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Abstract
Endothelial progenitor cells (EPCs) are a heterogeneous 
population of cells that are provided by the bone mar-
row and other adult tissue in both animals and humans. 
They express both hematopoietic and endothelial sur-
face markers, which challenge the classic dogma that 
the presumed differentiation of cells into angioblasts 
and subsequent endothelial and vascular differentia-
tion occurred exclusively in embryonic development. 
This breakthrough stimulated research to understand 
the mechanism(s) underlying their physiologic function 
to allow development of new therapeutic options. One 

focus has been on their ability to form new vessels in 
injured tissues, and another has been on their ability to 
repair endothelial damage and restore both monolayer 
integrity and endothelial function in denuded vessels. 
Moreover, measures of their density have been shown 
to be a better predictor of cardiovascular events, both 
in healthy and coronary artery disease populations than 
the classical tools used in the clinic to evaluate the risk 
stratification. In the present paper we review the effects 
of EPCs on revascularization and endothelial repair in 
animal models and human studies, in an attempt to bet-
ter understand their function, which may lead to poten-
tial advancement in clinical management. 
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INTRODUCTION
Stem cells are primal cells found in all multicellular organ-
isms. The biologic hallmark of  stem cells is their ability to 
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renew through mitotic cell division and differentiate into a 
different specialized cell types. The three broad categories 
of  mammalian stem cells are (1) embryonic stem cells de-
rived from blastocysts; (2) intermediate stem cells isolated 
from fetal tissue and extra-embryonic membranes; and 
(3) adult progenitor cells found in adult tissues. Stem cells 
can be cultured in vitro and transformed into specialized 
cells, potentially offering treatment for a variety of  dis-
eases which were previously considered incurable. Other 
types include manually-manipulated stem cells such as 
human induced pluripotent stem cells[1,2], nuclear transfer 
stem cells[3] and pluripotent adult unipotent germline stem 
cells[4].

We begin by clarifying our terminology in order to 
better address this topic. The term progenitor cell is used 
in cell and developmental biology to refer to an immature 
or undifferentiated cell, typically found in post-natal ani-
mals. While progenitor cells share many common features 
with stem cells, these two terms are often incorrectly used 
as synonymous. Stem cells have unlimited self-renewal 
ability, while the self-renewal ability of  progenitor cells is 
limited. Another differentiating feature is that stem cells 
are pluripotent (can differentiate into cells derived from 
any of  the three germ layers) while adult progenitor cells 
are unipotent (can produce only one cell type, but have the 
property of  self-renewal, which distinguishes them from 
non-stem cells) or multipotent (can produce only cells of  a 
closely related family of  cells, e.g. hematopoietic stem cells 
differentiate into red blood cells, white blood cells, plate-
lets, etc.). Embryonic stem cells can differentiate into all of  
the specialized embryonic tissues that form the organism. 
In adults, progenitor cells act as a repair system for the 
body, replenishing specialized cells as and when needed.

The focus of  this review is endothelial progenitor cells 
(EPCs), a population coming from mobilization and dif-
ferentiation of  precursors present in the bone marrow 
(BM) or other tissues such as fat, adventitia and skeletal 
muscles. EPCs have the ability to elicit neovascularization 
in response to ischemia, and to repair injured or damaged 
endothelium. 

EPCS
The close regional and functional development of  pe-
ripheral blood and vascular wall cells from the angioblast 
during embryonic development suggested the existence 
of  a common origin, the hemangioblast. However, dif-
ferentiation of  these mesodermal cells to angioblasts and 
subsequent endothelial differentiation was believed to ex-
clusively occur in embryonic development. This belief  was 
first challenged by Asahara et al[5] in 1997, who isolated an 
angioblast from peripheral blood of  adult humans, which 
differentiated in vitro into endothelial cells and contributed 
to in vivo neoangiogenesis in response to tissue ischemia. 
These cells were named EPCs[6,7]. They express various 
surface markers, hematopoietic CD34 surface marker and 
endothelial phenotype marker vascular endothelial growth 
factor receptor 2 (VEGFR2). Further observations also 

