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Abstract
Functional magnetic resonance imaging (fMRI) is one 
of the leading brain mapping technologies for studying 
brain activity in response to mental stimuli. For neu-
roimaging studies utilizing this pioneering technology, 
there is a great demand of high-quality experimental 
designs that help to collect informative data to make 
precise and valid inference about brain functions. This 
paper provides a survey on recent developments in 
experimental designs for fMRI studies. We briefly in-
troduce some analytical and computational tools for 
obtaining good designs based on a specified design 
selection criterion. Research results about some com-
monly considered designs such as blocked designs, and 
m-sequences are also discussed. Moreover, we present 
a recently proposed new type of fMRI designs that can 
be constructed using a certain type of Hadamard matri-
ces. Under certain assumptions, these designs can be 
shown to be statistically optimal. Some future research 
directions in design of fMRI experiments are also dis-
cussed.
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Core tip: This paper provides an overview on recent 
developments in the design of functional magnetic res-
onance imaging experiments (fMRI). We discuss both 
analytical results and computational approaches that 
are currently available for selecting high-quality fMRI 
designs.
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INTRODUCTION
Recent years have seen an upsurge of  functional brain 
imaging experiments for a better understanding of  how 
humans learn, remember and make decisions. Such ex-
periments are also widely conducted by researchers to 
help provide paths to treat/prevent some terrifying brain 
disorders such as Alzheimer’s disease, and are thus very 
valuable. As in many scientific investigations, designing 
a high-quality experiment is an important first step for 
successful functional brain imaging studies. A carefully 
designed experiment allows experimenters to collect 
informative data to make precise inference on the goals/
hypotheses at minimal cost. On the other extreme, data 
collected from a poorly designed experiment may fail to 
provide valid answers to the research questions of  inter-
est, resulting in a waste of  resource. The importance of  
the use of  a carefully selected experimental design (or 
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data collection plan) cannot be overemphasized.
This paper provides a survey on some recent devel-

opments in experimental designs for functional magnetic 
resonance imaging (fMRI) experiments. Functional MRI 
is one of  the most common functional brain mapping 
technologies. This pioneering, noninvasive technology 
helps to study experimental subjects’ brain activity when 
they are cognitively engaging with mental stimuli such 
as viewing pictures, tapping fingers, solving problems, 
recalling events, or making decisions. It is used in vari-
ous research areas including psychology, economics, and 
cognitive neuroscience[1], and has great clinical potentials 
as highlighted in a special issue on clinical applications of  
fMRI in Neuropsychology Review, Vol. 7, No. 2, 2007. 
However, fMRI experiments are usually expensive, and 
the collected data is notoriously noisy, making it difficult 
to draw precise statistical inference on brain functions. 
We thus would like a high-quality experimental design to 
help us make the best use of  the limited resources to col-
lect informative fMRI data.

An fMRI design is a sequence of  mental stimuli to be 
presented to an experimental subject in an fMRI experi-
ment. While the subject is performing the tasks deter-
mined by the selected stimulus sequence, an MRI scanner 
repeatedly scans his/her brain to acquire fMRI data for 
making statistical inference about the brain activity. The 
quality of  the collected data depends on the selected de-
sign. However, due to the complexity of  fMRI, obtaining 
the “best” fMRI design suited to the goal(s) of  the exper-
iment is a challenging task. We usually need to consider 
not only the statistical efficiency in achieving one or more 
(competing) study objectives, but also some unwanted 
psychological effects that can contaminate the data. In 
addition, we may want the obtained design to fulfill some 
practical constraints. The large diversity of  the fMRI ex-
perimental settings and protocols also contributes to the 
difficulty of  design selection. In almost all cases, we deal 
with a very challenging combinatorial problem. 

There are some advances in the selection of  fMRI 
designs, but much more work is needed to move this new 
emerging research area forward. The purpose of  this arti-
cle is to provide a brief  overview of  stochastic and deter-
ministic computational tools for designing efficient fMRI 
studies as well as recent insights obtained for such studies 
using analytical methods. We begin in the next section 
with background information on fMRI studies, and in-
troduce terminology and notation used in this article. We 
then present the general linear models widely used for the 
design and analysis of  fMRI studies and popular design 
criteria in this area. Some recently obtained results and 
guidelines for selecting fMRI designs are discussed. We 
close the article with a summary and discussion.

BACKGROUND
Terminology and notation
In a typical fMRI experiment, a sequence of  mental stim-
uli (e.g., pictures) of  one or more types interlaced with 

periods of  rest or, say, visual fixation is presented to each 
experimental subject. These stimuli give rise to neuronal 
activity at some brain regions that triggers an increased 
inflow of  oxygenated blood, leading to a decrease in the 
concentration of  deoxygenated blood. This change in the 
ratio of  oxy- to deoxy-blood can influence the strength 
of  the magnetic field, and results in a rise and fall in the 
intensity of  signals collected by the MRI scanner. Specifi-
cally, the MRI scanner collects MRI measurements by 
repeatedly scanning each of  the, say, 64 × 64 × 30 brain 
voxels, which are volumetric image elements that cover 
(part of) the subject’s brain. Some voxels may fall outside 
the brain; see also Subsection 2.1.1 of  Lazar[2]. At each 
voxel, MRI measurements are collected every τTR (e.g., 2) 
seconds to form a blood oxygenation level dependent 
fMRI time series. The pre-specified time τTR is called the 
time to repetition. These time series serve as surrogate 
measurements of  the underlying neuronal activity, and 
are analyzed to make inference about how the brain re-
acts to the stimuli; see also Lazar[2]. 

