, unless reliable pre-processing is undertaken to 
minimize unwanted influences.

Over the years, a multitude of  algorithms, techniques 
and approaches have been used in image enhancement 
pre-processing. Varying in complexity, performance and 
even in the targeted data, the objective has been to pro-
duce enhancement of  the images either as an intermediate 
or end result in a multi-stage processing scheme. Some of  
the more popular techniques for medical image processing 
are evaluated in this work, considering their applicability 
and performance on 2D MRCP images, with the objective 
of  studying their suitability for the enhancement of  MRCP 
images for use in preliminary detection of  biliary diseases 
in medical computer-aided diagnosis (CAD) systems.

MATERIALS AND METHODS
Image enhancement algorithms
The scope of  this work is limited to enhancing MRCP 

images such that noise is minimized and the clarity of  the 
significant bile ducts is maximized. The term significant 
here is used to describe dilated bile ducts. Bile ducts pro-
duce the enzyme bile, which is used in the digestion of  
fat, absorption of  oil-based vitamins and minerals, and in 
the removal of  fat-soluble waste from the body. Diseases 
affecting the biliary structures, either from within the 
structure itself  or from surrounding organs, cause block-
age of  the bile ducts. This, in turn, causes draining of  bile 
from the ducts in the liver to the small intestines to be 
restricted. The build-up of  bile causes the ducts to swell, 
and are thus dilated. In most cases, the main clue to the 
presence of  diseases affecting the bile ducts in an MRCP 
image is the presence of  the dilated ducts. As the targeted 
application of  this work is for medical CAD systems for 
biliary diseases, the tests are performed accordingly. Note 
that the sensitivity of  the algorithms may be tweaked by 
adjusting one or more coefficients, in order to visualize 
the less significant ducts as well, if  so desired.

This section describes the popular techniques devel-
oped for the pre-processing of  common images, which 
have then been successfully applied to medical images. 
Some customized techniques in the recent literature are 
also considered and described below. The results obtained 
from evaluating their suitability for MRCP pre-processing 
is given in the next section.

MRCP produces greyscale images, lacking color com-
ponents, thus the information is represented by intensi-
ties. Technically, MRI machines measure the signal of  the 
energy release that takes place when energized hydrogen 
protons that have been forced in a certain direction by a 
radio frequency (RF) pulse from the MRI machine return 
to their normal spin (precess) and low energy state once 
the RF pulse is turned off[1]. The mathematical informa-
tion received is converted using a Fourier transform and 
are represented as a greyscale series of  2D slice images 
that are used in diagnosis.

Intensity thresholding
Thresholding is possibly the most primitive and least 
resource consuming of  the pre-processing techniques. 
Used for binary image processing, it is known to be an 
effective and very popular technique in most applica-
tions, and is present in one form or another at various 
levels of  complexity. For the purposes of  this section, 
only simple thresholding is discussed. In a greyscale 
image such as a MRCP image, thresholding would be 
undertaken by specifying an intensity threshold, T, and 
removing all parts of  the image, I, that fall below that 
intensity threshold. The process for a pixel at the coordi-
nates (x,y) satisfies (1).

						      (1)

The problem is in determining the appropriate value 
for T. Experimentally, it was found that the intensity distri-
bution in MRCP images differed among images. Normal-
ization would be required before an automatic selection 
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of  T could be performed. Even then, it was found that 
standard normalization techniques, such as scaling, were 
ineffective with MRCP images. In this work, the threshold 
was set at intensity T = 150. This was determined experi-
mentally and supported by prior experience with MRCP 
images to reasonably remove most of  the background 
tissue. The threshold is applied on images after normaliza-
tion by scaling them between 0-255, which is suitable for 
most computer monitors that support an 8 bits per pixel 
(bpp) format. Original MRCP images are stored in the 
Digital Imaging and Communications in Medicine file for-
mat and may be up to 16 bpp (usually 12 bpp). 

More accurate results could be obtained through in-
teractive selection of  T on an image-by-image basis. This 
would be tedious but the interactive threshold scheme, 
if  applied to an appropriate training set of  MRCP im-
ages, could also be used to collect statistics that may aid 
in T approximation for future use. To provide a basis for 
comparison, an interactive threshold implementation us-
ing just a mouse click on the ROI is also implemented and 
evaluated in this work.

