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Abstract
AIM: To discuss the advantages of ultra-high field (7T) 
for 1H and 13C magnetic resonance spectroscopy (MRS) 
studies of metabolism. 

METHODS: Measurements of brain metabolites were 

made at both 3 and 7T using 1H MRS. Measurements of 
glycogen and lipids in muscle were measured using 13C 
and 1H MRS respectively. 

RESULTS: In the brain, increased signal-to-noise ratio 
(SNR) and dispersion allows spectral separation of the 
amino-acids glutamate, glutamine and γ-aminobutyric 
acid (GABA), without the need for sophisticated edit-
ing sequences. Improved quantification of these me-
tabolites is demonstrated at 7T relative to 3T. SNR 
was 36% higher, and measurement repeatability (% 
coefficients of variation) was 4%, 10% and 10% at 7T, 
vs  8%, 29% and 21% at 3T for glutamate, glutamine 
and GABA respectively. Measurements at 7T were used 
to compare metabolite levels in the anterior cingulate 
cortex (ACC) and insula. Creatine and glutamate levels 
were found to be significantly higher in the insula com-
pared to the ACC (P  < 0.05). In muscle, the increased 
SNR and spectral resolution at 7T enables interleaved 
studies of glycogen (13C) and intra-myocellular lipid 
(IMCL) and extra-myocellular lipid (EMCL) (1H) follow-
ing exercise and re-feeding. Glycogen levels were sig-
nificantly decreased following exercise (-28% at 50% 
VO2 max; -58% at 75% VO2 max). Interestingly, levels 
of glycogen in the hamstrings followed those in the 
quadriceps, despite reduce exercise loading. No chang-
es in IMCL and EMCL were found in the study.

CONCLUSION: The demonstrated improvements in 
brain and muscle MRS measurements at 7T will in-
crease the potential for use in investigating human me-
tabolism and changes due to pathologies.
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INTRODUCTION
Magnetic resonance spectroscopy (MRS) is a versatile 
technique which can be used for measurement of  metabo-
lite levels, studies of  bioenergetics, and measurement of  
chemical reaction rates without the need for invasive pro-
cedures such as biopsy. Whilst magnetic resonance imaging 
has quickly become one of  the most widely used clinical 
tools, progress in MRS has been much slower. MRS has 
the potential to become a vital tool for aiding the under-
standing of  changes due to pathology in specific regions 
of  the body, as well as for clinical diagnosis and treatment 
monitoring. Improvements in hardware, which have al-
lowed higher field spectrometers to be developed, provide 
increased sensitivity and spectral resolution. Many studies 
have demonstrated these improvements with increas-
ing field[1-10], however the extent has been variable, with 
increases in signal-to-noise ratio (SNR) of  20% to 46% 
reported between 1.5 and 3T[1,4-6] and 80% from 1.5T to 
4T[2]. This paper compares SNR and measurement repro-
ducibility for 1H and 13C MRS measurements in the human 
brain and skeletal muscle, and discusses applications of  1H 
and 13C MRS for studying human metabolism, utilizing the 
increased sensitivity and spectral resolution at 7T.

Improved 1H MRS reproducibility of glutamate, glutamine 
and γ-aminobutyric acid measurements in the human 
brain at 7T
Levels of  metabolites, measurable in the human brain with 
1H MRS, are important in understanding changes involved 
in neurological[11,12] and psychiatric diseases[13-17], and po-
tential therapies[18-19]. Studies at low field strength (≤ 1.5T) 
tend to concentrate on measurement of  N-acetyl aspartate 
(NAA), Creatine (Cr) and Choline (Cho). Measurement 
of  glutamate (Glu), glutamine (Gln) and γ-aminobutyric 
acid (GABA) is difficult at low field strength due to their 
overlapping resonances with each other, and with those 
of  other molecules such as myo-Inositol (mI) and NAA. 
Thus, at low field, the concentrations of  Glu and Gln are 
often combined as Glx = Glu + Gln. This could mask rel-
ative changes in Glu and Gln, such as might be expected if  
the rate of  the glutamate/glutamine cycle is altered. Many 
different methods have been suggested for individual mea-
surement of  Glu, Gln and GABA, including constant time 
point resolved spectroscopy[20], chemical shift selective fil-
ters[21], 2D J-resolved spectroscopy[22] and MEGA-editing 
sequences[23,24]. However, these techniques are often time 
consuming, or may result in the loss of  other metabolite 
signals which may be of  interest. At higher fields, increas-
ing spectral resolution enables metabolites to be accurately 
quantified without the need for sophisticated editing, and 