The inference on brain activity is mainly based on 
some characteristics of  the hemodynamic impulse re-
sponse function (HRF). The HRF is a function of  time 
describing the rise and fall of  the noise-free MRI mea-
surements following a brief  neuronal firing that occurs 
at a voxel. Previous studies suggest that the HRF may 
increase from baseline in about two seconds after the 
onset of  a brief  stimulus, reach the peak in five to eight 
seconds, and possibly fall down below baseline before 
its complete return to baseline[1,3]. This process may 
take about 30 s, counting from the onset of  the brief  
stimulus to the HRF’s complete return to baseline. If  
there are other neuronal firings (e.g., due to the onset of  
other stimuli) before the cessation of  the previous HRF, 
the evoked HRFs overlap and their heights accumulate. 
Since fMRI time series is typically very noisy, identifying 
the characteristics of  the HRF by visual inspections is 
difficult, if  not impossible. Statistical methods are thus 
needed to help extract useful information from the data. 
As an integral part of  the statistical process, we would 
like to select a “good” fMRI design that helps to make 
valid inference.

An fMRI design is a sequence of  mental stimuli of  
one or more types. When the sequence is presented to an 
experimental subject, each stimulus may last as brief  as 
several milliseconds or as long as, say, a minute. Stimuli 
with extended presentation duration, e.g., 10-60 s, are 
used in traditional blocked designs, which are also termed 
as boxcar designs. In such a design, the stimulus of  the 
same type can appear at multiple time points during the 
experiment, but each long stimulus is immediately fol-
lowed by a long stimulus of  another type or by a period 
of  control (e.g., rest). It also is not uncommon to replace 
each long stimulus by a short sequence of  separate but 
brief  stimuli of  the the same type. The resulting de-
signs are still called blocked designs. For experiments 
with Q stimulus types, a typical blocked design may be 
the repetitions of  {A1A2…AQA0}, where, for q =1, ..., 
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Q, Aq represents a presentation of  a long stimulus (or 
a sequence of  brief  stimuli) of  the qth type, and A0 is a 
period of  control. At a brain voxel responding to the qth-
type stimulus, neuronal firings can be expected through-
out the time span of  each “on-period” Aq. This leads to 
an accumulation of  overlapping HRFs. With a long on-
period of  the stimulus, the MRI signal intensity increases 
to a high level, and may reach a plateau before dropping 
down to baseline following the cessation of  the stimulus. 
The large contrast between the elevated signal intensity 
and baseline facilitates the detection of  brain voxels (or 
regions) that respond to the stimulus. Blocked designs are 
thus often recommended for detecting brain voxels that 
are activated by the stimuli; see the Results on Design Se-
lection section for a further discussion. 

Moving away from blocked designs, some studies 
showed that an individual stimulus that is as brief  as sev-
eral tens of  milliseconds can evoke a detectable change in 
the MRI measurements; see Rosen et al[3] and references 
therein. In addition, the heights of  overlapping HRFs 
following multiple brief  stimuli tend to be (roughly) addi-
tive when the time between stimulus onsets is not overly 
short (e.g., at least 2 s); see also Friston et al[4]. These ob-
servations make it possible to consider event-related (ER-) 
fMRI designs that consist of  brief  stimuli whose order 
may be randomized. An ER-fMRI design of  Q stimulus 
types is often written as a finite sequence of  elements 0, 
1, ..., Q, and may look like d = (1012021…1). A positive 
integer q in d represents an onset of  a qth-type stimulus, 
and 0 means no stimulus onset. Specifically, when the ith 
element of  d is di = q (> 0), a qth-type stimulus appears 
briefly at time (i-1)τISI for a pre-determined τISI; time 0 
may be synchronized to the first valid MRI scan. For ex-
ample, when d3 = 1 and τISI = 4 s, a stimulus of  the first 
type (e.g., a picture of  a familiar face) will occur briefly at 
the (3-1)τISI = 8th second after the first valid MRI scan. 
With d4 = 2, a stimulus of  the second type (e.g., a picture 
of  an unfamiliar face) will appear at the 12th second after 
the first valid MRI scan. When di = 0, there is no stimulus 
onset at time (i-1)τISI. With these 0’s in the design, time be-
tween stimulus onsets may be “jittered”[5], and thus, may 
not be fixed to τISI. Typically, the control (e.g., a visual 
fixation or rest period) fills in the time between the off-
set of  a brief  stimulus to the onset of  the next stimulus. 
Due to its flexibility, ER-fMRI designs have gained much 
popularity[6]. However, a typical design can easily contain 
tens or hundreds of  elements, making it very challenging 
for selecting good designs. In this paper, we discuss some 
recently developed approaches for finding high-quality 
fMRI designs, including both blocked and ER-fMRI 
designs. Most of  these approaches are built upon the 
popular general linear model framework. This framework 
is described below. 