Common filters
Filtering is a popular method for removing undesired 
parts of  images. The types of  filters vary in the technique 
employed and the feature or characteristic affected. For 
instance, bandpass filters eliminate parts outside (above 
and below) the set bandwidth while preserving the parts 
within the bandwidth. 

Gaussian: Smoothing is commonly undertaken using 
linear filters such as the Gaussian function (the kernel is 
based on the normal distribution curve), which tends to 
produce good results in reducing the influence of  noise 
with respect to the image. The 1D and 2D Gaussian dis-
tributions with standard deviation for a data point (x) and 
pixel (x,y), are given by (2) and (3), respectively[2].

						      (2)

						      (3)

The kernel could be extended to further dimensions 
as well. For an image, the 2D Gaussian distribution is 
used to provide a point-spread; i.e. blurring over neigh-
boring pixels. This is implemented on every pixel in the 
image using the convolution operation. The degree of  
blurring is controlled by the sigma or blurring coeffi-
cient, as well as the size of  the kernel used (squares with 
an odd number of  pixels; e.g. 3 × 3, 5 × 5 pixels, so that 
the pixel being acted upon is in the middle). The pro-
cessing can be speeded up by implementing the filtering 
in the frequency rather than spatial domain, especially 
for the slower convolution operation (which is imple-
mented as the faster multiplication operation in the fre-
quency domain).

Wiener: The Wiener filter[3] may also be used for smooth-
ing. This filter is the mean squares error-optimal station-
ary linear filter for images degraded by additive noise and 
blurring[4]. It is usually applied in the frequency domain (by 
taking the Fourier transform) and can be represented as (4).

				    		  (4)

where
H(u,v) = Fourier transform of  the point spread func-

tion
Ps(u,v) = Power spectrum of  the signal process, ob-

tained by taking the Fourier transform of  the signal au-
tocorrelation

Pn(u,v) = Power spectrum of  the noise process, ob-
tained by taking the Fourier transform of  the noise auto-
correlation

It should be noted that there are some known limi-
tations to Wiener filters. They are able to suppress fre-
quency components that have been degraded by noise but 
do not reconstruct them. Wiener filters are also unable to 
undo blurring caused by bandlimiting of  H(u,v), which is a 
phenomenon in real-world imaging systems[4].

Median: A popular non-linear noise-reduction filter is 
the median filter, which has been shown to be good at 
removing salt-and-pepper noise in images[5]. Sometimes 
known as a rank filter, this spatial filter suppresses isolat-
ed noise by replacing each pixel’s intensity by the median 
of  the intensities of  the pixels in its neighbourhood. It is 
widely used in denoising and image smoothing applica-
tions. Median filters exhibit edge-preserving character-
istics (cf. linear methods such as average filtering tends 
to blur edges), which is very desirable for many image 
processing applications as edges contain important in-
formation for segmenting, labelling and preserving detail 
in images. This filter may be represented by (5).

		  			   	 (5)

where
wF = w x w filter window with pixel (u,v) as its middle

Perona-Malik: Isotropic filters provide generalized dif-
fusion to an image. When edges in the image are to be 
preserved, anisotrophic diffusion is required. The most 
popular filter for this is the Perona-Malik[6], which has 
widespread use. It is commonly believed that the Perona-
Malik equation provides a potential algorithm for image 
segmentation, noise removing, edge detection, and im-
age enhancement[7]. The basic idea behind the Perona-
Malik algorithm is to evolve an original image under an 
edge-controlled diffusion operator. The equation may be 
represented as (6)[8].

						      (6)
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where
g(s) = the decreasing smooth function, g(0) = 1; 0 < 

g(s) → 0 for s → ∞
The original Perona-Malik equation, although numeri-

cally stable, was thought to be ill-posed by many. Subse-
quently, much research has gone into improving the algo-
rithm, mainly by regularizing g. Also known as the Perona-
Malik function, g is selected to be in (7)[8], making it “non-
linear scale-space”.

