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Abstract
Computed tomography (CT) is emerging as a prominent diagnostic modality in 
the field of cardiovascular imaging. Artificial intelligence (AI) is making 
significant strides in the field of information technology, the commercial industry, 
and health care. Machine learning (ML), a branch of AI, can optimize the 
performance of CT and augment the assessment of coronary artery disease. These 
ML platforms can automate multiple tasks, perform calculations, and integrate 
information from a variety of data sources. In this review article, we explore the 
ML in CT imaging.

Key Words: Computed tomography; Machine learning; Artificial intelligence; Cardio-
vascular imaging
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Core Tip: Machine learning (ML), a subset of artificial intelligence, contains multiple 
algorithms which include supervised, unsupervised, reinforcement and deep learning. 
These algorithms can greatly augment multiple aspects in computed tomography which 
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include automated segmentation, diagnosis, and stratification based on risk. Outputs 
need to be carefully assessed by the medical team for any potential biases. For the 
future of computed tomography and cardiovascular imaging, ML algorithms need to be 
integrated in clinical care.
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INTRODUCTION
In this digital era, distance is no longer a limiting factor and information is emanating 
from a variety of devices and sources[1]. These technological innovations have consid-
erably transformed our perception, culture, and our daily lifestyles[2]. Similarly, many 
of these changes have trickled downwards in healthcare and are especially apparent in 
the field of cardiovascular imaging. Over the last 10 years, the field of computed 
tomography (CT) has expanded tremendously with significant changes in diagnostic 
performance and prognostic implications in coronary artery disease[3,4]. Coronary CT 
angiography (CTA) is now heralded as an established diagnostic modality in the 
evaluation of coronary artery disease (CAD)[4,5]. With each year, data arising from 
each imaging scan is increasing exponentially in intricacy and size[6]. As we approach 
this technological ceiling, the sheer complexity of this information will supersede the 
analytic capabilities of conventional statistical software[7].

Artificial Intelligence (AI) refers to a set of actions that can mimic human cognitive 
thinking and decision making[8]. Machine learning (ML), a branch of AI, can 
extrapolate hidden characteristics or relationships present in vast expanses of data[2]. 
It can analyze data from a multitude of sources and link the information in user-
friendly approaches[9]. In addition, it can automate several processes and perform 
many calculations[10]. With the application of ML algorithms in CT for cardiology, it 
can elevate the modality to unprecedented new heights which can improve the quality 
of patient care. In our review, we evaluate recent advances and progression of ML in 
cardiac CT over recent years.

BROAD CLASSIFICATION OF ML
ML is an aggregate term which collectively encompasses a wide variety of analytical 
algorithms[11]. They can be simply divided into supervised learning, unsupervised 
learning, semi-supervised learning, deep learning and reinforcement learning[12,13] 
(Figure 1 and Table 1). Supervised learning requires labeled datasets or domains 
within the dataset to perform analytical actions[14]. Unsupervised learning does not 
require labels within a dataset and can analyze information in a very independent 
manner. For discussion purposes, it can be referred to as agnostic[2,15]. Hierarchical 
clustering, a type of unsupervised learning, can identify and distinguish new 
phenotypes within various cardiac diseases[2]. It has gained significant traction 
recently. Semi-supervised learning is a hybrid approach that utilizes properties 
present within supervised and unsupervised learning[16]. Reinforcement learning 
uses definitive reward conditions for the ML architecture to perform certain functions. 
Nevertheless, frequently not used in the field of cardiology[7]. Multiple studies have 
been documented to show the potential of ML in CT and CTA (Table 2).

Among all the available ML algorithms, deep learning is considered to have the 
most revolutionary potential[17]. In various sectors of commerce and industry, deep 
learning is being heavily utilized to unravel information within large troves of data
[18]. From voice recognition software in Siri or Alexa to self-driving cars in google, 
deep learning is garnering significant interest[12]. The architecture of deep learning 
algorithms is similar to the arrangement of a human neuron[19,20]. It is structured in a 
series of layers, there is significant communication between the preceding and 
subsequent layers. It processes information in multiple layers and is more independent 
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Table 1 Type of machine learning

Types of machine 
learning Function Examples

Supervised learning (55) Contains labels and outcomes, deduces inferences 
for prediction purpose

Includes logistic regression, ridge regression, elastic net regression, 
Bayesian and artificial neural networks

Unsupervised learning 
(55)

No labels, independently detects significant 
relationships.