The general linear model framework
The fMRI time series, {y(t): t ≥ 0}, of  a brain voxel is 
typically modeled as the sum of  (1) the convolution of  
the stimulus function and the HRF, (2) a nuisance term 

allowing for a trend or drift of  y(t); and (3) noise[7,8]. We 
consider the foxllowing continuous-time model:
y (t) = ∑Q

q   = 1 ∫t
0 cq (t-τ)hq (τ; bq)dτ + s(t; g) + e(t)              (1)

where xq(t) is the stimulus function for the stimuli of  
the qth type, hq(τ; βq) is the HRF evoked by the qth-type 
stimulus, βq is an unknown parameter vector, q = 1, ..., Q, 
s(t; g) is a nuisance term approximating the drift/trend 
of  the time series, g is the corresponding unknown pa-
rameter vector, and e(t) is noise. The stimulus function 
xq(t) indicates the appearances of  the qth-type stimuli, and 
may be a sum of  boxcar functions or a sum of  (shifted) 
Dirac delta functions; see also Henson and Friston[9]. 
Boxcar functions are often employed in experiments 
with blocked designs. In this case, xq(t) takes a positive 
value during the “on-periods” of  the qth-type stimulus of  
a block design, and is 0, otherwise. The resulting model 
is sometimes referred to as the epoch model[10]. In an 
event-related model, the xq(t) is a sum of  (shifted) Dirac 
delta functions that indicates the onset times of  the brief  
stimuli of  the qth type. 

The most commonly used fMRI data analysis method 
is probably the general linear model approach[1]. Partly 
due to this popularity, existing studies on fMRI designs 
mainly focus on linear models such as models (2) and (3) 
that are extensions of  (1), and are linear in the param-
eters βq’s and γ. In the fMRI literature[11,12], dual models 
are commonly considered for two popular study objec-
tives, namely the detection of  brain activations (or detec-
tion) and the estimation of  the HRF (or estimation). The 
main difference between the two models is that they used 
different sets of  basis functions to describe hq(τ; βq) of  
model (1); see also Friston et al[4].

For detection, the HRF hq(τ; βq) is typically approxi-
mated by θqh*(τ), where h*(τ) is an assumed shape of  the 
HRF, and θq is the unknown amplitude (or maximum 
height) of  the HRF. Thus, βq contains only one param-
eter θq that signals the strength of  brain activation due to 
the qth-type stimulus. Since the MRI measurements y(t) 
is collected every τTR seconds, we consider the following 
discrete-time model:
y = ∑Q

q   = 1 zqθq + Sg + e.                                            (2)
Here, y=(y1, ...., yT)’ with yt = y((t-1)τTR). The vector 

zq is obtained by subsampling the convolution of  xq(t) 
and h*(τ) with a sampling rate of  τTR seconds. Sγ cor-
responds to s(t; γ) of  (1) with S being a specified matrix. 
For example, the tth element of  Sγ might be γ0+γ1t+γ2t2. 
The vector e in model (2) represents the noise. The fo-
cus of  model (2) is typically on C1θ for a given matrix C1 
whose rows contain coefficients of  linear combinations 
of  θ1,…, θQ; here, θ = (θ1,…, θQ)’. When C1= IQ is the 
identity matrix of  order Q, the focus is on the strength 
of  brain activation due to each stimulus type. It is also 
common to study (θp - θq) for p ≠ q. In such a case, the 
rows of  C1 contain the coefficients of  the pairwise com-
parisons between the HRF amplitudes. 

The estimation of  the HRF is a study objective that 
has gained much popularity with the advent of  ER-fMRI. 
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{C2[M2(d)]-C’
2}’                                                            (5)

where r2 is the number of  rows of  C2, X=[X1, ..., XQ] is 
the design matrix depending on the selected design d, 
M2(d) is the information matrix for h, and all the remain-
ing terms are as in (4). 

The D-optimality criterion seeks to minimize the 
volume of  the (asymptotic) confidence ellipsoid of  C2h. 
For the detection of  brain activation with model (2) and 
the estimation of  the HRF with model (3), D-optimal de-
signs are found by maximizing the following two criteria, 
respectively:
jD

q  (d) = det{C1[M1(d)]-C’
1}-1/r1                      (6)

jD
h  (d) = det{C2[M2(d)]-C’

2}-1/r2                      (7)
All the terms in (6) and (7) are as in (4) and (5), re-

spectively. For the D-optimality criteria, the coefficient 
matrices C1 and C2 are required to be full row rank. The 
selection between the A- and D-optimality criteria de-
pends on the need and preference of  the experimenter. 
As indicated in Maus et al[14], while early works on fMRI 
designs mainly focused on the A-optimality criterion, 
there is no obvious reason to generally prefer one criteri-
on over the other. In the subsequent sections, we discuss 
some results on fMRI design selection. Most of  these 
results are based on the A- or D-optimality criterion.

RESULTS ON DESIGN SELECTION
Blocked designs for detecting brain activations
There is some guidance on selecting blocked designs for 
detecting brain activations in the literature. For example, 
Henson[15] advocated the use of  blocked designs having 
a 15-s-on-15-s-off  pattern. For such a blocked design 
formed by {A1A2…AQA0}, the duration of  each Aq is 
fixed to 15 s. This suggestion is based on the Fourier 
transformations of  the convolution in (1) by assuming 
that the HRF has the form of  the double-gamma func-
tion:
g*(τ) = τse-τ/S! - 1/6 × τ1se-τ/1S!                                  (8)

The double-gamma function is widely used as the 
HRF shape, and is built in a software package, called 
SPM (http://www.fil.ion.ucl.ac.uk/spm/), for fMRI data 
analysis. In the frequency domain, this HRF acts as a 
low-pass filter that `passes’ low-frequency signals and re-
duces the amplitude of  high-frequency signals. As dem-
onstrated in Henson[15], after the Fourier transformation, 
a large proportion of  the signal energy of  a 15-s-on-
15-s-off  blocked design is retained by the selected HRF 
shape. In addition, the use of  an on-period Aq that is 
longer than 50 seconds is not recommended. This is be-
cause the signal energy of  the resulting blocked designs 
may be lost after accounting for the low-frequency nui-
sance signals such as heartbeats or respirations which is 
modeled by s(t; γ) in (1). 