 						      (7)

Interactive graph-cut
Graph-cut has gained popularity in recent years as an effec-
tive object extraction technique. Essentially, often interac-
tively, the user will select parts of  the foreground and the 
background of  the image. Graph-cut then uses a maximum 
flow/minimum cut algorithm to automatically identify the 
foreground objects in the image. There have been many 
variations of  this technique used with varying degrees of  
success; e.g. Phase Unwrapping MAxflow (PUMA) via 
graph-cuts[9]. Combined with techniques such as Lazy-
Snapping[10], the graph-cut method allows for good pre-
processing through minimal interactive input by the user. 

An example of  the lazy-snapping graph-cut imple-
mentation used in this work is given in Figure 1, where 
Figure 1B shows the result of  the interactive selection of  
the foreground and background (one line each) and the 
corresponding image boundaries identified by the algo-
rithm. A silhouette of  the resulting identified foreground 
object (biliary structures) is given in Figure 1C for clarity.

In this work, three implementations of  graph-cut 
were tested. The PUMA graph-cut implementation was 
used for denoising. The second implementation takes the 
PUMA result and thresholds it at intensity 150 for object 
extraction. The third was object extraction using the in-
teractive lazy-snapping graph-cut implementation. The 
results obtained will be discussed later in this paper.

Histogram analysis
When a fully automatic system is desired, all stages of  

processing must be conducted without requiring user in-
tervention. For this, understanding of  the image intensity 
frequency distribution may aid in better understanding 
of  the significant parts of  the image. Recent literature on 
signal processing of  MRCP images has identified observ-
able patterns in the intensity histogram of  those images. 
As described in[11], the peaks in the histogram tend to 
correspond to different characteristics of  the anatomy 
and could be used to eliminate most of  the noise, which 
would aid in enhancing the parts related to the bile ducts. 
Capitalizing on the thresholding scheme, dynamic thresh-
olding via automatic selection of  T could be performed in 
this way.

From analysis of  the MRCP test images obtained in 
this work, it is noted that different types of  MRCP imag-
es exist, with differences in their histogram distributions. 
The common types of  MRCP images used in this work 
include thin slices, thick slabs and projected images. Thin 
slices are the essential 2D images showing the slices of  
the abdominal areas, each approximately 4-8 mm thick. 
A thick slab is usually much thicker, at about 50 mm, 
and has better signal strength (in terms of  signal to noise 
ratio, SNR), thus providing a clearer image of  the biliary 
structures (albeit the partial volume effect). A projected 
image is generally constructed using thick slab images at 
different angles (orientations) to approximate a rotational 
view of  the area enclosed between the slabs. The pro-
jected images have a black border around them. The first 
peak in the histogram often represents the air in the body 
of  a typical MRCP image, but this would be the second 
peak in projected images as the first peak would be the 
black border. 

From the experimental testing conducted in this work, 
it was found that, in most cases, removing the entire first 
(second, in the case of  projected images) peak until the 
minimum trough before the histogram rises again, results 
in extraction of  the significant bile ducts. An example 
of  this is given in Figure 2. The histogram in Figure 2B 
shows several peaks. The peaks corresponding to the bor-
der, air and soft tissues are removed at the point indicated 
on the slider. The result is then rescaled to fill the 0-255 
intensity range, shown in Figure 2C.
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Figure 1  Lazy-snapping graph-cut identification of the significant biliary structures. A: Original magnetic resonance cholangiopancreatography thin slice image; 
B: Interactive identification of foreground and background, with the corresponding object boundaries identified by the algorithm; C: Silhouette of the identified objects.
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Multiresolution analysis
Impulse noise or abnormal intensity pixels in an image 
can severely affect the accuracy of  many algorithms. One 
way of  overcoming this phenomenon is through analysis 
at various resolutions, often by performing generalization 
akin to lossy compression to eliminate less significant in-
formation in the image, to emphasize the more significant 
regions. This allows for recognition of  important aspects 
of  the image, unhindered by the details (a lot of  which 
includes background tissue and artifacts).