various sequences, optimized to give maximum separa-
tion, have been proposed[25-29]. Little work has been done 
to compare optimized sequences, or to establish levels of  
reproducibility based on different sequences. The aim of  
this study was to compare the 1H MRS reproducibility of  
measurements of  Glu, Gln and GABA at 3 and 7T us-
ing both a short TE STEAM sequence (TE/TM = 16/17 
ms for optimum SNR) and a long TE STEAM sequence 
(TE/TM = 74/68 ms, shown to give pseudo-singlets for 
these metabolites[29]). Levels of  variation in neurotransmit-
ter concentrations over a week were then assessed in the 
anterior cingulate cortex (ACC) and insula (Ins) using the 
sequence which provided the most reproducible results.

Ultra-high field studies of skeletal muscle energy stores
Glycogen, intra-myocellular lipid (IMCL) and extra-myo-
cellular lipid (EMCL) are the major sources of  energy in 
human skeletal muscle[30] and can be measured in vivo using 
13C[31-33] and 1H MRS respectively[34-40]. Studies of  energy 
stores in skeletal muscle (or hepatic tissue) can provide 
much information on utilization during exercise or during 
postprandial replenishment[41-45], and are important for un-
derstanding diseases where glucose or lipid metabolism is 
thought to be perturbed. Due to the low natural abundance 
and low relative sensitivity of  the 13C nucleus, natural abun-
dance 13C MRS acquisition times tend to be long. Increased 
signal, available at 7T, allows for shorter acquisition times, 
which can be used to achieve better temporal resolution 
for dynamic studies. Shorter acquisition times for dynamic 
studies allow 13C MRS measurements of  glycogen to be 
made sequentially with 1H MRS measurements of  lipid 
stores thus allowing both of  the major sources of  energy to 
be observed on a reasonable timescale. The separation of  
IMCL and EMCL peaks in 1H MR spectra is determined by 
the orientation of  the muscle fibres in the magnetic field[40]. 
For well aligned fibres, orientated with the static magnetic 
field, the resonances from EMCL shift approximately 0.2 
ppm from their respective IMCL resonances. Thus, at 
higher field, increased spectral resolution should provide 
more accurate quantitation as well as enabling separation of  
peaks in muscles with reduced alignment, for example the 
quadriceps and hamstrings in the human thigh.

Previous studies of  energy stores have shown that 
muscle glycogen depletion during exercise is dependent 
on muscle fibre type[46] as well as exercise intensity[47] and 
duration[48]. Much less is known about the role of  IMCL 
in muscle substrate selection and maintaining perfor-
mance during exercise, although it is suggested that at 
higher exercise intensities IMCL contributes little to meet-
ing energy demand, whereas at lower intensities IMCL 
may be oxidised to provide energy[49]. Here, a study was 
performed to assess the feasibility of  sequential monitor-
ing muscle glycogen and IMCL levels, in thigh muscles, 
prior to and following exercise, by utilizing the higher 
SNR and spectral resolution available at 7T.

MATERIALS AND METHODS
Ethical permission was obtained from the University of  
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Nottingham Medical School Ethics Committee and all 
subjects provided informed written consent before par-
ticipation in the study. All measurements were performed 
on the Philips Achieva 3T and 7T systems at the Sir Peter 
Mansfield Magnetic Resonance Centre, Nottingham.

1H reproducibility study
3T scans were acquired using an 8-channel SENSE head 
coil with transmission on the Q-Body coil. 7T scans were 
acquired on a 16-channel SENSE head, with transmis-
sion on a head volume coil.