Setting the block length (or duration of  Aq) to 15 s 
may not be optimal for an HRF shape that is different 
from (8). For example, Liu et al[16] considered cases with 
one stimulus type (Q = 1), and evaluated the perfor-
mance of  designs with the A-optimality criterion. They 

A widely used model for this objective is:
y = ∑Q

q   = 1 Xqhq + Sg + e.                                            (3)
Here, hq = (h1q, ..., hKq)’ is an unknown parameter 

vector representing the heights of  the HRF that con-
tribute to y. Specifically, hkq= hq((k-1) ∆T; βq) is the HRF 
height at (k-1)∆T seconds after the onset of  a qth-type 
stimulus, where ∆T is the greatest real value making 
(τISI/∆T) and (τTR/∆T) integers; k=1, ...,K. The value of  
K is selected so that hq((k-1) ∆T; βq) becomes negligible 
when τ > (K-1)∆T. For a commonly considered 32-sec-
ond HRF, K = [32/∆T] with [a] being the integer part 
of  a. The consideration of  hq is equivalent to modeling 
hq((k-1) ∆T; βq) of  (1) by a linear combination of  K 
shifted Kronecker delta functions; i.e., hq((k-1) ∆T; βq) 
= ∑K

k  = 1 hkqδk(τ), where δk(τ) = 1 when τ = (k-1)∆T, 
and δk(τ) = 0, otherwise; βq thus contain all the K coef-
ficients (HRF heights) h1q, ..., hKq. Xq = [x1q, ..., xKq] in 
model (3) is the 0-1 design matrix of  size T-by-K for the 
qth-type stimuli. The tth element of  xkq is 1 when hkq con-
tributes to yt. The remaining terms in (3) are as in (2). In 
contrast to model (2) for detection, model (3) does not 
assume a known shape for the HRF. The goal is to esti-
mate all the unknown HRF heights hkq or to study some 
linear combinations C2h of  these heights with h = (h1’, 
..., hQ’)’ and a given linear combination coefficient matrix 
C2.

Design selection criteria
With models (2) and (3) respectively for detection and 
estimation, the main design goal is to select an fMRI 
design that yields the most precise parameter estimates 
of  the parametric functions of  interest. Some statisti-
cally meaningful optimality criteria have been proposed 
for evaluating the goodness of  competing designs. Two 
popular criteria in the fMRI literature are A- and D-op-
timality criteria. For detection problems with model (2), 
the A-optimality criterion can be defined as the following 
‘larger-the better’ criterion:
jA

q  (d) = r1/trace {C1[Z’V’(IT-ω{VS}VZ)]-C’
1 } = r1/trace 

{C1[M1(d)]-C’
1}’                                                             (4)

Here, r1 is the number of  rows of  C1, and Z = [z1, ..., 
zQ]. V is a whitening matrix such that cov(Ve) = σ2 VRV’ 
= σ2IT, where σ2 is the error variance, and R = corr(e) 
is the correlation matrix of  errors. The matrix ω{A} = 
A (A'A)-A’ is the orthogonal projection matrix onto the 
column space of  A. A- is a generalized inverse of  A, and 
M1(d) = Z’V’(IT - ω{VS}VZ is the information matrix of  
θ. We note that V may be obtained by, e.g., the Cholesky 
decomposition of  R-1, and, depending on the assump-
tions made at the design stage, it may or may not contain 
unknown parameters; see also the Results on Design Se-
lection section and Maus et al[13]. The criterion in (4) de-
pends on the selected design d through the design matrix 
Z, and is inversely proportional to the average variance 
of  the least-squares estimates of  the parametric functions 
defined by C1θ. For estimating the HRF with model (3), 
the A-optimality criterion can be written as:
jA

h  (d) = r2/trace {C2[X’V’(IT-ω{VS}VX)]-C’
2 } = r2/trace 
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observed that the blocked design with a block length of  
64 s tends to have a high statistical efficiency in detection 
when a single gamma density function is used to model 
the HRF shape. This latter HRF shape is also not uncom-
mon, especially for cases where the HRF does not fall 
below baseline when returning from its peak. In addition, 
Liu et al[16] suggested that the selection of  block length 
also depends on s(t; γ). In particular, they demonstrated 
that the blocked design with a 64-s block length can yield 
a smaller jA

q -value than designs with a shorter (e.g., 32 s) 
blocked length when the statistical model also allows for 
a second- or third-order Legendre polynomial drift. 

To provide additional information on design selec-
tion, Maus et al[14] studied blocked designs of  two stimulus 
types (Q = 2) with selected block lengths (10, 15, 20, 30 
or 60 s), and patterns (repetitions of  {A1A2 }, {A1A2A0}, 
or {A1A0A2A0}). Each block Aq is formed by a sequence 
of  1-second stimuli of  the qth type; q = 1, 2, and the time 
between the onsets of  consecutive stimuli in the same 
block is τISI = 1, 2, or 3 s. They compare the statistical ef-
ficiencies of  these blocked designs in detecting brain ac-
tivations via model (2). In their model, the nuisance term 
Sγ corresponds to a linear trend, and the HRF shape used 
to construct zq is set to the double-gamma function of  
(8). The errors are assumed to have one of  the three pos-
sible structures, including uncorrelated errors, first order 
autoregressive (AR1) process, and an AR1 process plus a 
measurement error (AR1+ME). 