Wavelets: The most popular multiresolution tool is wave-
lets. There is much literature on the use of  wavelets in 
noise reduction, such as wavelet thresholding in[12] and[13], 
and for medical images such as ultrasound[14] and recently 
on MRI[15]. There are many types of  wavelets to choose 
from, each created for their specific characteristics. Ex-
amples include Haar, Daubechies, Symlets, Coiflets, Bior-
thogonal, Meyer, Gaussian, Mexican hat, Morlet, Complex 
Gaussian, Shannon, and Frequency B-Spline. A summary 
of  some of  the wavelet families and associated properties 
can be found in[16]. 

A non-orthogonal wavelet-based denoising imple-
mentation by[17] is used in this work. This technique, un-
like the conventional wavelet denoising implementations, 
is reported to preserve the phase information, which is 
vital to human perception.

Directional wavelets: Conventional wavelets are restri
cted to horizontal and vertical directional limitations. Di-
rectional wavelets have been created to overcome this 
restriction. Among the most popular of  these include 
curvelets[18], ridgelets[18], contourlets[19] and the directional 
wavelet transform[20]. The contourlet is also known as the 
pyramidal directional filter bank. They have been applied 
successfully to many types of  image processing problems 
including edge detection[21], image enhancement[22], com-
pression[23], texture retrieval[24] and adaptive denoising[25]. 
The contourlet and ridgelet toolboxes used in this paper 
were from[26]. A popular curvelet library is available at[27]. 

Scale-space analysis
Related to the multiresolution approach, scale-space analy-

sis examines an image at varying levels of  scales in order 
to attach significance to the different parts and objects in 
the image. The changing of  scale is affected by using blur-
ring filters such as the Gaussian kernel. However, isotropic 
filters, such as the Gaussian derivatives, tend to also blur 
the edges of  structures, which in the case of  MRCP im-
ages, may destroy the structural information. The solution 
to this problem is to replace it with anisotropic filters, such 
as the Perona-Malik[6] or Euclidean Shortening Flow[28] 
methods, which have better edge-preserving properties.

RESULTS
The purpose of  this work was to examine the perfor-
mance of  popular pre-processing techniques applied for 
noise reduction and image enhancement of  the ROI; i.e. 
the significant dilated biliary structures of  the MRCP im-
ages. Certain assumptions are used to form the basis of  
this work. First, the test data is robust, with data from 
different patients with different builds and disease charac-
teristics, taken from different sources by various radiogra-
phers using MRI machines of  different makes and models 
with different orientations and parameter settings. The 
data was sourced from the internet to enable availability 
and the mentioned robust characteristics. Through col-
laboration with medical experts, the types of  test images 
used were confirmed to be typical examples of  clinical 
MRCP images used for diagnosis. Noise is assumed to be 
unknown, thus equal treatment is given to all images.

As the algorithms to be tested differed in their char-
acteristics, they were grouped into several test sets. The 
milder algorithms for denoising of  the images were tested 
first. This was split into two sub-tests; first for the MRCP 
images containing the presence of  a significant amount of  
background tissue, and the second set for images contain-
ing numerous objects (multiple parts of  the bile ducts and 
other organs). The images in these tests were then reused 
for the next test using the algorithms implementing more 
severe filtering, with the target of  highlighting only the 
significant biliary structures in the images. 

Denoising results
The experiment for denoising was conducted using the 
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Figure 2  Dynamic thresholding through histogram analysis to identify significant biliary structures. A: Original projection-type magnetic resonance cholangio
pancreatography image; B: Intensity histogram of the image; C: Resulting thresholded image, rescaled to a 0-255 intensity level.
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Gaussian, Wiener, median and Perona-Malik filters, PUMA 
graph-cut and the directional wavelets (contourlet and 
ridgelet). Some of  the results obtained for the first sub-
test for MRCP images, with heavy influence of  noise and 
background tissue, are shown in Figure 3. It was observed 
that the performance of  the different algorithms varied 
significantly. The Gaussian filter with a 5 × 5 kernel and  
σ = 5 produced considerable blurring of  the images, re-
ducing the background tissue detail [obvious for images (a) 
and (b)]. The resulting lesser influence of  the background, 
relative to the biliary structures, eases the background 
noise and tissue removal process. However, it was noticed 
that when the background tissue intensity was high, as 
in (d), the average intensity difference between the bili-
ary structures and the background was reduced. This 
complicates subsequent processing. The isotropic filter 
also smoothed the edges of  the biliary structures, which 
is undesirable as it makes accurate structure identification 
difficult. 