reported the existence of  “circulating BM-derived EPCs” 
in adults, a subset of  the CD34 blood-derived cell popula-
tion, which was shown to differentiate into the endothelial 
lineage and express endothelial marker proteins. Because 
CD34 was not exclusively expressed on hematopoietic 
stem cells, further studies used a more immature stem cell 
marker CD133 and demonstrated that purified CD133 cells 
can differentiate to endothelial cells in vitro[8]. CD133+/
CD34- EPCs have a higher vascular regeneration potential 
compared to CD133+/CD34+ EPCs[9]. Peripheral blood-
derived EPCs can also form ‘late-outgrowth colony-form-
ing unit endothelial cells, and this ability characterizes the 
“true” EPCs in vitro, being a marker of  their clonogenic 
potential[10]. Thus, CD133/VEGFR2-positive cells more 
likely reflect immature EPCs, whereas CD34/VEGFR2-
positive cells represent circulating endothelial cells both 
derived from EPC differentiation and/or shed from the 
vessel endothelium into the blood[11]. Importantly, EPCs 
have been shown to differentiate in vitro into vascular 
smooth muscle cells[12]. 

We speculate that heterogeneity in cell markers may 
reflect different developmental stages of  EPCs dur-
ing the maturational process from the BM residual cell 
to the mature vascular wall cell. In addition to the BM 
(myelomonocytic)-derived cells, spleen-derived mononu-
clear cells, cord blood derived mononuclear cells[13], fat tis-
sue derived stem cells[14], adventitial stem cells[15] and skel-
etal muscle progenitor cells[13] contribute to the pool of  
progenies of  the endothelial cell lineage. Therefore, EPCs 
are a heterogeneous population of  cells from BM or other 
adult tissue that share a common phenotype which when 
properly stimulated in vivo and in vitro, give rise to endothe-
lial cells. 

EPCS AND NEOVASCULARIZATION
The finding that BM-derived cells can mobilize to sites 
of  ischemia and express endothelial marker proteins have 
been demonstrated in animal models and in humans. This 
suggests that isolated EPCs may be used in therapeutic 
vasculogenesis as a way to rescue tissue from critical isch-
emia. Infusion of  various distinct cell types, either isolated 
from the BM or ex vivo cultivation, was shown to augment 
capillary density and neovascularization in ischemic tissue. 
In animal models of  myocardial infarction, injection of   
ex vivo expanded EPCs or stem and progenitor cells sig-
nificantly improved blood flow, improved cardiac function 
and reduced left ventricular scarring[16,17]. Similarly infusion 
of  ex vivo expanded EPCs derived from peripheral blood 
mononuclear cells in athymic nude mice or rats improved 
neovascularization in hind limb ischemia models[18-21].

Initial human trials indicate that BM-derived or cir-
culating blood-derived progenitor cells are useful for 
therapeutically improving blood supply to ischemic tis-
sue. Autologous implantation of  BM mononuclear cells 
in patients with ischemic limbs significantly augmented 
ankle-brachial index and reduced rest pain. In addition, 
transplantation of  ex vivo expanded EPCs significantly im-
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proved coronary flow reserve and left ventricular function 
in patients with acute myocardial infarction[22,23]. The role 
of  EPCs in neovascularization remains to be elucidated. 
Basal incorporation of  EPCs in non-ischemic tissues is 
very low[24] but the incorporation of  EPCs in ischemia-
injured tissues shows contradictory results. Data showing 
a wide range of  EPC incorporation rates have been pub-
lished, but other studies detected BM-derived cells only 
adjacent to the vessel, and they did not express endothelial 
markers[25-29]. This heterogeneity may be due to differ-
ences among models of  ischemia that may significantly 
influence the incorporation rate. A homogenous finding 
among these studies was that the incorporation rate in an 
ischemic injured tissues model was quite low, or at least 
not enough to explain the observed effective increase in 
the neovascularization process. The challenge is to explain 
how such a low number of  endothelial stem cells can 
improve neoangiogenesis. One possible explanation is 
that the efficiency of  neovascularization may combine the 
incorporation of  EPCs in newly formed vessels and the 
release of  proangiogenic factors in a paracrine manner.

