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Abstract
Although approximately one million sudden cardiac 
deaths occur yearly in the US and Europe, cardiac arrest 
(CA) remains a clinical condition still characterized by 
a poor prognosis. In an effort to improve the cardio­
pulmonary resuscitation (CPR) technique, the 2005 
American Heart Association (AHA) Guidelines for CPR 
gave the impedance threshold device (ITD) a Class IIa 
recommendation. The AHA recommendation means 
that there is strong evidence to demonstrate that ITD 
enhances circulation, improves hemodynamics and 
increases the likelihood of resuscitation in patients in 
CA. During standard CPR, venous blood return to the 
heart relies on the natural elastic recoil of the chest 
which creates a transient decrease in intrathoracic 
pressure. The ITD further decreases intrathoracic 
pressure by preventing respiratory gases from entering 
the lungs during the decompression phase of CPR. 
Thus, although ITD is placed into the respiratory circuit 

it works as a circulatory enhancer device that provides 
its therapeutic benefit with each chest decompression. 
The ease of use of this device, its ability to be incor­
porated into a mask and other airway devices, the 
absence of device-related adverse effects and few 
requirements in additional training, suggest that ITD 
may be a favorable new device for improving CPR 
efficiency. Since the literature is short of studies with 
clinically meaningful outcomes such as neurological 
outcome and long term survival, further evidence is still 
needed.
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INTRODUCTION
Although the term cardiopulmonary resuscitation (CPR) 
was first published 50 years ago, the origins of  resus-

Online Submissions: http://www.wjgnet.com/1949-8462office
wjc@wjgnet.com
doi:10.4330/wjc.v2.i2.19

World J Cardiol 2010 February 26; 2(2): 19-26
ISSN 1949-8462 (online)

© 2010 Baishideng. All rights reserved.

World Journal of 
CardiologyW J C

19 February 26, 2010|Volume 2|Issue 2|WJC|www.wjgnet.com



citation extend back centuries. Various methods of  
resuscitation have been used throughout the ages with 
the oldest example from around 3000 BC, being the 
introduction of  smoke into the rectum as depicted in 
hieroglyphics and cave drawings of  the Mayan and Inca 
people of  South and Central America. The first appar-
ent attempt of  resuscitation was recorded in the Bible 
around 800 BC and was Elijah’s mouth to mouth venti-
lation[1].

Very early in our history, people realized that the 
body became cold when lifeless, and therefore connected 
heat with life. In order to prevent death, the body was 
warmed. The use of  warm ashes, burning excrement, or 
hot water placed directly on the body were all employed 
in an attempt to restore life[2].

The first report of  an experimental intubation of  the 
trachea was probably by the great Muslim philosopher and 
physician Avicenna around the year 1000[3]. “When neces-
sary, a cannula of  gold, silver or another suitable material 
is advanced down the throat to support inspiration.” In 
1543, Vesalius et al[4] published “De humani corporis fab-
rica” which described blowing into a tube to resuscitate an 
animal.

During Enlightenment, starting around 1750, Good-
win and Kite hypothesized that asphyxia causes the heart 
to stop. Kite suggested electric shock treatment (defi-
brillation), but airway problems produced by the tongue 
were not appreciated at that time[5]. Marshall Hall was 
the first to realize that leaving the victim supine allows 
the tongue to fall backwards blocking the airway and he 
supported the notion that the prone position should be 
employed in resuscitation[6]. 

In the year 1957, Dr. Peter Safar, in a series of  el-
egant and daring experiments on curarized volunteers, 
showed that tilting the head could open the airway and 
that the mouth-to-mouth technique of  artificial ventila-
tion was superior over all others techniques described 
before[7,8]. Three years later Kouwenhoven et al[9] pub-
lished a paper on closed-chest cardiac “massage”, after 
observing that chest compressions produced arterial 
pulses. They confirmed the usefulness of  chest com-
pressions by performing experiments with anesthesia-
induced cardiac arrests.

Modern published studies report that about one 
million people suffer cardiac arrest (CA) each year in the 
United States and Europe, almost one every 30 s. Many 
of  them will undergo CPR by bystanders and emergency 

medical services (EMS) in a desperate attempt to restore 
life. Unfortunately, according to recent literature, only 1 
in 5 adults survive in-hospital CA while less than 1 in 10 
adults survive out-of-hospital CA[10-13]. These statistics 
are somewhat sobering, especially when compared with 
survival rates of  the first resuscitative techniques ever 
developed and reported[14].