Sequence reproducibility: Twelve healthy male subjects 
(age = 28 ± 11 years) attended two scan visits, 8 ± 2 d 
apart. On each visit subjects were scanned for 1h in each 
scanner, the protocol consisted of  3 survey images (to 
allow voxel positioning within the ACC) and 3 1H MRS 
acquisitions. Subjects were asked to reposition their head 
between repeats. For each spectral acquisition a 1 mm 
isotropic anatomical T1 weighted Turbo-field Echo (TFE) 
image was acquired with TE/TR = 3.8/8.3 ms. This im-
age was used to estimate the tissue percentage within the 
voxel to allow correction of  metabolite concentrations 
since metabolites (with the exception of  Gln and lactate) 
are present in much lower concentrations in the cerebro-
spinal fluid (CSF) compartment (levels of  Gln are given 
without correction). 

3T spectra were acquired with a bandwidth (BW) 
= 3000 Hz, and the number of  points (No. samples) = 
2048. 7T spectra were acquired with BW = 4000 Hz, No. 
samples = 2048. At both 3T and 7T the “short TE” STim-
ulated Echo Acquisition Mode (STEAM) sequence was ac-
quired with TE/TM/TR = 16/17/2000 ms, and the “long 
TE” sequence with TE/TM/TR = 74/68/2000 ms. The 
volume of  interest (VOI) = 20 mm × 18 mm × 25 mm  
was placed in the ACC. Spectra for metabolite analysis con-
sisted of  288 water-suppressed averages. Reference spectra 
consisted of  18 averages without water suppression.

Regional and longitudinal variation: 12 healthy male 
subjects (age = 30 ± 5 years) were scanned twice 7 ± 0 d 
apart. On visit 1, three repeat spectra (7T short TE) were ac-
quired from the insula (VOI = 40 mm × 12 mm × 18 mm),  
to assess single session repeatability, and one spectrum 
acquired from the ACC. On visit 2, one spectrum was ac-
quired from the ACC and one from the insula.

Post-processing: All spectra were processed in jMRUI. 
The water suppressed spectra were summed in jMRUI 
before analysis using LCModel and sequence specific 
basis-datasets based on 10 metabolites: N-acetyl aspar-
tate (NAA), Creatine (Cr), Choline (Cho), Glu, Gln, 
GABA, Myo-Inositol (mI), Aspartate (Asp), Taurine 
(Tau) and Guanidinoacetate (Gua). Cramer-Rao lower 
bounds (CRLB) > 100% were eliminated from aver-
ages. Metabolite concentrations from LCModel were 
then corrected for tissue concentrations (by dividing by 
the tissue fraction). Metabolite concentrations are given 

in arbitrary units and no correction has been made for 
relaxation effects. Estimated standard deviations (%SDs) 
were taken directly from LCModel and average values 
were calculated across all subjects. Coefficients of  varia-
tion [%CV = (SD/mean) × 100] were calculated across 
the three repeat measures in a single visit in ACC and 
insula cortex. Longitudinal variation [%LV = (SD/mean) 
× 100] was calculated from repeat measures over a week. 
SNR measurements were calculated from post-processed 
spectra using an in-house Matlab script [SNR = peak 
height/(1.96 × RMSnoise)]. Significance was calculated us-
ing a Wilcoxon signed ranks test in SPSS 17 (SPSS for 
Windows, Chicago Ill, USA). 

3T vs 7T comparisons of muscle glycogen and IMCL 
measurements
Subjects: Four healthy subjects (age 18-30 years) were 
scanned for 1H MRS measurement of  lipid levels in mus-
cle on both the 3 and 7T scanners. 3T 1H IMCL scans 
were acquired using the Q-Body coil for signal transmis-
sion and reception. 7T 1H IMCL scans were acquired 
using a transmit/receive quadrature 1H coil (with inbuilt 
13C quadrature coil), supplied by Philips (Cleveland, Ohio, 
USA). Spectra were acquired from the soleus muscle us-
ing a PRESS sequence with TE/TR = 40/7000 ms and 
the following parameters: VOI = 30 mm × 30 mm × 
50 mm, with 16 water-suppressed averages. Reference 
spectra consisted of  16 acquisitions without water sup-
pression. At 3T BW = 2000 Hz, No. samples = 1024, and 
at 7T BW = 4000 Hz, No. samples = 2048. To assess the 
repeatability of  measurements, three measurements were 
made in a single subject.