Considering both jA
q  (d) and jD

θ  (d), Maus et al[14] sug-
gested to keep τISI as short as possible. In addition, they 
recommended to use the design pattern {A1A2A0} for 
studying the HRF amplitudes θ1 and θ2. When the focus 
is on comparing the amplitudes (i.e., θ1 - θ2), blocked de-
signs formed by {A1A2} are recommended. The results 
of  Maus et al[14] also indicate that the selection of  block 
length may hinge on the assumed error correlation. When 
the focus is on θq’s, a block length of  15 s is recommend-
ed for both uncorrelated and AR1 errors. As for AR1 + 
ME errors, a block length of  10 s is the best among the 
selected blocked lengths. For studying the contrast be-
tween the HRF amplitudes, the suggested block lengths 
are 20 s and 15 s for uncorrelated errors and correlated 
errors (AR1 or AR1 + ME), respectively.

These previous studies provide some guidelines on 
selecting blocked designs for detecting brain activations. 
It can also be seen that the selection of  blocked designs 
depend on a few factors. These factors include the para-
metric function C1θ of  interest, the selected HRF shape, 
the model for capturing the drift/trend of  the fMRI 
time series, and the error correlation structure. For cases 
that are not covered by these guidelines, we may obtain a 
good design for detection by using a computer algorithm. 
Some algorithms have already been proposed in the fMRI 
literature. Most of  these computational approaches can 
be employed for cases considering the detection of  brain 
activations, the estimation of  the HRF, or when both 
detection and estimation are of  interest. Some practical 
constraints may also be imposed when using these com-

putational tools. In what follows, we first describe some 
guidelines for selecting ER-fMRI designs for estimating 
the HRF. We then discuss computer algorithms for ob-
taining good fMRI designs. 

ER-fMRI designs for estimating the HRF
The estimation of  the HRF helps to make inference 
about some characteristics of  the underlying neuronal 
activity as also described in Lindquist et al[17]. For this 
objective, model (3) may be considered, and the goal 
is to obtain a design yielding the most precise param-
eter estimates of  C2h for a given C2. By considering the 
A-optimality criterion of  (5), Dale[18] suggested to allow 
for variable time intervals between onsets of  consecutive 
stimuli, and the average of  these time intervals should 
be kept small. This suggestion can also be applied to the 
D-optimality criterion of  (7). However, one should take 
caution that if  the time between stimulus onsets is overly 
short (e.g., < 2 s), the accumulated heights of  the overlap-
ping HRFs may saturate at a certain level. Consequently, 
the assumption of  the additivity of  the HRF heights can 
be violated. For such a case, the nonadditive HRF heights 
should be taken into account when evaluating the good-
ness of  designs; see also, Wager et al[19] and Wager et al[20]. 
However, current methods for accounting for the non-
additive HRF heights tend to be ad hoc, and additional 
investigations are needed.

While rendering useful information, Dale[18] did 
not provide a systematic way for design construction. 
Buračas and Boynton[21] worked on the same design is-
sue, and advocated the use of  maximum length shift-
register sequences (or m-sequences). Such a design can 
be generated by a primitive polynomial over a Galois 
field GF(Q+1) consisting of  Q+1 elements, where Q+1 
is a prime power. To construct an m-sequence, one may 
select a primitive polynomial f(x) = xr - ∑r

i = 1 aixr-i from, 
e.g., Table 3.5, 3.6 or 3.7 of  Golomb and Gong[22]. The 
m-sequence d = (d1, ..., dN) is then determined by the re-
lation, dn + r = ∑r

i = 1 aidn + r - j (mod Q+1) with a nonzero 
initial r-tuple (d1, ..., dr); see also Lidl and Niederreiter[23], 
and MacWilliams and Sloane[24]. Such a design can also be 
obtained via an MATLAB program developed by Liu[11]. 
For an m-sequence of  length N = (Q+1)r - 1, every non-
zero r-tuple appears exactly once in the set {(d1, ..., dr), (d2, 
..., dr+1), ...,  (dN,d1 ..., dr-1)}.

Buračas et al[21] and Liu[11] reported the high perfor-
mance of  m-sequences in terms of  the jA

h -value when C2 

= IQK is the QK-by-QK identity matrix. However, when 
Q > 1, the frequency of  the appearance of  each stimulus 
type of  an m-sequence can be different from the opti-
mal stimulus frequency approximated by Liu et al[12] for 
A-optimality. In particular, Liu and Frank[12] indicated that 
the optimal stimulus frequency of  an A-optimal design 
for estimating the HRF h is about 1/(Q + √Q) for each 
of  the Q stimulus types. The optimal number of  0 is thus 
approximately N/(1 + √Q). Since the stimulus frequency 
of  m-sequences is about 1/(Q+1), these designs may not 
be A-optimal; see also Kao et al[25]. For jD

h  with C2 = IQK, 
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the optimal stimulus frequency approximated by Maus 
et al[13] is 1/(Q+1), and is close to that of  m-sequences. 
Maus et al[13] thus suggested that the optimality of  m-se-
quences may depend on the selected criterion. 

However, attaining the (approximated) optimal stimu-
lus frequency does not guarantee an optimal design. To 
derive additional insightful results, Kao[26] also studied 
model (3) with the following assumption: Assumption 1. 
(a) The number of  MRI scans T equals the length N of  
the design d and τTR = τISI; (b) S = jT is the T-by-1 vector 
of  ones, and cov(e) proportional IT; and (c) the last K - 
1 elements of  design d are also presented to the subject 
before the first valid MRI scan.