In addition, recent statistics on neurological recov-
ery after resuscitation are also disappointing when put 
into historical perspective. Stephenson et al[14] reported 
that 56% of  the 1200 CA victims were successfully re-
suscitated, and only 8 of  these patients were rendered 

decerebrate. Furthermore, the first successful human de-
fibrillation, in 1947, involved CPR for over an hour, and 
yet the patient had no long-term neurological deficits[15]. 
Neurological injury after resuscitation of  a witnessed CA 
victim means that CPR efforts failed to provide sufficient 
cerebral blood flow. Needless to say, novel CPR tech-
niques should achieve not only cardiopulmonary but also 
neurological recovery. 

A number of  new mechanical devices have been 
developed in recent years to improve the present dismal 
outcomes for patients in CA[16]. The 2005 American 
Heart Association (AHA) guidelines gave the impedance 
threshold device (ITD) a Class IIa recommendation[17]. 

The AHA recommendation means that there is strong 
evidence to demonstrate that the ITD (Figure 1) enhanc-
es circulation, improves hemodynamics and increases the 
likelihood of  resuscitation of  CA victims. It is the most 
highly recommended CPR adjunct and carries a higher 
recommendation than any medication used in adult CPR.

CORONARY PERFUSION PRESSURE AND 
BLOOD FLOW 
Various studies have shown that coronary perfusion 
pressure (CPP), generated during CPR, is the only key 
component for successful resuscitation. CPP is the pres-
sure gradient between the ascending aorta and the right 
atrium during the “diastolic” or decompression phase of  
CPR. Like the physiology of  normal sinus rhythm, myo-
cardial blood flow occurs only during the artificial dias-
tole or the chest relaxation phase of  CPR. An increased 
right atrial pressure may impede venous return of  myo-
cardial blood flow to the right atrium. This impeding 
pressure must be subtracted from the driving pressure 
(aortic diastolic pressure) to calculate the perfusion pres-
sure gradient[18].

CPP has been correlated with myocardial blood flow 
generated during CPR and both successful resuscita-
tion and return of  spontaneous circulation (ROSC)[19-21]. 
Kitakaze et al[22] clearly shows that successful resuscita-
tion is correlated with both the CPP produced and the 
resultant left ventricular myocardial blood flow. Fur-
thermore, CPP has been associated with longer-term 
outcomes including from 1 to 24-h survival and even 7-d 
survival[23-25].

PHYSIOLOGY OF CPR 
The objective of  any CPR effort is to pump blood from 
the heart to the vital organs with each chest compression 
and to enhance the return of  blood back to the heart 
with each chest relaxation. Two different theories attempt 
to explain the mechanism of  blood flow during CPR[26].

The “cardiac pump theory” is based on the concept 
that the heart is compressed between the spinal column 
and the sternum during chest compressions[27]. This 
theory requires that the atrioventricular valves be closed 
during cardiac compression (systole).
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On the other hand, in the “thoracic pump theory”, 
external pressure on the chest causes an increase in in-
trathoracic pressure without direct compression of  the 
heart with the latter acting as a passive conduit[28]. This 
theory requires that the atrioventricular valves be open 
during cardiac compression. The increase in intratho-
racic pressure is evenly distributed over all heart cham-
bers and intrathoracic vascular structures. Therefore, a 
pressure gradient towards the aorta is generated, result-
ing in forward blood flow. In fact, during the compres-
sion phase of  CPR the intrathoracic pressure rises from 
5-25 mmHg. This positive pressure forces blood out 
of  the heart to vital organs. However, the compression 
phase is only half  of  the duty cycle. During chest wall 
relaxation, intrathoracic pressure falls to approximately 
-5 mmHg[29]. This decrease in intrathoracic pressure to 
sub-atmospheric levels creates a vacuum relative to the 
rest of  the body, sufficient to propel some movement 
of  venous blood from the periphery back into the right 
heart. This is a very critical phase because if  the heart is 
not filled with blood there would not be sufficient blood 
circulated forward in the next chest compression. It is 
also during the decompression phase that the coronary 
arteries supply the heart muscle with blood[30].

Furthermore, with each chest compression the 
respiratory gases are actively pushed out of  the thorax. 
On the other hand, during the decompression phase the 
intrathoracic vacuum works like suction and draws not 
only blood back into the heart, but also some air back 
into the lungs. Unfortunately, much of  the potential 
hemodynamic benefit of  this vacuum is lost due to the 
influx of  inspiratory gases. Moreover, each time the 
chest wall recoils a transient decrease in intracranial 
pressure occurs[31-33].