For measurement of  glycogen SNRs, spectra were 
acquired from a phantom containing 250 mol/L oyster 
glycogen. 3T 13C glycogen measurements were acquired 
using a transmit/receive 13cm diameter 13C coil with 
quadrature 1H decouple coils (PulseTeq Ltd, Gloucester-
shire, UK). 7T glycogen measurements were acquired us-
ing a transmit/receive 13C quadrature coil with quadrature 
1H decouple coils. Spectra were acquired using a pulse-
acquire sequence with optimized adiabatic pulses and 
narrowband decoupling (3T BW = 8000 Hz, No. samples 
= 256; 7T BW = 16 000 Hz, No. samples = 256). Eight 
spectra, each with 80 averages, were collected at each 
time point (total scan time 11 min) before signal averag-
ing in jMRUI. 

1H and 13C MRS of muscle energy stores
Subjects: Six healthy, recreationally active, male volun-
teers (age = 26 ± 1.5 years, body mass index = 23.7 ± 
0.9 kg/m2, VO2 max = 53.4 ± 2.7 mL/kg per minute) 
underwent preliminary testing to establish VO2 max, be-
fore attending two study visits, separated by at least 1 wk. 
Subjects were overnight fasted and had refrained from 
alcohol, caffeine and strenuous exercise for 24 h and 
were requested to consume the same quantity and type 
of  food prior to each study visit. 
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Experimental protocol: On each visit, subjects underwent 
two baseline scan sessions with the RF coil positioned on 
the front and the back of  the thigh respectively. Measure-
ments were made of  IMCL and glycogen. Following the 
baseline scans, subjects cycled for 1h at either 50% VO2 
max (50.8% ± 0.7%) or 75% VO2 max (74.9% ± 1.9%) 
with exercise intensity randomized across the subject’s 
two visits. A post exercise (PE) scan was carried out on 
the front of  the thigh to measure glycogen levels before 
subjects were given a carbohydrate drink (t = 20 min 
PE) consisting of  a 1 litre solution containing 100 g of  a 
commercially available glucose polymer. Following inges-
tion of  the drink, 13C scans for measurement of  glycogen 
were acquired at t = 20, 80, and 120 min in the quadri-
ceps, and t = 50 and 100 min in the hamstring muscle 
group. Measurements of  1H IMCL were carried out at t 
= 20 and 80 min in the vastus intermedius (VI) muscle 
and at t = 50 and 110 min in the semitendinosus (ST) 
muscle. 

13C MRS: 13C spectra were acquired using a proton-de-
coupled pulse acquire sequence with adiabatic pulses and 
narrowband decoupling (BW = 16 000 Hz, No. samples 
= 256, TR = 1000 ms) for measurement of  glycogen 
concentrations. Eight spectra, each with 80 averages, 
were collected at each time point (total scan time 11 min). 
13C spectra were post-processed by signal averaging and 
50 Hz Lorentzian line broadening added before a phase 
correction was applied using jMRUI. Glycogen/external 

reference peak areas were determined using in-house 
software built in Matlab. 

1H MRS: 1H MR spectra, for measurement of  IMCL and 
EMCL, were acquired from the VI and the ST muscles 
using a STEAM sequence with the following parameters: 
TE/TM/TR = 11/13/8000 ms, VOI = 18 mm × 18 mm 
× 30 mm, No. samples = 4096, BW = 4000 Hz. Sixteen 
water-suppressed averages, and 4 reference spectra were 
acquired. Spectra were post-processed by realigning and 
phase correcting using jMRUI. Peak areas were calculated 
using the AMARES algorithm[50], fitting to Gaussian line-
shapes. Values were converted to absolute levels as de-
scribed by Szczepaniak et al[51], using T2 values measured 
at 7T[52].

RESULTS
1H reproducibility study 
Sequence optimization: Example spectra, acquired in the 
ACC for a single subject, are shown in Figure 1. Aver-
age ACC SNR values, calculated for each sequence from 
the unfiltered NAA peak at 2.008 ppm, were highest for 
the 7T short TE sequence (SNR = 69 ± 7), which was 
significantly better than the 3T short TE sequence (SNR 
= 51 ± 6, P < 0.002). Similarly the 7T long TE sequence 
produced significantly higher SNR values than the 3T 
long TE sequence (SNR = 37 ± 9 vs 27 ± 6, P = 0.006). 