The Wiener filter also blurred the image, and caused 
higher smoothened background intensity [see the bottom 
left of  (a) and mid-left of  (b)]. A similar effect is noticed 
with the median filter as well. As expected, the anisotropic 
Perona-Malik filter achieved blurring of  the background 
that is comparable to the Gaussian filter, but preserved 
the edges better [see (a) and (c)]. The PUMA graph-cut 
enhanced the images with phase information, increasing 
the detail. However, this was counter-productive as the 
background and noise was also more prominent. The 
contourlet achieved slight noise reduction and diffusion 
of  detail, but the ridgelet caused emphasis of  the back-
ground. Overall, the anisotropic Perona-Malik filter was 
found to be the most suitable for noise reduction in 2D 
MRCP images with heavy background tissue present.

Results of  the sub-test for denoising MRCP images 
with multiple objects are given in Figure 4. Generally, all 
the blurring filters performed better on these images as 
there was less background tissue present. The blurring im-
proved the composition of  the objects by compensating 
for inter-pixel inconsistencies, such as holes and fluctua-
tions in intensities due to impulse noise, improving object 
detection. Gaussian analysis performed well in reducing 
the influence of  the tissue when less background was 
present, while PUMA and ridgelet analyses enhanced the 
(unwanted) detail [see (b) and (c)].

Object extraction results
The main objective of  this work was to identify appro-
priate image enhancement for the detection and extrac-
tion of  the significant biliary structures, by reducing or 
eliminating the background. The more aggressive of  the 
discussed algorithms were tested for this purpose, using 
the same sets of  images. 

Figure 5 gives the results for the images with heavy 
background influence. Binary hard-thresholding at inten-
sity 150 removed the background tissue in all of  the im-
ages. Unfortunately, some parts of  the biliary ducts were 
also eliminated, especially in (b) where large parts of  the 

bile ducts were represented by lower intensities. Using 
the PUMA graph-cut enhancement prior to threshold-
ing did not improve the results. The result was the same 
as those of  Threshold 150 and so are not shown sepa-
rately. Interactive thresholding produced satisfactorily 
accurate results. The histogram-based dynamic threshold 
scheme also performed well. The non-orthogonal noise 
compensation wavelet implementation produced good 
results, but left behind a lot of  tissue in images with very 
heavy backgrounds [e.g. (d)]. The interactive lazy-snap-
ping graph-cut was the most accurate, even with only a 
marker each for the foreground and background [except 
for (d), which required two background markers].

In the case of  less background tissue but more objects, 
the results in Figure 6 show that thresholding at intensity 
150 removed all the background tissue and significant 
amounts of  unwanted objects. Parts of  the bile ducts lost 
in this scheme may be recovered through post-processing 
with a scheme such as region-growing seeded with the de-
tected bile ducts. Interactive threshold selection managed 
to reduce the amount of  lost biliary branches, as seen in 
(b). The interactive lazy-snapping graph-cut required three 
markers for the background in order to obtain the results, 
although only one marker had to be used for the fore-
ground. Overall, the significant bile ducts were successfully 
detected and extracted, albeit with the lower intensity parts 
also being removed. Unfortunately, none of  the algorithms 
were able to remove background objects that were of  simi-
lar high intensity as the significant biliary structures. Post-
processing utilizing higher-level algorithms, such as shape 
or texture analysis, would be required for proper labelling 
and removal of  these objects.

Scale-space is implemented as an isotropic approach 
using Gaussian filtering, or anisotropically using Perona-
Malik or ESF, at different blurring levels. The results are not 
shown here as they are essentially what have been shown in 
the individual Gaussian and Perona-Malik implementations 
above. The strength of  scale-space will be more apparent 
when information derived in each scale (level) of  blurring 
is mapped from the largest to the lowest, allowing for hi-
erarchical information among the objects or parts thereof  
to be identified. An example implementation for bile duct 
hierarchical structure detection using MRCP images can be 
found in[29].