Various studies have been conducted to evaluate the 
extent of  neovascularization after infusion of  EPCs or 
monocyte/macrophages lines. EPCs additionally incor-
porated into the newly formed vessel structures show 
endothelial marker protein expression in vivo[30,31]. Infusion 
of  macrophages (which are known to release growth fac-
tors but are not incorporated into vessel-like structures), 
induces only a slight increase in neovascularization after 
ischemia, much less that the one induced by injection of  
EPCs. These studies indicate that the capacity of  EPCs 
to physically contribute to vessel-like structures leads to 
their potent capacity to improve neovascularization[18,32,33]. 
Human studies performed to demonstrate the usefulness 
of  EPCs gave mixed results. The TOPCARE-AMI[34] trial 
showed the safety and feasibility of  intracoronary infusion 
of  EPCs (either BM-derived cells or circulating progeni-
tor cells) in patients successfully revascularized by stent 
implantation post-acute myocardial infarction. EPCs and 
BM mononuclear cells have been clinically evaluated for 
their benefits in limb ischemia[35-37], acute myocardial in-
farction, and dilated cardiomyopathy[38-42]. These cell types 
showed modest cardiovascular benefits with 2%-8% im-
provement in left ventricular ejection fraction[38] compared 
to significant improvement in limb ischemia. Many ques-
tions remain unanswered, and further studies are needed 
to elucidate the contribution of  physical incorporation, 
paracrine effects and possible effects on vessel remodel-
ing and facilitation of  vessel branching to obtain EPC-
mediated improvement of  neovascularization. 

EPCS AND ENDOTHELIAL REPAIR
Previously, the regeneration of  the injured endothelium 
was believed to come only from the migration and pro-
liferation of  neighboring endothelial cells. However, ac-
cumulating evidence shows that additional mechanisms 
may exist, and may be mediated by the circulating pool of  

EPCs. Rafii et al[11] showed that a subset of  CD34-positive 
cells (hematopoietic marker) have the capacity to differen-
tiate into endothelial cells in vitro in the presence of  basic 
fibroblast growth factor, insulin-like growth factor-1, and 
VEGF. These differentiated endothelial cells stained for 
von Willebrand factor (vWF), and incorporate acetylated 
low-density lipoprotein (LDL), therefore showing both 
hematopoietic (CD34) and endothelial phenotype (LDL 
and vWF). This also suggests the existence of  a BM-
derived precursor endothelial cell. To demonstrate this 
phenomenon in vivo, the authors further used a canine 
BM transplantation model, in which the BM cells from 
the donor and recipient were genetically distinct. After 
BM transplantation, a Dacron graft was implanted in the 
descending thoracic aorta, and they found that only donor 
alleles were detected in DNA from cells on the Dacron 
graft, indicating that re-endothelialization was mediated by 
circulating EPC derived from donor BM[43]. 

Xu et al[44] demonstrated that endothelial repair of  a 
vein grafted into an artery is mediated by a circulating pool 
of  endothelial cells provided by the recipient. They used 
TIE2-LacZ mice, which are transgenic mice with a pro-
moter (TIE2) placed before an intron fragment contain-
ing the enhancer for LacZ gene. This combination allows 
LacZ gene expression (β-galactosidase) specifically on vas-
cular endothelial cells. Thus TIE2-LacZ endothelial cells 
can be recognized by β-galactosidase staining. When they 
grafted the TIE2-LacZ vena cava into the carotid artery 
of  wild-type mice, endothelial cells of  freshly harvested 
vena cava from TIE2-LacZ mice showed β-galactosidase 
staining, whereas the intensity of  blue color of  β-gal cells 
in vein grafts was decreased 1 d after surgery, and almost 
disappeared 3 d after the implantation. Hence, these re-
sults confirmed that the endothelial cells of  vein segments 
implanted in an artery are totally destroyed by the acute 
exposure to mechanical stress due to increased blood 
pressure. When they grafted the vena cava from wild-type 
mice into the TIE2-LacZ carotid artery, no β-galactosidase 
staining was observed on the surface of  the freshly-harvest-
ed vena cava from the wild-type mouse, which in contrast 
appeared 24 h after grafting into the carotid artery of  a 
TIE2-LacZ mouse and increased in number to reach a 
monolayer at 4 wk after the graft. These results showed 
that the endothelial cells on the grafted vein were coming 
from the recipient mice and not from the donor. To show 
that those cells were coming from the BM of  the recipi-
ent, they further created chimeric mice by transplanting 
the BM from TIE2/LacZ mice to wild-type animals that 
were previously irradiated: these chimeric mice expressed 
B-galactosidase activity only on endothelial cells that were 
actually provided by its BM. The investigators then grafted 
a vena cava coming from the wild-type into the carotid 
artery of  the chimeric mice, and 3 d after transplantation, 
β-galactosidase activity was detected on the vein. Since 
the chimeric mice expressed B-galactosidase activity only 
on endothelial cells provided by the BM, these B-galacto-
sidase-positive cells could only come from their BM[44-46]. 
However, in a model of  transplant arteriosclerosis, BM-
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derived cells appeared to contribute only to a minor extent 
to endothelial regeneration by circulating cells[47]. These 
data indicated that there might be at least two distinct 
populations of  circulating cells that principally are capable 
of  contributing to re-endothelialization, namely mobilized 
cells from the BM and non-BM derived cells. The latter 
may arise from circulating progenitor cells released by 
non-BM sources (e.g. tissue resident stem cells) or repre-
sent vessel wall-derived endothelial cells. 