The mean estimated error in metabolite quantifica-
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Figure 1  Example spectra acquired from subject 1 using 7T short TE (A), 7T long TE (B), 3T short TE (C) and 3T long TE (D) sequence. 
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tion, the Cramer-Rao lower bounds (CRLB), from LC-
Model analysis are shown in Table 1. CRLBs for Glu, Gln 
and GABA were lowest for the 7T short TE sequence, as 
expected from the SNR values. CRLB values for the 3T 
short TE and 7T long TE sequence were similar, despite 
much increased SNR for the 3T short spectra. CRLBs 
were highest for the 3T long TE sequence. The signals 
from Gln and GABA were not measurable (CRLB > 
100%) in one spectrum using the 7T long TE sequence, 
and GABA was not found in 9 spectra using the 3T long 
TE sequence. 

The intra-subject coefficients of  variation for repeat 
measures of  ACC metabolite levels are shown in Table 2. 
Values are given both uncorrected (direct from LCModel) 
and following correction for the voxel tissue fraction.

Regional and longitudinal variation 
Spectral SNRs, averaged across all subjects, were signifi-

cantly higher in the ACC than in the insula cortex (ACC 
SNR = 63 ± 10, insula SNR = 36 ± 11, P = 0.002) de-
spite similar VOIs (9.00 mL vs 8.64 mL respectively) and 
similar average tissue fractions (0.94 ± 0.2 and 0.94 ± 0.1, 
calculated from 1 mm isotropic images)( Tables 3-5). 

3T vs 7T comparisons of muscle glycogen and IMCL 
measurements: measurements of glycogen and lipid
The SNR for the C1 peak of  glycogen at 100.4 ppm 
(measured using 13C MRS) was increased by 60% at 7T 
compared with the 3T values (11 vs 7) for the same num-
ber of  acquisitions. Using 1H MRS, SNRs (measured 
for the water peak) at 7T were 90% higher than values 
measured at 3T. %CVs for measurement of  EMCL levels 
at 7T were much lower compared with the 3T measure-
ments (6% vs 20% respectively). Similarly, repeat mea-
surement of  IMCL levels showed improved repeatability 
at 7T compared with 3T (2% vs 6%). 

1H and 13C MRS of muscle energy stores
Basal glycogen levels were not significantly altered be-
tween each subject’s visits. Similarly there were no basal 
differences in glycogen levels between the 50% VO2 max 
visit and the 75% VO2 max visit. Basal glycogen concen-
trations in the quadriceps tended to be higher than in the 
hamstrings, although this did not reach significance (front 
= 204 ± 56 mmol/L, back = 171 ± 49 mmol/L, P = 0.2). 

Levels of  glycogen (Figure 2) decreased significantly in 
the quadriceps following exercise (t = 10 min) at both 50% 
and 75% VO2 max (-28% ± 20% and -52% ± 10%, P < 
0.05) and were significantly lower when the subjects cycled 
at 75% VO2 max compared with 50% VO2 max (P < 0.05). 
Levels remained significantly below baseline levels at 20 and 
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Table 1  Mean Cramer-Rao lower bounds (SD) from LCModel 
averaged across all subjects

NAA Glu Gln mI GABA Cr Cho

7T short 2 (0)   2 (0)   6 (1)   5 (1)   9 (2)   3 (2) 2 (0)
3T short 3 (1)   8 (2) 24 (8)   6 (1)   24 (10) 12 (3) 7 (7)
7T long 2 (1)   8 (1) 28 (13) 10 (3) 26 (9)   2 (0) 2 (0)
3T long 3 (1) 16 (5) 40 (15) 13 (6)   50 (20) 12 (5) 5 (1)

NAA: N-acetyl aspartate; Glu: Glutamate; Gln: Glutamine; mI: Myo-
Inositol; GABA: γ-aminobutyric acid; Cr: Creatine; Cho: Choline. 