ITD 
Clinically, venous blood flow is increased by the Mueller 
maneuver, a technique in which inspiration is performed 
when the trachea is simultaneously occluded by the epi-
glottis[34]. It is this principle that is further exploited by 
the ITD in an attempt to further decrease intrathoracic 
pressure and thus enhance venous return in CPR. The 
ITD is a small (35 mL), single use, disposable plastic 
valve that can be attached to a tracheal tube (Figure 2), a 

face mask, a laryngeal mask or any other protective air-
way device and must be placed at the respiratory circuit 
as soon as it becomes available. It has been demonstrat-
ed that its effectiveness is the same whether it is used 
with a face mask or an endotracheal tube[35]. It contains 
a silicon diaphragm designed to selectively impede in-
spiratory airflow into the patient when the intrathoracic 
pressure is less than 0 atm. Hence, as soon as the chest 
wall recoils back to its resting position the diaphragm 
occludes the lumen within the valve, preventing all un-
necessary air from entering the chest when the patient is 
not being actively ventilated. This creates and maintains 
a vacuum within the chest that further improves venous 
return back into the heart. The maximum negative in-
trathoracic pressure generated in animal studies ranged 
from -4 to -8 mmHg while in an intubated patient was 
-13[36-38]. Without the ITD, intrathoracic pressure was 
only -3 mmHg[38]. It takes as many as 5 compression/de-
compression cycles to achieve the maximum negative 
intrathoracic pressure. Thus, despite its placement into 
the ventilation circuit, the ITD is a circulatory enhancer 
device that provides its therapeutic benefit with each 
chest decompression.

During active ventilation by the rescuer, the lumen 
within the ITD remains open and there is no resistance 
to ventilation. Similarly, with chest compression, there is 
no resistance to the movement of  air out of  the chest[39]. 
Spontaneous inspiration through the ITD is possible 
but may be difficult for a recently resuscitated patient. 
Cracking pressure, which is the inspiratory pressure 
necessary to open the valve and allow for spontaneous 
inspiration within the device, can vary at the time of  
manufacture. Clinical trials to date have been performed 
with ITD cracking pressures between -15 cm and -24 cm 
H2O[40]. This cracking pressure could increase substan-
tially the work of  breathing in a spontaneously breathing 
subject and it is therefore recommended that the device 
be removed as soon as subjects start breathing sponta-
neously.

Furthermore, ResQPOD (newer model ITD) has 2 
ventilation timing assist lights on its upper surface. They 
provide guidance on the correct ventilation rate, when 
a secured airway has been placed, by flashing 12 times a 
minute. This visual aid works to avoid hyperventilation 
given that increased ventilation rates during CPR affect 
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Figure 1  The impedance thresh-
old device.

Figure 2  The impedance threshold 
device attached to the endotracheal 
tube of an intubated manikin.

Demestiha TD et al . Impedance threshold device in CPR



venous return to the heart, resulting in reduced aortic 
blood pressure and coronary perfusion pressure[31,32]. 
Moreover, each time active positive-pressure ventilation is 
delivered, the decompression phase intrathoracic vacuum 
is destroyed and requires regeneration[40]. Thus, the 
less frequent the ventilation rate, the greater the blood 
flow back to the heart. The ResQPOD’s inspiratory 
impedance feature is independent of  the timing lights 
and inspiratory impedance is provided whether the lights 
are ON or OFF. 

ANIMAL STUDIES
The ResQPOD has been the subject of  over 30 clinical 
trials and animal studies. The first experiments designed 
to test the impedance valve concept were performed in a 
pig model of  CA. 

Standard CPR combined with an ITD
In a study by Lurie et al[41], 22 pigs were left untreated 
for 6 min after induction of  ventricular fibrillation. CPR 
efforts were then performed with either standard CPR 
plus a sham valve (n = 11) or standard CPR plus a func-
tional valve (n = 11). Use of  the functional ITD during 
standard CPR significantly improved vital organ blood 
flow and total left ventricular blood flow. Moreover, 
CPP and cerebral blood flow were higher in the animals 
treated with the functional valve. An interesting protocol 
was one in which the ITD was added or removed in a 
sequential manner in the same animal during the per-
formance of  CPR[29]. Authors determined myocardial 
and brain blood flows with radiolabeled microspheres, 
while CPP was defined as the aortic-to-right atrial pres-
sure gradient during the relaxation phase of  CPR. Each 
time the ITD was removed from the respiratory circuit, 
the CPP and vital organ perfusion decreased while per-
fusion pressures stabilized or increased when the valve 
was placed back in the circuit. A subsequent prospective, 
blinded study demonstrated a significantly higher end 
tidal CO2 and systolic blood pressure when an active 
ITD was used[42]. These results were further confirmed 
by an independent study (without the patent holder as 
one of  the authors) which demonstrated that the ITD 
doubled blood flow to the heart when compared with 
standard CPR[43]. Table 1 shows changes in CPP values 
when ITD was added to CPR efforts. 