We emphasize here that the source of  transfused en-
dothelial cells after in vitro expansion is critical for inter-
preting the results. The observation that EPCs directly 
influence lesion formation and progression comes from 
experimental models using progenitor cell transfusion. 
The systemic application of  healthy wild-type EPCs in 
atherosclerotic apolipoprotein E-knockout mice has been 
shown to improve endothelial function and to inhibit 
atherosclerotic lesion progression independent of  high 
serum cholesterol levels[48]. However, these beneficial ef-
fects were not observed in a study conducted by George 
et al[49] in which aortic sinus lesion size was significantly 
increased in mice receiving EPCs compared with controls. 
Mice receiving EPCs showed plaques with larger lipid 
cores, thinner fibrous caps, and a higher number of  infil-
trating CD3 cells, suggesting an effect on plaque stability. 
An important aspect of  this study was that intravenously 
transfused spleen-derived cells were administered without 
splenectomy of  the recipient animals, and the tendency of  
spleen-derived cells to migrate back to the organ of  origin 
may have affected the results.

Fujiyama et al[50] showed that infusion of  EPCs leads 
to regeneration of  a functionally active endothelium con-
firmed by release of  nitric oxide (NO). They also noted 
a significant reduction in neointima formation. Similarly, 
Griese et al[51] showed that infused peripheral blood mono-
cyte-derived EPCs deposit on bioprosthetic grafts and 
balloon-injured carotid arteries, with significantly reduced 
neointima deposition. These studies indicate that admin-
istration of  EPCs not only facilitates re-endothelialization 
but also helps with recovery of  endothelial function, while 
inhibiting neointima deposition.

MOBILIZATION, CHEMOTAXIS, 
ADHESION, TRANSMIGRATION AND 
DIFFERENTIATION 
The mobilization of  stem cells in the BM is determined 
by the local microenvironment, the so-called “stem cell 
niche,” which consists of  fibroblasts, osteoblasts, and en-
dothelial cells[38,52]. Basically, mobilizing cytokines [VEGF, 
stromal-derived factor (SDF)-1] hamper the interactions 
between stem cells and stromal cells, which finally allow 
stem cells to leave the BM via trans-endothelial migra-
tion. Thereby, activation of  proteinases such as elastase, 
cathepsin G, and matrix metalloproteinase (MMP) cleave 
adhesive bonds on stromal cells, which interact with inte-
grins on hematopoietic stem cells. MMP-9 was addition-

ally shown to cleave the membrane-bound Kit ligand and 
induce the release of  soluble KitL (also known as stem 
cell factor). Physiologically, ischemia is believed to be the 
predominant signal to induce mobilization of  EPCs from 
the BM. Ischemia is thus believed to upregulate VEGF or 
SDF-1, which in turn are released into the circulation and 
induce mobilization of  progenitor cells from the BM via a 
MMP-9 dependent mechanism. Several mediators increase 
the number of  circulating EPCs in the blood of  both 
humans and animal models. Granulocyte-colony stimulat-
ing factor, a cytokine that is typically used for mobiliza-
tion of  CD34 cells, has been shown to increase the levels 
of  circulating EPCs. A related cytokine, the granulocyte 
monocyte-colony stimulating factor, also increases EPC 
levels[53].

In a clinical environment, the effects of  VEGF and 
erythropoietin (EPO) on EPC mobilization have been 
evaluated, and both demonstrated an augmentation of  
EPC levels in humans[40,41,54,55]. Moreover, the correlation 
between EPO serum levels and the number of  CD34 or 
CD133 hematopoietic stem cells in the BM of  patients 
with ischemic coronary artery disease (CAD) further sup-
ports an important role of  endogenous EPO levels as 
a physiologic determinant of  EPC mobilization. Some 
athero-protective drugs can also positively modulate the 
number of  circulating EPCs. Statins increase the number 
and the functional activity of  EPCs in vitro, in mice, and in 
patients with stable CAD. This increase in EPC numbers 
was associated with increased BM-derived cells after bal-
loon injury and accelerated endothelial regeneration[56]. 
Other factors that augment the circulating EPCs are es-
trogen[57] and exercise[58,59]. 