Table 2  Mean % coefficients of variation (SD) averaged 
across all subjects

NAA Glu Gln mI GABA Cr Cho

Uncorrected 
   7T short 3 (2)   4 (2) 10 (6) 9 (3) 10 (6)   3 (2) 5 (4)
   3T short 5 (3)   8 (6)   29 (11) 8 (4)   21 (14) 10 (4) 16 (16)
   7T long 6 (6) 10 (6)   29 (19) 19 (10) 16 (8)   7 (6) 8 (6)
   3T long 6 (6) 16 (9)   32 (30) 22 (10)   36 (25)   22 (13) 8 (7)
Tissue corrected 
   7T short 4 (3)   5 (2) 10 (5) 9 (4) 10 (6)   4 (2) 6 (3)
   3T short 6 (4)   8 (6)   29 (12) 8 (5)   22 (15) 10 (5) 17 (16)
   7T long 6 (6) 10 (7)   29 (19) 20 (10) 15 (6)   6 (6) 8 (6)
   3T long 7 (6)   16 (10)   32 (30) 23 (10)   38 (25)   22 (14) 9 (7)

NAA: N-acetyl aspartate; Glu: Glutamate; Gln: Glutamine; mI: Myo-
Inositol; GABA: γ-aminobutyric acid; Cr: Creatine; Cho: Choline. 

Table 3  Mean Cramer-Rao lower bounds (SD) from LCModel 
averaged across all subjects

NAA Glu Gln mI GABA Cr Cho

CRLB ACC 2 (0) 2 (0) 6 (1) 5 (1) 9 (2) 3 (2) 2 (0)
CRLB Ins 3 (1) 3 (1) 9 (3) 7 (1) 11 (3) 2 (0) 2 (1)

CRLB: Cramer-Rao lower bounds; ACC: Anterior cingulate cortex; NAA: 
N-acetyl aspartate; Glu: Glutamate; Gln: Glutamine; mI: Myo-Inositol; 
GABA: γ-aminobutyric acid; Cr: Creatine; Cho: Choline. 

Table 4  Mean % coefficients of variation (SD) and % longi-
tudinal variation (SD) averaged across all subjects

NAA Glu Gln mI GABA Cr Cho

%CV
   ACC 4 (3) 5 (2) 10 (5)   9 (4) 10 (6) 4 (2) 6 (3)
   Ins 6 (6) 8 (6) 12 (9) 10 (6)   21 (11) 7 (7) 6 (4)
%LV
   ACC 6 (3) 8 (7) 11 (9)   13 (13)   16 (13) 8 (9)   9 (10)
   Ins 6 (5)   8 (10)   18 (18)   18 (11)   20 (24) 6 (6) 6 (6)

CV: Coefficients of variation; LV: Longitudinal variation; ACC: Anterior 
cingulate cortex; NAA: N-acetyl aspartate; Glu: Glutamate; Gln: 
Glutamine; mI: Myo-Inositol; GABA: γ-aminobutyric acid; Cr: Creatine; 
Cho: Choline. 

Table 5  Mean (SD) metabolite levels (AU)

NAA Glu Gln mI GABA Cr Cho

ACC 6.3 (0.7) 11.0 (1.4) 2.3 (0.4) 3.8 (0.3) 1.7 (0.4) 6.1 (0.6) 1.6 (0.2)
Ins 7.1 (0.6) 12.1 (1.3) 2.5 (0.5) 3.8 (0.5) 1.9 (0.4) 6.5 (0.4) 1.7 (0.2)

ACC: Anterior cingulate cortex; NAA: N-acetyl aspartate; Glu: Glutamate; 
Gln: Glutamine; mI: Myo-Inositol; GABA: γ-aminobutyric acid; Cr: 
Creatine; Cho: Choline. 
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80 min following the drink (-23% ± 21% and -30% ± 19% 
respectively following cycling at 50% VO2 max and -48% 
± 28% and -37% ± 29% respectively at 75% VO2 max). By 
2 h after ingestion of  the carbohydrate rich drink, glycogen 
levels in the front of  the thigh were recovering towards 
baseline level (-7% ± 23% and -15% ± 37% following cy-
cling at 50% VO2 max and 75% VO2 max respectively). 

Post-exercise concentrations of  glycogen in the ham-
strings were not measured until 50 min after ingestion of  
the drink. Despite this, glycogen levels were still signifi-
cantly below baseline level following exercise at 75% VO2 
max (-37% ± 28%) but had recovered towards baseline 
by 100 min (-24% ± 19%). Measurements of  glycogen 
were not significantly different from baseline levels in the 

back of  the thigh following exercise at 50% VO2 max. As 
expected, mean glycogen concentrations were consistent-
ly lower in both the quadriceps and hamstrings following 
exercise at 75% compared with exercise at 50%.