Includes hierarchical clustering, k- means clustering, principal 
component analysis

Semi-supervised 
learning (55)

Properties of both supervised and unsupervised 
learning

Utilized in image and speech recognition

Re-enforcement 
learning (55)

Utilizes reward function to execute tasks Utilized in medical imaging, analytics, and prescription selection

Table 2 Machine learning studies in computed tomography

Ref. ML approach Brief study description

ML derived CAC assessment

Al’Aref et al[24] Multiple ML algorithm To use CAC and clinical factors for CAD prediction

Tesche et al[26] ML algorithm To compare ML derived CT FFR and CAC in CT

Kay et al[27] ML algorithm To identify phenotypes of left ventricular hypertrophy in combination with 
CAC

ML derived CT FFR assessment

Zhou et al[31] Multiple ML algorithms To employ CT FFR for myocardial bridge formation prediction

Tang et al[32] ML algorithm To compare ML CT FFR, CTA and invasive angiography

Coenen et al[33] Supervised learning To identify CAD

ML derived evaluation of plaque characteristics

Dey et al[34] ML algorithm To generate ML derived scores from plaque characteristics 

Hell et al[35] ML algorithm To predict cardiac death from plaque characteristics from CTA

ML derived evaluation of epicardial adipose tissue

Rodrigues et al[38] ML algorithm To segment and distinguish between different varieties of EAT

Commandeur et al[39] Deep learning To quantify EAT in CT

Otaki et al[40] Supervised learning To assess the relationship between EAT in CT and MFR in PET

Miscellaneous applications of ML in CT

Baskaran et al[41] Deep learning To assess automatic and manual assessment of left and right cardiac structure 
and function

Al’Aref et al[42] Supervised learning To identify culprit coronary lesions in CT

Beecy et al[43] Deep learning To detect acute ischemic stroke in CT

Oikonomou et al[44] Supervised learning To utilize perivascular fat for cardiac risk prediction

Eisenberg et al[45] Deep learning To evaluate epicardial tissue for MACE events

CT: Computed tomography; CTA: Computed tomography angiography; CAC: Coronary artery calcium; ML: Machine learning; CAD: Coronary artery 
disease; FFR: Fractional flow reserve; EAT: Epicardial adipose tissue.

compared to other ML algorithms. As the complexity and size of the dataset increase, 
the performance of the algorithm improves significantly[21,22].

AUGMENTED CORONARY CALCIUM ASSESSMENT
Coronary artery calcium (CAC) measurement is heralded as a fundamental metric in 
coronary CT because it serves as a pivotal predictor of mortality and cardiac complic-
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Figure 1 Brief overview of the progression of machine learning.

ations[23]. The Agatston scoring method is the conventional approach utilized to 
quantify CAC in coronary CT[19]. Furthermore, the CAC plays a diagnostic role in 
medical management, the CAC scores can be used to stratify patients and monitor 
medical therapy. However, CAC measurement can be quite tedious due to underlying 
artifacts, image noise, an abundance of calcifications, interobserver variability, and 
other factors[24]. The application of ML can significantly elevate the potential of CAC 
in CT.