The molecular signaling pathways have not, as yet, 
been identified. However, several studies indicate that the 
activation of  the PI3K/Akt pathway may play an impor-
tant role in the statin-induced increase in EPC levels[60]. 
Likewise, EPO[61], VEGF[62], estrogen[63] and exercise (shear 
stress)[64] are also well known to augment the PI3K/Akt-
pathway. Thus, these factors may share some common sig-
naling pathways. Recent data shows that endothelial NO 
synthase is essential for mobilization of  BM-derived stem 
and progenitor cells[65], and we speculate that these stimuli 
may increase progenitor cell mobilization by PI3K/Akt-
dependent activation of  the NO synthase within the BM 
stromal cells.

Factors that drive the EPCs to the site of  endothelial 
injury (chemotaxis) may be the same that normally stimu-
late engraftment of  hematopoietic cells to the BM, such 
as SDF-1 or sphingosine-1-phosphate. SDF-1 has been 
proven to stimulate recruitment of  progenitor cells to 
the ischemic tissue. SDF-1 protein levels increase during 
the first days after induction of  myocardial infarction[66]. 
Integrins are known to mediate the adhesion of  various 
cells including hematopoietic stem cells and leukocytes to 
extracellular matrix proteins and to endothelial cells[67,68]. 
Integrins capable of  mediating cell-cell interactions are 
the β2-integrins and α4β1-integrin. Various cell types in-
cluding endothelial cells and hematopoietic cells express 
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β1-integrins, whereas β2-integrins are found preferentially 
on hematopoietic cells[69]. Because adhesion to endothelial 
cells and transmigration events are involved in the in vivo 
homing of  stem cells to tissues with active angiogenesis, 
integrins such as the β2-integrins and the α4β1-integrin 
may be involved in the homing of  progenitor cells to 
ischemic tissues. However, the data regarding physiologic 
mobilization, chemotaxis and differentiation of  EPCs at 
the site of  endothelial injury is limited. 

EPCS AND CARDIOVASCULAR RISK 
FACTORS, RISK STRATIFICATION AND 
PROGNOSTIC VALUE 
Endothelial cell number and function is a valuable surro-
gate biologic marker for vascular function and cumulative 
cardiovascular risk and a strong predictor of  the risk of  
cardiovascular events[70-73]. Hill et al[74] started from Ross’s  
classic paradigm stating that endothelial cell injury is the 
stimulus for the development of  atherosclerotic plaque. 
This model argues that seemingly disparate risk fac-
tors act on a final common pathway that culminates in 
endothelial-cell injury, including both direct endothelial 
damage and endothelial dysfunction. They speculated that 
indicators of  cumulative risk, such as the Framingham 
score, or function, such as brachial reactivity, represent 
useful composite measures of  overall vascular status. In 45 
healthy adult subjects, with different associations of  car-
diovascular risk but with no symptoms of  atherosclerosis 
or active organ ischemia, the correlation between EPC 
count in the peripheral blood, and both Framingham risk 
score and brachial vascular reactivity was evaluated. The 
number of  colony-forming units was negatively correlated 
with Framingham risk score and positively correlated with 
brachial reactivity. Interestingly, when the subjects were 
divided according to the number of  EPCs circulating into 
“high” and “low”, activity of  EPCs was a stronger predic-
tor of  flow-mediated brachial reactivity than the presence 
or absence of  conventional cardiovascular risk factors. 
Tepper et al[75] isolated EPCs from human type Ⅱ diabet-
ics and age-matched control subjects and found that the 
proliferation of  diabetic EPCs relative to control subjects 
was significantly decreased and inversely correlated with 
patient levels of  glycosylated hemoglobin. Diabetic EPCs 
had normal adhesion to fibronectin, collagen, and quies-
cent endothelial cells but a decreased adherence to human 
umbilical vein endothelial cells (HUVEC) activated by 
tumor necrosis factor (TNF)-α. These authors conclude 
that type Ⅱ diabetes may alter EPC biology in processes 
critical for new blood vessel growth and, furthermore, 
EPC monitoring may identify a population at high risk for 
morbidity and mortality after vascular occlusive events.