IMCL and EMCL content 
Basal IMCL content in the VI was not significantly dif-
ferent from levels in the ST muscle (0.4% ± 0.2% vs 
0.3% ± 0.1%). No significant differences in IMCL were 
measured at any time point following exercise and re-
feeding. Levels of  EMCL were significantly larger in the 
ST compared with the VI (2.2% ± 0.3% vs 0.8% ± 0.3%, 
P < 0.05). No changes in EMCL levels were observed 
following exercise and re-feeding. 

DISCUSSION
1H reproducibility study 
Increases in SNR from 3 to 7T are approximately 35% 
and 37% for the short TE and long TE sequence, respec-
tively. Previous studies have reported various levels of  
increase in SNR with increasing field; however it is likely 
the 7T sequence would suffer from increased T2 relax-
ation effects at the same TE, as well as increased satura-
tion of  signal due to longer T1 relaxation values. Due to 
these relaxation effects, the 3T short TE sequence pro-
duced significantly higher SNR values than the 7T long 
TE sequence (P = 0.002). 

As shown in Table 2, CVs for Glu, Gln and GABA 
from repeat measures are much lower for the 7T short TE 
sequence than for the 3T short TE sequence. It is possible 
this is in part due to reduced SNR; however, %CVs for 
GABA, using the 7T long TE sequence, are lower than 
those measured using the 3T short TE sequence despite 
the reduced SNR. This improvement in quantification is 
likely due to increased spectral resolution, as previously 
shown by Tkác et al[10].

Regional and longitudinal variation 
Differences in SNR values, measured in the ACC and 
insula are likely due to increased field inhomogeneities 
for the long, thin VOI used in the insula (linewidths were 
measured to be approximately 15% wider in the insula 
compared with the ACC, P = 0.05), and poorer water 
suppression.

In spite of  the much reduced SNR levels in the in-
sula, CRLBs (Table 3) are only slightly increased. This 
is in agreement with single session CVs which, with the 
exception of  GABA, are only slightly larger in the insula 
compared with the ACC. The reduced ability to accurately 
measure GABA is likely due to decreased spectral resolu-
tion as a consequence of  the increased linewidths in the 
insula since the measured concentrations of  GABA in the 
insula are similar to those measured in the ACC (Table 5). 

%LVs tend to be larger than %CVs for all metabolites 
in the ACC (Table 4). This implies biological variation 
over a week, greater than the reproducibility of  the mea-
surements. %LVs for Gln and GABA were also larger 
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Figure 2  Percentage changes in glycogen (A), intra-myocellular lipid (B) 
and extra-myocellular lipid (C) levels due to exercise and following recov-
ery. Values are mean ± SE. Squares represent measurements in the front of 
thigh, triangles represent measurements in the back of thigh. Points shown in 
blue and pink indicate exercise at 50% and 75% VO2 max respectively (aP < 0.05). 
IMCL: Intra-myocellular lipid; EMCL: Extra-myocellular lipid.
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than %CVs in the insula. In contrast, %LVs for NAA, Cr, 
Cho, and Glu in the insula were not larger than %CVs. It 
is possible that there is some biological variation occur-
ring in these levels which is masked by decreased single 
session repeatability in the insula. 

Metabolite concentrations from the ACC and insula 
showed levels of  Glu and Cr were significantly higher in 
the insula compared with the ACC (P = 0.05 and P = 0.02 
respectively). No other differences in metabolites levels 
were found. 

3T vs 7T comparisons of muscle glycogen and IMCL 
measurements: measurements of glycogen and lipid
Assuming that signal increases linearly with the number 
of  averages (Nave) while noise increases with √Nave, ob-
taining the same SNR as measured for the C1 glycogen 
peak at 7T would take approximately 2.5 times longer at 
3T. Utilizing this increase in signal strength at 7T allows 
either increased temporal resolution or improved mea-
surement accuracy. 