Assumptions 1(a) and 1(c) are mild, and can often 
be controlled by the experimenters. Assumption 1(b) is 
mainly for mathematical simplicity, and is also considered 
in some previous studies such as Liu et al[16] and Maus et 
al[27]. Following an argument in Kushner[28], for the results 
to be discussed in the remaining of  this subsection, As-
sumption 1(b) can be relaxed to include cases with cov(e) 
= αIT + λjT’ + jTλ', where α is a constant and λ is a vec-
tor of  constants. The results thus hold for a compound 
symmetric covariance matrix with cov(e) = αIT + λJT, 
where λ is a constant, and JT is the T-by-T matrix of  ones. 
For estimating the K-by-1 HRF parameter vector h1 with 
one stimulus type (Q = 1), Kao[26] showed that a design 
of  length N having n1 = N/2 and nr

(11) = (n1)2/N for all 
r = 1, ..., K - 1 is universally optimal. Here, nq is the fre-
quency of  the qth-type stimuli in the design d, and nr

(pq) is 
the number of  times (dn-r, dn) = (q,p) for n = 1, ..., N; dn-r 

= dN+n-r when n ≤ r. We also note that an universally op-
timal design can be shown to be optimal in a large class 
of  optimality criteria, including A- and D-optimality[29]. 
For Q > 1, a similar sufficient condition for an ER-fMRI 
design to be D-optimal can also be found in Kao[26]. In 
particular, if  all the symbols 0, 1, ..., Q appear equally of-
ten in a design d of  length N, and that nr

(pq) = npnq/N for 
all p, q = 1, ..., Q and r = 1, ..., K - 1, then the design d 
maximizes jD

h  of  (7) under Assumption 1 and C2 = IQK. 
As described in Kao[26], designs satisfying the previ-

ously mentioned sufficient conditions can be constructed 
by inserting an additional 0 to any (K - 1)-tuple of  zeros 
in an m-sequence of  length (Q+1)K - 1. The resulting de-
sign is a de Bruijn sequence[22,30]. Aguirre et al[30] proposed 
to use de Bruijn sequences for estimating the HRF. The 
results of  Kao[26] help to establish the optimality of  such 
designs. 

Clearly, m-sequences do not satisfy the sufficient con-
ditions provided by Kao[26]. Additional results are thus 
needed for establishing the optimality of  these popular 
designs. Kao[31] worked on this direction, and proved that 
a binary m-sequence of  length N ≥ 2K - 3 is D-optimal 
for estimating the HRF h1 under Assumption 1 with Q = 
1. He also proposed a new type of  ER-fMRI designs for 
estimating the HRF. This new type of  designs, which are 
termed as Hadamard sequences, can be constructed by a 
normalized Hadamard matrix, H, having a circulant core. 
Specifically, the elements of  the first row and column of  

H are 1 and all the other entries are +1 or -1 with HH’ 
proportional I. After deleting the first row and column 
of  H, we have a circulant matrix called the circulant 
core. As described in Kao[31], a D-optimal design can be 
achieved by replacing +1 and -1 in any column of  the 
circulant core by 0 and 1, respectively. It is noteworthy 
that binary m-sequences can also be generated using this 
same method and are thus special cases of  Hadamard 
sequences. Nevertheless, Hadamard sequences exist in 
many different lengths for which a binary m-sequence is 
unavailable. These newly proposed designs are thus much 
more flexible than m-sequences and the previously men-
tioned de Bruijn sequences in terms of  design length. 

Kao[31] also conducted some case studies on the per-
formance of  Hadamard sequences when Assumptions 
1(b) and 1(c) are violated. Based on empirical results, 
Hadamard sequences tend to remain efficient when the 
nuisance term Sγ in model (3) corresponds to a second-
order polynomial drift, the noise follows an AR1 process, 
and/or no stimulus is presented before the first valid 
MRI scan. This result is especially true when the autocor-
relation coefficient of  the AR1 noise is not as high as ρ 
= 0.5 or when the design is not too short (e.g., N < 100). 
We also note that a violation of  Assumption 1(a) can 
have a great impact on the performance of  Hadamard 
sequences. For cases with τTR ≠ τISI, we may consider 
efficient computational methods for obtaining good de-
signs. Some computational approaches are introduced in 
the next subsection. These approaches are also applicable 
when both estimation and detection are of  interest.

Computational tools for obtaining fMRI designs
In the fMRI literature, some computer algorithms are 
proposed for finding an ER-fMRI design of  the form 
d = (d1, ..., dN) with dn belong to {0, 1, ..., Q} that op-
timizes a specific single- or multi-objective optimality 
criterion. To efficiently search over the enormous space 
of  ER-fMRI designs for good designs, Wager and Nich-
ols[19] advocated the use of  the genetic algorithm (GA) 
technique. Due to their versatility, GAs can accommodate 
various experimental settings to find designs suited to 
individual fMRI experiments. Following Wager and Nich-
ols[19], Kao et al[25] put forward an efficient GA that takes 
advantage of  knowledge on the performance of  some 
ER-fMRI designs to improve the efficiency of  the GA 
search. Some well-known designs such as m-sequences, 
blocked designs, and their combinations are employed in 
the algorithm of  Kao et al[25] to increase the diversity of  
the designs being explored, and to maintain a supply of  
good traits (or building blocks) that help to form good 
designs during the GA search. As demonstrated in Kao et 
al[25], this strategy is very effective.