In addition to what was shown in the healthy popula-
tion, in patients with CAD the number of  cardiovascular 
risk factors negatively correlated with progenitor cell 
counts. Vasa et al[76] determined the number and func-
tional activity of  EPCs in 45 patients with CAD and in 15 

healthy volunteers. The number of  isolated and circulating 
EPCs was significantly reduced in patients with CAD. To 
determine the influence of  atherosclerotic risk factors, a 
risk factor score including age, sex, hypertension, diabetes, 
smoking, positive family history of  CAD, and LDL cho-
lesterol levels was used. The number of  risk factors was 
significantly correlated with a reduction of  EPC levels. 
Analysis of  the individual risk factors demonstrated that 
smokers and patients with a family history of  CAD had 
significantly reduced levels of  EPCs. EPCs isolated from 
patients with CAD also revealed an impaired migratory 
response, which was inversely correlated with the number 
of  risk factors. They concluded that patients with CAD 
show reduced levels and functional impairment of  EPCs, 
which correlated with risk factors for CAD. Another po-
tentially attractive marker for risk stratification in patients 
with atherosclerotic disease seems to be the so-called “en-
dothelial cell-derived microparticles (EMP)”: endothelial 
cell damage mediated by chemical or mechanical injury 
leads to endothelial cell apoptosis, which is associated 
with conformational changes of  the cell’s plasma mem-
brane leading to the release of  membrane microparticles, 
in which antigens derived from their mother cell and can 
be quantified in vivo by flow cytometry[77]. Elevated EMP 
levels have been described in all conditions of  severe 
endothelial cell damage (e.g. thrombotic thrombocytope-
nic purpura[78], diabetes[79], arterial hypertension[80], acute 
coronary syndromes[81], and myocardial infarction[82]) and 
microparticles themselves have been shown to elicit direct 
effects on endothelium-dependent vasorelaxation in vitro. 
Microparticles derived from patients with acute coronary 
syndromes or preeclampsia directly impaired endothe-
lial function in rat aortic rings or myometrial arteries[83], 
and in humans, increased apoptotic microparticle counts 
positively correlated with the impairment of  coronary 
endothelial function[84]. In a study investigating coronary 
endothelial function in 50 patients with CAD, multivariate 
analysis revealed that increased apoptotic microparticle 
counts predict severe endothelial dysfunction independent 
of  classical risk factors such as hypertension, hypercho-
lesterolemia, smoking, diabetes, age, and gender[84]. In the 
context of  human atherogenesis, it may be pivotal to eval-
uate the current status of  regeneration and endothelial cell 
apoptosis in each individual. EPC and EMP may be valu-
able biomarkers in patients with atherosclerotic disease.