Al'Aref et al[24] applied an ML architecture incorporating clinical factors in the 
CONFIRM registry with CAC for calculating the probability of CAD with CTA in a 
total of 35821 patients. It clearly showcased excellent AUC for ML and (CAC) (0.881) to 
other conventional approaches in their study [ML independently (0.773), updated 
Diamond- Forrester Score (0.682) coronary calcium (0.886)]. Hou et al[25] assessed the 
role of supervised ML to evaluate pretest likelihood of CAD in CTA with 6274 
individuals. Their ML algorithm demonstrated superior discriminative capacity for 
CAD occlusion in comparison to traditional scoring metrics such as Modified 
Diamond Forester scores and CAD consortium score (P < 0.001). Tesche et al[26] 
exhibited superior performance of ML derived CT fractional flow reserve (FFR) in 
comparison to CTA with CAC, substantial distinctions in capability were noted and 
with propionate increases in Agatston scores (P < 0.001). Kay et al[27] integrated 
various algorithmic frameworks with radiomics for identifying new phenotypic 
characteristics regarding left ventricular hypertrophy (LVH) severity in CT with 
(CAC) assessment. As a result, ML frameworks are found to be efficacious in identi-
fication of LVH.

APPLICATION OF MACHINE LEARNING FOR CT FRACTIONAL FLOW 
RESERVE
Although CTA enables visual evaluation of a stenotic lesion, it lags behind invasive 
FFR for assessing the hemodynamic significance of coronary stenosis[28]. Coronary 
fractional flow reserve (CT-FFR) has become a suitable non-invasive modality for 
evaluating ischemic heart disease and chest pain[29]. Furthermore, it can perform this 
task without the requirement of additional medications or imaging. It provides 
functional and anatomic evaluation, this approach is steadily gaining momentum in 
CT imaging[30]. ML algorithms can calculate FFR in the absence of computational 
fluid dynamics and yield additional prognostic information[3]. It can substantially 
expand the arena of CT-FFR in CT imaging.

Zhou et al[31] evaluated CT fractional flow reserve (CT FFR) for estimating 
myocardial bridge formation by integrating several algorithms. Interestingly, the 
framework chose properties which contained superior AUC (0.75 ± 0.04) in 
comparison to clinical attributes (0.53 ± 0.09, P < 0.0001), or CT- FFR prosperities (0.62 
± 0.06, P = 0.0127). Tang et al[32] demonstrated that CT FFR with computational fluid 
dynamics was superior CTA and invasive angiography for detecting vessel-specific 
ischemia. This was particularly seen in intermediate lesions (P < 0.001 for all). Coenen 
et al[33] demonstrated excellent correlation between ML based CT FFR and deep 
learning in CAD (r = 0.997).
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PLAQUE CHARACTERIZATION AND SEGMENTATION IN CAD
ML algorithms can provide additional insight regarding plaque characteristics in CAD 
and augment our understanding[2]. Dey et al[34] utilized a logitboost algorithm to 
produce an ML-derived risk score from plaque characteristics in CTA for 254 patients. 
The ML algorithm displayed a higher AUC (0.84) than individual CTA parameters 
including stenosis (0.76), total plaque volume (0.74), and low likelihood of CAD (P < 
0.0006) (0.63). Hell et al[35] investigated the role of ML algorithms to predict cardiac 
death from coronary CTA through the utilization of plaque features in 2748 patients. 
The non-calcified plaque > 146 mm3 (P = 0.027), low density non-calcified plaque (P = 
0.025), total plaque volume > 179 mm3, and CDD > 35% in any vessel were 
significantly associated with elevated risk of future cardiac death.

ML AUGMENTED EVALUATION OF EPICARDIAL AND THORACIC ADI-
POSE TISSUE
Cardiac CT is deemed as the gold standard for evaluation of epicardial adipose tissue 
(EAT) quantification and assessment. EAT is a layer of adipose surrounding the heart 
and the accompanying coronary arteries. In addition, EAT is significantly linked with 
various cardiovascular risk factors, atherosclerosis of the coronary arteries, and CAD
[36,37]. The application of ML algorithms can automate the quantification of EAT and 
greatly reduce the time of manual measurements. This can translate into greater 
clinical implementation in coronary CT.