Improved measurement repeatability at 7T is likely 
due to the increase in spectral separation of  IMCL and 
EMCL at 7T compared to 3T. However, repeatability 
of  lipid measurements (particularly EMCL) in muscle is 
extremely susceptible to voxel repositioning errors. The 
voxels used for these measurements are quite large and 
so there are limited positions in which the voxel can be 
placed whilst avoiding adipose lipids and bone (particu-
larly at 7T where chemical shifts between fat and water 
are increased). This may make repositioning between 
repeat measurements less variable and therefore improve 
measurement repeatability. 

1H and 13C MRS of muscle energy stores
As expected, levels of  glycogen in exercising muscles 
decreased significantly during exercise, with larger de-
creases following higher intensity exercise. At 2 h, levels 
of  glycogen were returned to baseline levels indicating 
replenishment of  glycogen stores due to carbohydrate re-
feeding. Interestingly, levels of  glycogen in the hamstrings 
followed those in the quadriceps, despite the expected 
reduced exercise load. 

No changes were measured in levels of  IMCL due to 
exercise. If  there are changes, they are likely to be small, 
and poor measurement repeatability (due to large spatial 
variation in levels of  IMCL[40]) may mask these changes. 
It is thought that EMCL turnover is slow in contrast to 
IMCL, so EMCL levels would not be expected to change 
significantly over the timescale observed.

Increased spectral resolution at 7T allows improved 1H 
MRS measurement of  Glu, Gln and GABA concentrations 
which are thought to be perturbed in many neurodegen-
erative disorders and psychiatric diseases. Quantification is 
further improved by increases in sensitivity with increasing 
field strength. Using a short TE STEAM sequence, Glu, 
Gln and GABA were measured repeatedly in the ACC with 
coefficients of  variation of  5%, 10% and 10% respectively 
within 15 min. Measurements made 1 wk apart showed in-

creased variability indicating biological change in excess of  
single session reproducibility levels. 

Increased sensitivity and spectral resolution avail-
able at 7T allows dynamic changes in glycogen and lipid 
levels in skeletal muscles to be observed with increasing 
temporal resolution. Measurements following exercise 
and re-feeding show the expected[45-50,53,54] decrease in gly-
cogen levels in muscle, with a larger decrease in levels for 
increased exercise intensity. Levels of  lipid were not sig-
nificantly altered despite cycling for 1 h at 50% and 75% 
VO2 max.

COMMENTS
Background
Magnetic resonance spectroscopy (MRS) has the potential to become a vital 
tool to aid the understanding of changes due to pathology in specific regions of 
the body, as well as for clinical diagnosis and treatment monitoring. Since signal 
increases with magnetic field strength, the use of ultra-high field (7T) scanners 
allows increased potential for measuring metabolite concentrations more ac-
curately as well as allowing measurement of low concentration metabolites not 
seen at lower field.
Research frontiers
Levels of metabolites, particularly neurotransmitters glutamate and γ-aminobutyric 
acid (GABA), as well as glutamine, are thought to be important in understand-
ing changes involved in neurological and psychiatric diseases. This study shows 
increased reproducibility for 1H MRS measurement of glutamate, glutamine 
and GABA at 7T compared with 3T. In addition, measurement of energy stores 
[glycogen and intra-myocellular lipid (IMCL)] in skeletal muscle using 13C and 1H 
MRS respectively, are shown to be improved at 7T compared to 3T. This study 
utilizes the increased signal to noise to improve temporal resolution for subse-
quent measurements of IMCL and glycogen, and shows that higher intensity 
exercise (70% VO2 max vs 50% VO2 max) increases utilization of glycogen. No 
change in IMCL levels were measured due to exercise.
Innovations and breakthroughs
Little work has been done to compare optimized sequences and to establish 
levels of reproducibility based on different sequences for measurement of glu-
tamate, glutamine and GABA. This paper contains single session repeatability 
for various proposed sequences at 3 and 7T, as well as measuring levels of 
biological variation over time. This paper also shows improved measurement of 
glycogen and IMCL at 7T, and is one of the first papers to sequentially measure 
dynamic changes in IMCL and glycogen levels at 7T.
Applications
Measurement of metabolite levels are important in understanding changes 
involved in neurological and psychiatric diseases, as well as for monitoring po-
tential therapies. More accurate measurements will allow smaller changes to be 
measured which may provide new information for treatments.
Peer review
The current paper discusses the advantages of ultra-high field MR spectros-
copy. It is a very well designed exceptional study.
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