Werner et al[85] performed a clinical study to evaluate the 
prognostic value of  circulating EPCs and their potentially 
vasculoprotective role. The number of  EPCs was mea-
sured in 519 patients with angiographically documented 
CAD and correlated with cardiovascular outcomes. Pri-
mary end points included cardiovascular mortality, the oc-
currence of  a first major cardiovascular event (myocardial 
infarction, hospitalization, revascularization, and cardiovas-
cular death), revascularization, hospitalization, and all-cause 
mortality after 1 year. The cumulative event-free survival 
increased stepwise across tertiles of  baseline EPC levels for 
cardiovascular mortality, first major cardiovascular event, 
revascularization, and hospitalization. After adjustment for 
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vascular risk factors, drug therapy, and concomitant disease, 
increased EPC levels were independently associated with 
a lower risk of  cardiovascular death, first major cardiovas-
cular event, revascularization, and hospitalization. Primary 
and secondary prevention trials suggest that statins possess 
favorable effects on atherosclerosis development and pro-
gression and that these effects are independent of  choles-
terol reduction. Statins can also improve vascular perfusion 
by causing several positive side effects such as reduction 
of  both hypertrophy and proliferation of  smooth muscle 
cells[86-89], an increase in NO synthesis[90] and a decrease 
in production of  adhesion molecules[91-93]. In a model of  
carotid balloon-injury, Walter et al[94] investigated whether 
statin therapy may also accelerate re-endothelialization 
after carotid balloon injury: they treated male Sprague-
Dawley rats with simvastatin and found that this treatment 
accelerated re-endothelialization of  the balloon-injured 
arterial segments and resulted in a dose-dependent signifi-
cant reduction in neointimal thickening when compared 
with saline-injected controls. They further tried to elucidate 
the mechanism, and investigated the contribution of  BM-
derived EPCs by BM transplantation from Tie2/lacZ mice 
to background mice or athymic nude rats. As described 
earlier TIE2-LacZ endothelial cells can be recognized by 
β-galactosidase staining. β-galactosidase staining of  mouse 
carotid artery specimens revealed a significant increase in 
the number of  β-galactosidase-positive cells per mm2 ap-
pearing on the carotid artery luminal surface of  treated 
rats. In addition, statins increased circulating rat EPCs and 
induced adhesiveness of  cultured human EPCs by upregu-
lation of  the integrin subunits α5, β1, α(v), and β5 of  hu-
man EPCs. These findings showed physiological evidence 
that EPC mobilization represents a functionally relevant 
consequence of  statin therapy[94]. Furthermore, Werner  
et al[95] investigated vascular lesion formation in mice after 
transplantation of  BM transfected by means of  retrovirus 
with enhanced green fluorescent protein; they induced 
carotid artery injury, resulting in neointimal formation. 
Fluorescence microscopy and immunohistological analysis 
revealed that BM-derived progenitor cells were involved 
in re-endothelialization of  the vascular lesions. Treatment 
with rosuvastatin enhanced the circulating pool of  EPCs, 
propagated the advent of  BM-derived endothelial cells in 
the injured vessel wall, and, thereby, accelerated re-endothe-
lialization and significantly decreased neointimal formation. 
These results also show that statin treatment promotes BM-
dependent re-endothelialization and diminishes vascular 
lesion development. Estrogens increase EPC numbers 
in mice and humans, which contributes to repair mecha-
nisms of  the vascular wall[96]. Also physical activity, which 
is known to reduce cardiovascular morbidity and mortality 
by mainly unknown mechanisms, increases the number and 
function of  EPCs in rodents and healthy humans[58].

INFLAMMATION, REACTIVE OXYGEN 
SPECIES AND STEM CELLS
Mesenchymal stem cells (MSCs) are a heterogeneous sub-
set of  stromal stem cells that can be isolated from many 

adult tissues. MSCs are multipotent stem cells that can dif-
ferentiate into a variety of  cell types. Cell types that MSCs 
differentiate into in vitro or in vivo include osteoblasts, 
chondrocytes, myocytes, adipocytes, endothelium, and, as 
described recently, β-pancreatic islets cells[97]. Interestingly, 
some studies disputed the differentiation potential of  
adult BM-derived stem cells[98-100]. MSCs can interact with 
cells of  both the innate and adaptive immune systems, 
leading to the modulation of  several effectors functions. 
Once MSCs are administered in vivo they may induce pe-
ripheral tolerance and migrate to the injured tissues, where 
they help damaged cells survive by inhibiting the release 
of  pro-inflammatory cytokines[101]. The key role of  my-
eloid dendritic cells (DCs) is to present antigen to naive 
T cells following DC maturation, induced by cytokines. 
As the DCs are maturing, they acquire expression of  co-
stimulatory molecules and upregulate expression of  MHC 
class Ⅰ and class Ⅱ molecules together with other cell-
surface markers[101-103]. MSCs have been shown to inhibit 
the maturation of  monocytes, cord blood and CD34+ he-
matopoietic progenitor cells into DCs in vitro[101]. The final 
outcome of  the immunomodulatory activity of  MSCs is 
likely to be significantly influenced by the micro environ-
mental cues encountered following in vivo administration. 
Micro environmental cues encountered following in vivo 
administration influences the immunomodulatory activity 
of  MSCs including their effect on target cells, as exempli-
fied by the opposite outcomes that can arise from the in-
teraction of  MSCs with DCs and natural killer cells in the 
presence of  high or low concentrations of  interferon-γ[101]. 
Stem and progenitor cells are critical for organogenesis 
during the fetal stage of  development[104]. Recently the 
existence of  somatic stem cells has been reported in 
adult organs[104]. Somatic stem cells and progenitor cells 
are thought to sense and repair damaged tissues and or-
gans[104]. Reactive oxygen species accelerate the senescence 
of  stem and progenitor cells[104].