Rodrigues et al[38] applied ML algorithms for segmenting and differentiating types 
of fat in CT. The ML platform was able to achieve 98.4% mean accuracy and a DICE 
similarity index of 96.8%. Commandeur et al[39] utilized a deep learning algorithm for 
quantifying EAT in coronary CT. Strong agreement was observed between automatic 
and expert manual quantification with a mean DICE score coefficient of 0.823 and an 
excellent correlation of 0.923 with EAT volume. Otaki et al[40] utilized a boost 
ensemble machine learning algorithm for assessing the association of epicardial fat 
volume from myocardial flow reserve (MFR) in non- contrast CT in positive emission 
tomography (PET). The ML composite risk score substantially increased risk reclassi-
fication of impaired MFR to EAT volume or coronary calcium score (IDI = 0.19 and P = 
0.007, IDI = 0.22 and P = 0.002).

MISCELLANEOUS APPLICATIONS OF ML
In CT, ML has been applied in a variety of different situations with overwhelmingly 
positive results. Baskaran et al[41] assessed deep learning for assessing cardiovascular 
structures for CTA in 166 patients. The ML architecture corroborated in parallel to 
manual annotation in CTA for left ventricular volume (r = 0.98), right ventricular 
volume (r = 0.97) (P < 0.05). Al'Aref et al[42] utilized ML in CTA to detect precursor 
culprit lesion from patients with CAD. It exhibited a superior AUC for discriminating 
lesions in comparison to other ML derived frameworks (P < 0.01). Beecy et al[43] on CT 
for detecting acute ischemic stroke events. Interestingly, their AUC was 0.91 for 
automatic detection of infarction and had a 93% accuracy with interpretation of 
experienced physicians. Oikonomou et al[44] examined the capability of the random 
forest ML architecture from the radiomic profile of CTA derived coronary perivascular 
adipose tissue (PVAT) for identifying cardiac risk. It exceeded traditional risk strati-
fication metrics for MACE prediction (P < 0.001). Eisenberg used deep learning for 
MACE prediction with EAT and other characteristics. The EAT in CT predicted MACE 
effectively (HR, 1.35, P < 0.01), inversely with attenuation (0.83, P = 0.01)[45].

BIG DATA UTILIZATION FOR PREDICTION OF OUTCOMES IN CT
Big data has emerged as a valuable resource that provides significant depth and 
understanding and is instrumental to the growth of ML in clinical medicine (Table 3)
[5]. Due to size and magnitude, many important characteristics are often unnoticed by 
conventional approaches[6,46]. The implementation of AI with these immense 
expanses of data can yield additional information which can aid in medical 
management and clinical care.
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Table 3 Big data utilization by machine learning in computed tomography

Ref. ML approach Number Brief study description

Motwani et al[47] Supervised Learning 10030 To predict 5-yr mortality from CT

Rosandael et al[48] Supervised Learning 8844 To predict major cardiac events from CT

Han et al[49] ML algorithm 86155 To predict all-cause mortality from CT

CT: Computed tomography; ML: Machine learning.

Motwani et al[47] evaluated an ML framework to predict CAD in 10,030 patients for 
five-year mortality in comparison to traditional cardiac metrics in CT. Interestingly, 
the ML architecture exhibited a superior AUC (0.79) than CT severity scores (SSS = 
0.64, SIS = 0.64, DI = 0.62) for five-year all-cause mortality prediction (P < 0.0001). 
Similarly, van Rosendael et al[48] utilized an ML framework in CT with 8844 patients 
for detecting major cardiovascular events encompassing various attributes in relation 
to severity scores for CAD prediction. The ML derived AUC (0.771) was significantly 
higher in CT than conventional scoring parametric systems (0.685-0.701) for 
anticipating major cardiovascular events, with a notable difference (P < 0.001). Han et 
al[49] assessed an ML-derived predictive capacity for all-cause mortality in 86155 
patients. Notably, the AUC (0.82) noted to be higher than Framingham risk score and 
other traditional metrics (P < 0.05).

EVOLVING BELIEFS AND FUTURE DIRECTIONS OF ML
It must be emphasized with great importance that cardiovascular disease is hetero-
geneous in nature[50]. It cannot be perceived as straightforward because disease 
mechanisms have intricate interactions among molecular, genetic, and environmental 
factors[22]. The process is very dynamic, it truly reflects the essence of ML algorithms. 
ML can integrate this information from multiple sources and analyze it in a variety of 
approaches. This can lead to the development of various genetic markers which can 
help guide medical management and monitor responses after therapy[6,51]. 
Furthermore, we can tailor treatment regimens appropriate to the genetic constitu-
tional makeup of an individual, ML algorithms will facilitate the growth of precision 
medicine[12].