In addition to an increase in hemodynamics, the 
beneficial effects of  standard CPR plus an ITD can also 
be seen on survival and neurological function. A statisti-
cally significant increase in 24-h survival and neurologi-
cal function was demonstrated when the ITD was used 
during standard CPR[42]. One of  eleven animals vs twelve 
of  seventeen had completely normal neurological func-
tion when a sham vs an active ITD was used (P < 0.05). 
In addition, the ITD lowers intracranial pressure during 
the decompression phase similar to the mechanism of  
the “last gasp”, thereby reducing resistance to forward 

blood flow to the brain[48]. Moreover, Yannopoulos et al[49] 
reported a significant and dose-dependent decrease in 
intracranial pressure both at baseline and after a success-
ful resuscitation with the use of  an ITD compared with 
spontaneous breathing.

Active compression decompression CPR (ACD-CPR) 
combined with an ITD
Various studies combined ITD with an automated device 
that actively compresses and then decompresses the 
chest with a suction cup attached to the anterior chest 
wall.

The addition of  an ITD during ACD-CPR in a por-
cine model of  CA resulted in a marked enhancement of  
vital organ blood flow and coronary perfusion pressure 
(Table 1) and a decrease in the total energy required for 
effective defibrillation[36]. A remarkable increase in perfu-
sion pressures and, subsequently, vital organ blood flow 
above the threshold that rendered successful defibrilla-
tion was also demonstrated by Voelckel et al[50]. The in-
crease in perfusion pressures and vital organ blood flow 
occurred when global ischemia reached a point that ren-
ders many CPR interventions barely effective. With the 
use of  the ITD, six of  seven animals had ROSC after a 
total of  26 min.

During the very special situation of  hypothermic CA, 
ACD-CPR together with an ITD improved common 
carotid blood flow compared with standard CPR alone 
(67 ± 13 mL/min vs 26 ± 5 mL/min, respectively, P < 
0.025)[44]. The beneficial effects of  the combination 
of  ACD-CPR with an ITD were also seen on cerebral 
metabolism. Using the technique of  microdialysis, 
researchers measured the changes in brain biochemistry 
during and after hypothermic cardiopulmonary arrest. 
Apparently, ITD improved the lactate-pyruvate ratio and 
glucose metabolism in comparison to standard CPR[51]. 

These findings are a potent marker of  a better metabolic 
status with less anaerobic glycolysis. 
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Table 1  CPP values in diverse animal studies 

First author CPR method CPP ↑CPP (%) 
with ITD

P-values

Lurie et al[36] ACD-CPR       21 ± 3.6   47.6 < 0.05
ACD-CPR + ITD       31 ± 2.3

Lurie et al[41] S-CPR    14 ± 2   42.9   < 0.006
S-CPR + ITD    20 ± 2

Raedler et al[44] S-CPR    15 ± 2   93.3   < 0.001
ACD-CPR + ITD    29 ± 3

Srinivasan et al[45] S-CPR 17.4 ± 3   64.7 < 0.01
ACD-CPR + ITD 28.3 ± 2

Metzger et al[46] S-CPR    22.4 ± 1.6   31.8 < 0.05
ACD-CPR + ITD    29.5 ± 2.7

Yannopoulos 
et al[47]

S-CPR    14 ± 3 128.6 < 0.01
ACD-CPR + ITD    32 ± 5

CPP: Coronary perfusion pressure; ITD: Impedance threshold device; 
CPR: Cardiopulmonary resuscitation; ACD-CPR: Active compression 
decompression cardiopulmonary resuscitation; S-CPR: Standard cardio-
pulmonary resuscitation.
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In addition, it has been demonstrated that after ROSC 
a rapid ice-cold saline infusion combined with ACD-CPR 
plus an ITD induces cerebral hypothermia more rapidly 
than standard CPR[45]. Table 2 shows the improvement of  
ROSC when ITD was implemented in CPR efforts.