Clinical studies suggest that TNF levels in the serum 
are correlated negatively with the CD34+ stem cells and 
EPCs circulating in the peripheral blood in patients with 
congestive heart failure. This is thought to be related to 
the myelosuppressive effect of  circulating TNF[55]. In a 
murine congestive heart failure model, elevated serum 
TNF levels and reduced BM progenitor cells have been 
reported[55]. An in vitro study indicated a causal relationship 
between TNF and suppression of  hematopoietic stem cell 
growth, and that TNF directly inhibited stem cell factor-
stimulated proliferation of  CD34+ hematopoietic pro-
genitor cells[103]. Human CD34+ myeloid leukemic cells 
and BM progenitor cells (CD34+CD38-) demonstrated 
similar results[103]. Similar results were also found in hu-
man CD34+ myeloid leukemic cells and primitive human 
BM progenitor cells (CD34+CD38-)[103]. Interestingly, the 
inhibitory effects of  TNF in these studies were consistently 
mediated by TNFR-Ⅰ, but not TNFR-Ⅱ. To the contrary, 
the TNFR-Ⅱ signaling pathway shows a protective profile 
on stem cell function. Thus, distinct effects of  TNF are 
mediated by different subtypes of  TNF receptors in stem 
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cells while the overall effect might be dependent on the 
expression level and ratio of  these two receptors. Apart 
from the direct effect, TNF is able to indirectly influence 
the fate of  stem cells. TNF markedly stimulates produc-
tion of  granulocyte macrophage-colony stimulating factor, 
a strong mobilizer of  stem cells from the BM[105]. Activa-
tion of  the TNF/Fas pathway in lymphocytes in the BM 
may play a pathogenic role in suppressing hematopoi-
esis[103]. EPC adhesion to HUVEC, a process mediated by 
upregulation of  E-selectin, was significantly increased by 
TNF pre-treatment of  HUVEC in the peripheral circula-
tion. Interestingly, EPC adhesion to HUVECs was not 
induced when pretreatment was carried out for EPCs 
instead of  HUVECs[103]. TNF also has effects on stem 
cell differentiation: administration of  TNF switched the 
differentiation of  these cells from granulocytes to almost 
complete production of  macrophages when mouse Lin-
Sac+ hematopoietic progenitor cells were cultured with 
stem cell factor and IL-7[103]. In summary, TNF plays an 
important role in regulating stem cell-mediated vascular 
repair and remodeling. However, the overall effect of  
TNF on stem cell mobilization, proliferation and function 
is complicated, depending on the subtypes of  the TNF 
receptors, the presence of  other cytokines as well as other 
cells. Although stem cell-based treatments are effective in 
myocardial infarction, the vascular protective effects of  
stem cells in ischemia-reperfusion injury in coronary mi-
crocirculation have not been studied. Further studies will 
improve our understanding of  the mechanisms and reme-
diation of  ischemia-reperfusion injury.

CONCLUSION
Stem and progenitor cells possess the ability to self-
regenerate and differentiate into many cell types, and in-
flammation is involved in most cardiovascular diseases. 
An understanding of  the communication and interaction 
between TNF and stem cells is important[103]. The mecha-
nism underlying this function remains unclear because the 
number of  endothelial cells incorporated in ischemic tis-
sue is too low to create a new vessel just by incorporating 
themselves into it; we speculate they may act through two 
different mechanisms, which may consist of  both physical 
incorporation and paracrine stimulation of  another “in loco”  
population to stimulate their differentiation into vessel cells. 
This aspect needs further study. The molecular mecha-
nisms for effective mobilization of  stem cells are, how-
ever, poorly understood. We speculate that the functional 
properties of  EPCs in cardiovascular disease are impaired 
and that regeneration by endogenous cells without further 
mobilization of  cells is diminished or absent in the pres-
ence of  cardiovascular disorders or risk factors. Consis-
tently, impaired mobilization of  EPCs has been associated 
with older age, the presence of  cardiovascular risk factors, 
and the presence of  atherosclerotic disease. The presence 
of  cardiovascular risk factors may interrupt the delicate 
equilibrium between endothelial damage and repair, lead-
ing to manifestation of  endothelial dysfunction and ath-

erosclerosis. The fact that physiological mechanisms of  
EPC mobilization, homing adhesion and differentiation 
is poorly understood adds to the challenge of  unraveling 
this complex problem. Further studies are needed to elu-
cidate the complexities of  stem cell mobilization, homing 
and differentiation to identify mechanisms and develop 
therapies suitable for clinical application.
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