In current times, mobile devices, smartphone apps, and wearable devices are part 
and parcel of our daily lifestyles[52]. Telemedicine and ML algorithms are clearly 
intertwined in cardiovascular imaging and CT[1]. The information from these devices 
can be integrated with various parameters in cardiovascular imaging to yield 
additional insight regarding various cardiovascular diseases. In many underserved 
regions of the world, these devices can provide medical care and help direct patients 
towards appropriate intervention[1,53]. ML algorithms can analyze this information in 
real-time and help expedite this process[1]. These algorithms can serve as a bridge 
between different types of technology and cardiovascular imaging.

Although several algorithms have significant potential in computed tomography, 
deep learning has the most overwhelming potential[54]. It captures information 
through hierarchical levels of abstraction. As the computational prowess of graphical 
processing units (GPUs) continue to progressively evolve in conjunction with big data, 
the relevance of deep learning in computed tomography is becoming imminent. It is 
very effective in robust tasks such as image classification, image segmentation, and 
identification of various cardiovascular structures in CT, CTA, and cardiovascular 
imaging[20]. Furthermore, it does not require extensive training. The accuracy can be 
achieved by elevating the capability of the network or increasing the training set. This 
is a stark distinction in comparison to other ML algorithms[55]. Other algorithms 
entail a significant number of observations, computations, manual labor, and training 
to achieve optimal efficiency.

Randomized clinical trials (RCTs) are the gold standard in clinical research. The 
integration of ML algorithms could prove to be exceeding useful if implemented 
appropriately. Numerous RCTs fail to reach completion due to several factors which 
could include improper study design, inadequate number of participants, or lack of 
funding[56]. The integration of ML algorithms during the early or intermediate stage 
of an RCT could provide an outlook of different outcomes[5]. This information could 
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be used to restructure the RCT to obtain more successful outcomes. In addition, ML 
algorithms can enhance the randomization process in RCT[56].

LIMITATIONS OF ML
Though ML algorithms offer a significant promise for the future, it is far from straight-
forward. Several issues need to be resolved for successful implementation in clinical 
medicine. The potential of false discovery can occur with small databases, there is not 
enough information to properly train the algorithm[55]. Unfortunately, AI lacks a 
moral compass[57]. In addition, several unintentional biases can emerge during the 
process and could alter interpretation. The “black box” nature has always been an 
enigmatic property of ML algorithms, this has impeded its adoption in the medical 
field[2]. Investigators must have a proper research concept and plan before embarking 
on any ML-related task. As a result, engineers, physicians, and other members of a 
research team must play an active role in every stage of the ML algorithm[15,58]. 
Adjustments can be made to the algorithm to deliver clinically relevant information.

For any ML algorithm to thrive and grow, large information or databases is 
mandatory[15]. Obtaining this information can be complex and tedious. Data needs to 
be shared among institutions to allow training of the ML model[15]. This might 
require multiple IRB approvals. Information also needs to be de-identified before it can 
be shared. Many of these tasks can be time-consuming. Many types of imaging 
systems are frequently used for storing cardiovascular images. Nevertheless, each 
institution has their own unique protocols and there are differences in the acquisition 
process as well[2]. Some form of data standardization is required to facilitate data 
sharing and ML algorithm growth. If more information can be publicly available, it 
would be beneficial.

CONCLUSION
ML algorithms will have limitless potential in cardiovascular imaging, this has been 
evidenced in the field of CT. It will cause multiple paradigm shifts which will have a 
revolutionary impact in the field of medicine. These frameworks will automate several 
tasks, perform calculations, and aid as a supplementary tool for medical diagnosis and 
prognostication. By performing multiple tasks, physicians will have more time to 
spend with patients and be more focused on proper medical management. ML will 
serve as a long-lasting bridge between physicians and technology in clinical medicine.
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