With the previously mentioned GAs, one can find 
a (near-)optimal design for user-specified number of  
stimulus types Q, design length N, τISI, τTR, and model 
assumptions, including the model for drift/trend of  the 
time series, error correlation structure, and, if  model (2) 
is considered, the HRF shape. Depending on the study 
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objective(s), the optimality criterion for evaluating the 
quality of  designs may be jA

q , jA
h , jD

q , jD
h  or a weighted 

sum of  some of  these criteria;  weights are user-selected 
to reflect the relative importance of  detection and estima-
tion. In a weighted sum criterion, one may also include 
other individual criteria to account for quantifiable con-
straints/requirements of  the study. For example, Wager 
et al[19] included a counterbalancing criterion for avoiding 
psychological confounds such as anticipation and habitu-
ation. By optimizing this criterion, the order of  the stim-
uli in the resulting design cannot be easily predicted by 
the experimental subject. Moreover, we may include an 
additional individual criterion to measure the departure 
from a target frequency of  appearances of  each stimulus 
type; see also, Kao et al[25]. Such a customized requirement 
on the stimulus frequency may help to increase the sub-
ject’s engagement in the presented mental tasks[32]. 

The GA of  Kao et al[25] has been applied for studying 
several fMRI design issues. For example, this algorithm 
was used to obtain designs for cases where both individ-
ual stimulus effects (h and θ) and pairwise comparisons 
(hp - hq and θp - θq for p ≠ q) are of  interest. Maus et al[13] 
used the GA to work on cases where the autocorrelation 
coefficient ρ of  the AR1 noise is uncertain. The GA is 
also adapted in Kao et al[33,34] for finding designs suited to 
experiments with multiple scanning sessions. 

In addition, Maus et al[35] and Kao et al[36] utilized the 
GA to tackle the design problem concerning an uncertain 
HRF shape. The need for considering the uncertainty 
of  the HRF shape is manifested in some previous stud-
ies[37,38]. These studies pointed out that the HRF shape 
may vary across brain voxels, and that specifying a wrong 
HRF shape in, say, model (2) for detection may lead to 
an incorrect conclusion. To accommodate different HRF 
shapes, Kao[39] considered at the design stage the follow-
ing nonlinear model:
y = ∑Q

q   = 1 Cq h(u)qq + sg + e                    (9)
where h(u) is a K-by-1 vector representing the shape of  
the HRF, u is an unknown parameter vector that needs to 
be estimated from data, and all the remaining terms are 
as in (2) and (3). The vector h(u) may be determined by 
the double-gamma function of  (8) with free parameters 
for accounting for the variability in the HRF shape; see 
also Wager et al[20]. In particular, the kth element of  h(u) is 
g((k - 1) ∆T; u)/maxs g(s; u) with u = (u1, u2)’ and
g(τ; u) = [(τ-u2)u1-1e-(τ-u2)]/Γ(u1) - 1/6 × [(τ-u2)1S-1e-(τ-u2)]/15! 
(τ ≥ u) or 0 (otherwise)                                             (10)
Here, u1 is the time-to-peak parameter, which mainly de-
termines the time for the HRF to reach the peak, count-
ing from its onset time. The time-to-onset parameter u2 
determines the time when the HRF starts to increase 
from baseline, counting from the onset of  a stimulus. As 
indicated by Wager et al[20], these two parameters are the 
most influential, although some additional free param-
eters may also be included in (10). For example, one may 
use a free parameter to replace the coefficient 1/6 in the 
second term of  the non-zero part of  (10). The function 
Γ(u) = ∫∞

0 tu-1e-1dt = (u-1) Γ(u - 1) in (10) is the gamma 

function. We note that the function g*(τ) in (8) is a special 
case of  (10) with u = (6, 0)’. Specifically, the HRF shape 
h*(τ) in model (2) depends on g*(τ), and is fixed. By con-
trast, the HRF shape in model (9) is determined by g(τ; u), 
and involves unknown parameters to be estimated from 
the data. The latter model is thus more flexible. 

When making inference about θq for detecting brain 
activations, model (9) allows for an uncertain HRF shape. 
However, obtaining a good design for such a flexible 
model is quite challenging. Again, we would like a design 
optimizing some function (e.g., the A- or D-optimality 
criterion) of  the information matrix of  θ. For model 
(9), this information matrix, denoted by M(d; θ, u), can 
be approximated by first-order Taylor approximation. 
In contrast to M1(d) and M2(d) in (4)-(7), M(d; θ, u) de-
pends not only on the design d, but also on the unknown 
model parameters θ and u; see Kao[39] and Kao et al[36] for 
details. By treating θ and u as random variables, and as-
suming the availability of  a (prior) distribution of  θ and 
u, Kao[39] targeted a (pseudo-)Bayesian design that maxi-
mizes E{φ(M(d; θ, u))} for a larger-the-better criterion 
φ, where the expectation E{.} is taken over the (prior) 
distribution of  the parameters. 