DISCUSSION
This paper evaluated several well-known and proven im-
age enhancement approaches, specifically on a robust 
test set of  MRCP images used for the diagnosis of  dis-
eases affecting the bile ducts. Tests were conducted for 
denoising, as well as object detection and extraction, in 
tests sets with heavy background noise and tissue influ-
ence as well as with multiple objects. The tested algo-
rithms included filters (e.g. Gaussian, median, Wiener 
and Perona-Malik), wavelets (e.g. contourlet, ridgelet and 
a non-orthogonal noise compensation implementation), 
graph-cut approaches using lazy-snapping and PUMA, 
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Figure 3  Denoising results for images with heavy tissue background.
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Figure 4  Denoising results for images with multiple objects.
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Figure 5  Structure extraction for images with heavy tissue background.
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and binary thresholding using a fixed threshold and dy-
namic thresholding via histogram analysis.

The results varied as expected since each algorithm 
capitalized on different characteristics of  the images. For 
denoising, the Perona-Malik and contourlet approaches 
were found to be the most suitable. In terms of  extrac-
tion of  the significant biliary structures and removal of  

background, the thresholding approaches performed well. 
The interactive scheme performed the best, especially by 
using the strengths of  the graph-cut algorithm enhanced 
by the user-friendly lazy-snapping for foreground and 
background marker selection. Improving accuracy in label-
ling and extraction would require further post-processing, 
via higher-level strategies such as shape, texture and sta-
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Figure 6  Structure extraction for images with multiple objects.
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tistical analysis, or through self-learning and optimizing 
algorithms such as neural networks or support vector 
machines. The selected algorithms above could be consid-

ered as suitable for preliminary disease detection affecting 
bile ducts in CAD systems that may be developed in the 
future.
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COMMENTS
Background
The noisy, dynamic intensity range and artifact susceptible nature of magnetic 
resonance cholangiopancreatography (MRCP) images makes it very difficult 
to develop computer-aided diagnosis systems that can aid in the preliminary 
screening of the images, as the developed algorithms are often defeated by the 
inter-image variances. Automated screening is an increasing need with the ever 
increasing amounts of digital image data generated by the various sequences 
of MRCP examinations. 
Research frontiers
Identification of appropriate strategies to overcome the weaknesses of the 
images is necessary for the development of reliable automated systems for 
MRCP. Specifically, for the purposes of screening, techniques that enhance the 
biliary structures while minimizing the image noise and unimportant structures.
Innovations and breakthroughs
The field of image processing has introduced a large number of image 
processing schemes for the purposes of pre-processing images. These differ in 
terms of strategies and abilities. However, an optimum technique has yet to be 
identified among the various schemes due to lack of performance comparison 
on the effects of those schemes on MRCP images.
Applications
The characteristics of the various algorithms are studied and applied 
experimentally to the images. The optimum parameter settings are determined 
to achieve the best results of the respective algorithm on the MRCP image test 
database. The outcomes are analyzed.
Terminology
Denoising is the process of removal of noise present in the signal and can be 
in the form of environmental ambient radiation, equipment noise due to the 
movements of the magnets and electromagnetic interference in the magnetic 
resonance imaging equipment, motion noise due to minor movements of the 
patient or internal body fluids, and various artifacts. Image enhancement in this 
work relates to improving the quality of the image by highlighting areas/structures 
of interest while suppressing area/structures that make identification difficult.
Peer review
The paper is well-written paper but lacks applicability in every-day radiology 
practice.  However, the comments regarding the improvement of image quality 
is note-worthy.

REFERENCES
1	 Gould TA. How MRI works. HowStuffWorks, 2008. Avail-

able from: URL: http://health.howstuffworks.com/mri7.htm
2	 Fisher R, Perkins S, Walker A, Wolfart E. Gaussian smooth-

ing, Hypermedia image processing reference (HIPR2), 2003. 
Available from: URL: http://homepages.inf.ed.ac.uk/rbf/
HIPR2/gsmooth.htm

3	 Lim JS. Two-dimensional signal and image processing. 
Englewood Cliffs: Prentice Hall, 1990: 536-540

4	 Veldhuizen T. The Wiener filter. Grid filters for local nonlin-
ear image restoration, 1998. Available from: URL: http://cite-
seerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.761&rep
=rep1&type=pdf