CLINICAL STUDIES 
The results of  human clinical trials seem to reflect the 
data seen in animal models.

Standard CPR combined with an ITD 
Systolic blood pressure was doubled when the ITD was 
used in 10 patients with out-of-hospital CA compared 
with similar patients treated with standard CPR[57]. Mean 
systolic blood pressure increased from 45 to 85 mmHg 
(P < 0.001) when a sham vs active ITD was used[57].

Adoption of  the 2005 CPR guidelines and ITD 
resulted in a 75% increase in initial arrest survival rates 
and a 62% increase in survival to hospital discharge 
rates[58]. In a concurrent, randomized, blinded clinical 
trial focused on ICU admission rates, survival rates were 
higher in patients treated with standard CPR plus an ITD, 
especially in those who presented with pulseless electrical 
activity (over 100% increase in short-term survival)[59].

Moreover, adding an ITD to standard resuscitation 
care improved overall short-term survival by 50% and 
tripled survival in patients with traditionally the poorest 
outcomes, those with asystole[60]. No device-related 
adverse effects were observed. 

Implementation of  the 2005 AHA CPR guidelines 
together with an ITD resulted in a marked increase in 

in-hospital discharge rates of  more than 70% when 
compared with historical controls in two large community 
hospitals[61].

The highest overall resuscitation rates in its 30-year 
history were observed when ITD was used by an EMS. 
The benefit was observed regardless of  presenting 
rhythm. ROSC rates increased by 29% and neurologically 
intact discharge rates improved by > 50%[53]. Table 2 
shows ROSC values in diverse studies when ITD was 
used in the respiratory circuit, while Table 3 shows 
hospital discharge of  patients with intact neurological 
function.

Adoption of  the ITD by 7 EMS systems who treated 
893 CA victims with standard CPR, resulted in only a > 
10% increase in ROSC rates but a doubling of  hospital 
discharge rates, from 7.9% to 15.7% (P < 0.001)[54]. 
Table 4 shows hospital discharge rates in diverse studies. 

ACD-CPR combined with an ITD 
A study performed in prehospital mobile intensive 
care units in France was designed to evaluate acute 
hemodynamic parameters in non traumatic patients with 
prolonged CA treated with ACD-CPR alone or ACD-
CPR plus an ITD[55]. The study demonstrated that use 
of  an ITD during CPR further optimizes mechanical 
measures associated with ACD-CPR by increasing 
venous return and CPP. Diastolic arterial pressures and 
CPP were 70% higher than those achieved with ACD-
CPR alone. In addition PETCO2 levels were significantly 
higher when ITD was used[55].

The hemodynamic benefit observed in a previous 
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Table 2  ROSC in diverse animal and human studies

First author CPR method ROSC 
(%)

↑(%) 
with ITD

P-values

Animal studies
   Lurie et al[36] ACD-CPR 77.8   28.5   0.18

ACD-CPR + ITD  100

   Lurie et al[41] S-CPR 18.2 199.5   < 0.05
S-CPR+ITD 54.5

   Raedler et al[44] S-CPR      0
ACD-CPR + ITD 42.9   0.06

   Srinivasan et al[45] S-CPR 37.5 166.7   < 0.05
ACD-CPR + ITD  100

   Matsuura et al[52] S-CPR 83.3   20.0 -
S-CPR + ITD  100

Human studies
   Vartanian et al[53] S-CPR 45.0   31.1   0.03

S-CPR + ITD 59.0
   Aufderheide et al[54] S-CPR 33.8   12.1     0.022

S-CPR + ITD 37.9
   Plaisance et al[55] ACD-CPR 20.0   82.0 0.4

ACD-CPR + ITD 36.4
   Wolcke et al[56] S-CPR 37.0   48.6     0.016

ACD-CPR + ITD 55.0

ROSC: Return of spontaneous circulation.

Table 3  Patients discharged from hospitals with intact 
neurological function

First author CPR method Normal neurological 
function

P -values

Vartanian et al[53] S-CPR     4/104 NS
S-CPR + ITD     0/143

Plaisance et al[55] ACD-CPR   1/10 0.9
ACD-CPR + ITD   1/11

Wolcke et al[56] S-CPR   4/75 0.4
ACD-CPR + ITD   8/82

Plaisance et al[62] ACD-CPR 1/8 0.1
ACD-CPR + ITD 6/10

NS: Non significant.