When a prior distribution of  the parameters is un-
available, it is common to consider to maximize the mini-
mum of  φ(M(d; θ, u)), where the minimum is taken over 
the possible values of  θ and u. It also is popular to maxi-
mize the the minimum of  the relative efficiency, which is 
defined as
min (θ ∈ u, u ∈ U) φ[M(d; θ, u)]/φ[M(d*

θ,u; θ, u)]
Here, Θ and U contain the possible values for θ and 
u, respectively; and d*

θ, u is a locally optimal design that 
maximizes φ(M(d; θ, u)) for given θ and u. Designs 
maximizing the former criterion are termed as maximin 
designs, whereas those optimizing the latter criterion are 
maximin-efficient designs. Both criteria are popular in 
the literature; see also Kao et al[36] and references therein. 
However, obtaining maximin-type designs is computa-
tionally very expensive. Kao et al[36] proposed an efficient 
shortcut. Building on some analytical results, they showed 
that the size of  the parameter space of  Θ can be greatly 
reduced when obtaining maximin-type designs. Specifi-
cally, when Q=1, we may find a very efficient maximin (or 
maximin-efficient) design by focusing on θ1 = 1 (or θ1 
belong to {0,1}). For Q > 1, instead of  setting Θ to the 
entire Q-dimensional space, we may focus on a subspace 
consisting of  (1/Q!) of  the surface of  the Q-dimensional 
unit hemisphere centered at the origin when obtaining 
a maximin design; the origin needs to be included in 
the subspace for finding a maximin-efficient design. To 
further reduce computing time, Kao et al[36]  focused on 
a restricted class, Ξ0, of  designs when using a search al-
gorithm to find maximin-type designs. Specifically, each 
design of  length N in Ξ0 is formed by a short design of  
length [N/Q], where [a] is the smallest integer greater 
than or equal to a. For any short design, a full-length de-
sign is constructed by cyclically permuting the labels of  
the Q stimulus types with 0's staying intact, and then leav-
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ing out the excess elements, if  any. The stimulus frequen-
cies in the resulting design are thus (nearly) equal across 
stimulus types. Kao et al[36] showed that their approach is 
quite efficient and effective when obtaining maximin-type 
designs when the HRF shape is uncertain. 

In addition to the GA technique, a deterministic op-
timization algorithm for obtaining optimal fMRI designs 
has recently been proposed and studied by Kao and 
Mittelmann[40]. Without stochastic explorations, this lat-
ter approach has been demonstrated to be efficient for 
some cases for which the GA requires much CPU time 
in finding a good design. The main idea is to combine 
a greedy hill-climbing algorithm with the previously 
mentioned cyclic permutation method for constructing 
designs of  Ξ0. In particular, the algorithm first system-
atically perturbs a small fraction (e.g., the first four ele-
ments) of  a short design ds of  length [N/Q] to create 
some neighboring short designs that are close to ds in 
terms of  Hamming distance. The search then moves 
to the neighboring short design ds that yields the best 
full-length design via the cyclic permutation method. 
After this movement, the algorithm continues to work 
on perturbing another small fraction (e.g., the fifth to 
eighth elements) of  ds. This process is repeated until no 
improvement can be achieved. Based on our experience, 
this approach tends to lead to very efficient designs with 
greatly reduced CPU time, although the obtained design 
might not be optimal. Kao and Mittelmann[40] dem-
onstrated the usefulness of  their algorithm by finding 
maximin designs that are robust to mis-specified error 
autocorrelation coefficients when stationary AR2 errors 
are assumed. For this case, the GA approach can be very 
challenging in terms of  CPU time. 

The algorithms described so far are used to optimize 
a single objective function. For experiments with two 
or more study objectives, these previous studies mainly 
considered weighted-sum criteria that are convex combi-
nations of  all the individual criteria of  interest. However, 
selecting appropriate weights for such a weighted-sum 
criterion might be challenging for some cases, and the 
assigned weights may not guarantee a satisfactory design. 
For example, assigning equal weights does not always 
lead to a design with equal relative efficiency across all 
the study objectives of  interest. To address this fMRI de-
sign issue, Kao et al[41] proposed a multi-objective optimi-
zation algorithm by modifying the nondominated sorting 
GA Ⅱ (NSGA Ⅱ) of  Deb et al[42]. With a single run of  
the algorithm, the experimenter can obtain not one, but 
a class of  diverse designs for approximating the Pareto 
frontier; a Pareto frontier is formed by the best possible 
solutions in a multi-objective optimization problem. A 
design best suited to the needs of  the experiment can 
then be selected from the obtained design class. The 
algorithm can also be used to find fMRI designs when 
there is a constraint such as a required stimulus frequen-
cy. This algorithm is recommended when weights on the 
multiple study objectives are hard to determine.

CONCLUSION
Design of  fMRI experiments is an exciting research area. 
Several analytical and computational approaches have 
been proposed for obtaining designs that attain high effi-
ciencies in terms of  certain practically meaningful design 
selection criterion. As demonstrated in Jansma et al[43], 
among others, fMRI designs with theoretically superior 
performance are often very useful in real-world experi-
ments. The designs obtained in the previous studies are 
thus valuable. However, much work remains to be done 
in this area. As indicated by Lindquist[1] in his recent sur-
vey on statistical methods for fMRI studies, “as research 
hypotheses ultimately become more complicated, the 
need for more advanced experimental designs will only 
increase further.”

One possible direction of  future research is on de-
veloping designs for cases with compound stimuli, each 
containing two or more components; e.g., each stimulus 
is formed by a cue followed by a task. To our knowledge, 
there is no systematic study on this important design is-
sue. In addition, fMRI is also widely considered for study-
ing the functional connectivity between brain regions. 
High-quality experimental designs for this type of  studies 
are also in a great demand. Moreover, developing power-
ful computational approaches, and insightful analytical 
results for optimal fMRI designs should always be helpful. 
For example, the analytical results described in the Results 
on Design Selection section are mainly for cases where 
Assumption 1 holds and C2 = IQK. It is also useful to con-
sider the case where C2 is not the identity matrix when 
contrasts between the HRFs are of  interest. Developing 
novel, insightful analytical results by relaxing Assumption 
1 can also help to move this new research field forward.
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