5	 Chan RH, Ho CW, Nikolova M. Salt-and-Pepper noise re-
moval by median-type noise detectors and detail-preserving 
regularization. IEEE Trans Image Process 2005; 14: 1479-1485

6	 Perona P, Malik J. Scale-space and edge detection using 
anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 
1990; 12: 629-639

7	 Wei GW. Generalized Perona-Malik equation for image res-
toration. IEEE Signal Process Lett 1999; 6: 165-167

8	 Kriva Z. Explicit FV scheme for the Perona-Malik equation. 
Comput Methods Appl Math 2005; 5: 170-200

9	 Bioucas-Dias JM, Valadão G. Phase unwrapping via graph 
cuts. IEEE Trans Image Process 2007; 16: 698-709

10	 Li Y, Sun J, Tang CK, Shum HY. Lazy snapping. ACM Trans 
Graph 2004; 23: 303-308

11	 Logeswaran R. Neural networks aided stone detection in 
thick slab MRCP images. Med Biol Eng Comput 2006; 44: 
711-719

12	 Jansen M. Noise reduction by wavelet thresholding, lecture 
notes in statistics. Vol 161. New York: Springer, 2001

13	 Zanchettin C, Ludermir TB. Wavelet filter for noise reduction 
and signal compression in an artificial nose. Appl Soft Comput 
2007; 7: 246-256

14	 Lázaro JC. Noise reduction in ultrasonic NDT using discrete 
wavelet transform processing. IEEE Ultrasonics Symposium, 
2002: 777-780

15	 Schillaci T, Barraco R, Brai M, Raso G, Bortolotti V, Gombia 
M, Fantazzini P. Noise reduction in magnetic resonance im-
ages by Wavelet transforms: an application to the study of 
capillary water absorption in sedimentary rocks. Magn Reson 
Imaging 2007; 25: 581-582

16	 Mathworks Inc. MATLAB Help. MATLAB 7. Wavelet Tool-
box 2005

17	 Kovesi P. Phase preserving denoising of images. In: The Aus-
tralian Pattern Recognition Society Conference: DICTA′99. 
Perth: Australian Pattern Recognition Society; 1999: 212-217

18	 Candès EJ. Ridgelets: theory and applications. Department of 
Statistics, Stanford University, 1998

19	 Do MN. Directional multiresolution image representations. 
Lausanne: Swiss Federal Institute of Technology, 2001

20	 Heric C, Zazula D. Reconstruction of object contours using 
directional wavelet transform. WSEAS Trans Comput 2005; 4: 
1305-1312

21	 Niya JM, Aghagolzadeh A. Edge detection using directional 
wavelet transform. IEEE MELECON 2004; 12: 281-284

22	 Heric D, Potocnik B. Image enhancement by using directional 
wavelet transform. J Comput Inf Technol 2006; 14: 299-305

23	 Miettinen K. Application of directional wavelets to image 
compression. Proceedings of the Data Compression Confer-
ence, 2001: 505

24	 Cheng KO, Law NF, Siu WC. Multiscale directional filter 
bank with applications to structured and random texture re-
trieval. Pattern Recognit 2007; 40: 1182-1194 

25	 Jung CR, Scharcanski J. Adaptative image denoising in scale-
space using the wavelet transform. XIV Brazilian Symposium 
on Computer Graphics and Image Processing (SIBGRAPI'01), 
2001: 172

26	 Do MN. Software. Contourlet Toolbox and FRIT Toolbox 2008. 
Available from: URL: http://www.ifp.uiuc.edu/~minhdo/
software/

27	 Demanet L. CurveLab 2.1.2 2008, Available from: URL: 
http://www.curvelet.org 

28	 Salden AH, ter Haar Romeny BM, Viergever MA. Linearised 
Euclidean shortening flow of curve geometry. Int J Comput 
Vis 1999; 34: 29-67

29	 Logeswaran R. Scale-space segment growing for hierarchical 
detection of biliary tree structure. Int J Wavelets Multiresolu-
tion Inf Process 2005; 3: 125-140

S- Editor  Cheng JX    L- Editor  Lutze M    E- Editor  Zheng XM

Logeswaran R. MRCP image enhancement for automatic disease detection

 COMMENTS