Table 4  Hospital discharge rates in various human studies

First author CPR 
method

Hospital discharge 
rates (%)

↑(%) 
with ITD

P-values

Thigpen et al[58] S-CPR 17.2 62    0.034
S-CPR + ITD 27.9

Davis et al[61] S-CPR 20.7 73 < 0.001
S-CPR + ITD 35.8

Aufderheide 
et al[54]

S-CPR   7.9 98 < 0.001
S-CPR + ITD 15.7

Lurie et al[63] S-CPR   9.3 83      0.0373
S-CPR + ITD                17
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study was translated to a direct increase in survival rates 
and improved neurological function.

A prehospital clinical trial in Germany found signifi-
cantly improved ROSC, 1 and 24-h survival rates when 
the combination of  ACD-CPR and an ITD was com-
pared with standard CPR alone (55% vs 37%, P = 0.016, 
51% vs 32%, P = 0.006, 37% vs 22%, P = 0.033, respec-
tively)[56]. One-hour and twenty four-hour survival rates 
in witnessed arrests were 55% and 41% with ACD CPR 
plus an ITD vs 33% and 23% in control subjects (P 
= 0.011 and 0.019), respectively. One-hour and twenty 
four-hour survival rates in patients with a witnessed ar-
rest in ventricular fibrillation were 68% and 58% after 
ACD-CPR with an ITD vs 27% and 23% after standard 
CPR (P = 0.002 and 0.009, respectively). Survivors of  
this study treated with ACD-CPR plus an ITD had a 
marked improvement in their brain function at the time 
of  hospital discharge[56].

Additional support for these findings was provided 
by another study which demonstrated that the combina-
tion of  ACD-CPR and ITD in 400 patients with out-of  
hospital CA resulted in a doubling of  24-h survival[62]. 
In that study, patients were treated with either a sham or 
an active ITD. The neurologic function in the survivors 
was significantly better at hospital discharge in patients 
treated with the ITD.

A meta-analysis that included 833 patients from five 
high quality randomized studies concluded that the ITD 
consistently and significantly improved ROSC (46% for 
ITD group vs 36% for control, P = 0.002), early survival 
(32% vs 22%, P = 0.0009) and favorable neurologic 
outcome (13% vs 6%, P = 0.004)[64]. 

CONTROVERSIAL ITD STUDIES
An independent blinded study in a porcine model of  CA 
tried to assess the effect of  the ITD on CPP and passive 
ventilation (PaO2 and PaCO2) during standard CPR and 
its impact on the ROSC and short-term survival. In 
contrast to previous studies, use of  the active ITD had 
no significant impact on CPP, passive ventilation, or 
outcomes compared to the sham device[65].

Furthermore, in a study by Menegazzi et al[66] use 
of  the ITD during standard CPR did not improve CPP 
compared to standard CPR alone and also resulted in 
significantly lower ROSC and short term survival.

Finally, in a porcine model with a beating heart, use of  
an ITD combined with apnoeic oxygenation and without 
active ventilation during chest compressions resulted in 
hypoxemia due to transiently impaired lung function[67]. 
This study raised concerns from other investigators who 
claimed that Herff  et al[67] misapplied the device and used 
a study design irrelevant to the recommended clinical 
use of  the ITD, as an ITD is designed for patients in CA 
who are being actively ventilated[68].

CONCLUSION
Taken together, these observations suggest that enhance-

ment of  negative intrathoracic pressure during the de-
compression phase of  CPR is associated with a marked 
cardiac preload. It is clear that priming the pump prior 
to cardiac defibrillation with the use of  an ITD increases 
the chances for successful defibrillation. The hemody-
namic benefits of  the ITD during standard and ACD-
CPR are striking in animals and in patients. Use of  the 
ventilation timing lights on an ITD reduces the frequent, 
lethal rescuer error of  hyperventilation. The ease of  use 
of  this device, its ability to be incorporated into a mask 
and other airway devices, the absence of  device-related 
adverse effects and few requirements in additional train-
ing, suggest that ITD may be a favorable new device for 
improving CPR efficiency. 

ITD offers new hope for survival in patients ex-
periencing CA. Improved vital organ perfusion during 
CPR with the ITD is an important advance in resuscita-
tion but it should be always kept in mind that by itself  
the ITD is not a panacea. It should be coupled with 
excellent preresuscitation and postresuscitation care to 
achieve better outcomes. 

Since the literature is still short of  studies with clini-
cally meaningful outcomes such as neurological outcome 
and long term survival, further evidence is still needed.
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