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Abstract
Cardiomyopathy is a disease of myocardium categorized 
into three major forms, hypertrophic (HCM), dilated 
(DCM) and restrictive cardiomyopathy (RCM), which 
has recently been demonstrated to be a monogenic 
disease due to mutations in various proteins expressed 
in cardiomyocytes. Mutations in HCM and RCM typically 
increase the myofilament sensitivity to cytoplasmic 
Ca2+, leading to systolic hyperfunction and diastolic 
dysfunction. In contrast, mutations in DCM typically 
decrease the myofilament sensitivity to cytoplasmic 
Ca2+ and/or force generation/transmission, leading to 
systolic dysfunction. Creation of genetically-manipulated 
transgenic and knock-in animals expressing mutant 
proteins exogenously and endogenously, respectively, in 
their hearts provides valuable animal models to discover 
the molecular and cellular mechanisms for pathogenesis 
and promising therapeutic strategy in vivo . Recently, 
cardiomyocytes have been differentiated from patient’
s induced pluripotent stem cells as a model of inherited 
cardiomyopathies in vitro . In this review, we provide 
overview of experimental models of cardiomyopathies 

with a focus on revealed molecular and cellular 
pathogenic mechanisms and potential therapeutics.
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Core tip: Current experimental models of inherited 
cardiomyopathies (hypertrophic cardiomyopathy, dilated 
cardiomyopathy and restricted cardiomyopathy), including 
genetically-manipulated mouse models (transgenic and 
knock-in mice) and patient’s induced pluripotent stem 
cell-derived cardiomyocyte models, are summarized and 
discussed with a focus on revealed molecular pathogenic 
mechanisms and potential drug therapeutics.
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INTRODUCTION
Cardiomyopathies are categorized, based on ventricular 
morphology and function, into three major forms, hypertrophic 
cardiomyopathy (HCM), dilated cardiomyopathy (DCM), 
restrictive cardiomyopathy (RCM)[1]. HCM is characterized by 
increased left ventricular (LV) wall thickness, cardiomyocyte 
disarray, increased myocardial fibrosis and impaired LV 
diastolic function with normal or increased LV systolic 
function[2-4]. DCM is characterized by LV dilatation and 
systolic dysfunction, frequently resulting in heart failure, 
arrhythmias and sudden death, with heart transplantation 
being the most effective treatment for survival at end 
stage because of  no effective therapeutic drugs[5]. RCM is 
an uncommon form of  cardiomyopathy, characterized by 
restrictive filling of  LV and/or right ventricle despite normal 
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or near-normal wall thickness and systolic function[6,7]. 
Following the uncovering of  a gene mutation in β-myosin 

heavy chain (β-MyHC) of  familial HCM patients at 
1990[8], a large number of  mutations in the genes encoding 
sarcomere proteins in cardiac muscle have been found 
to cause HCM, DCM and RCM[9]. Many animal models 
have been created to discover the functional consequences 
of  these mutations and molecular mechanisms for the 
pathogenesis of  cardiomyopathies in vivo, which should 
be critical for advancement of  diagnosis and therapy. 
Recently, premature cardiomyocytes have been created from 
induced pluripotent stem cells (iPSC) of  patients with 
inherited cardiomyopathies as a novel disease model in 
vitro. This review summarizes the recent advances in our 
understanding about molecular pathogenic mechanisms 
and potential therapeutic strategy brought about from 
these experimental models.

HYPERTROPHIC CARDIOMYOPATHY
HCM, characterized by unexplained LV wall thickening 
and diastolic dysfunction, has an overall prevalence of  
200 per 100000 individuals[10]. It is known that LV systolic 
function is not impaired but rather increased in HCM 
patients[2]. Structural remodeling involving hypertrophic 
growth of  LV is believed to be caused by enhanced 
protein synthesis in cardiomyocytes leading to hyperplasia 
of  myofibrils and thus cardiomyocyte enlargement. The 
purpose of  current therapy for HCM is to improve 
diastolic dysfunction indirectly through suppressing 
systolic function using β-blockers, Ca2+ channel blockers 
or Na+ channel blockers[11-13].

Human HCM is a monogenic disorder, which is caused 
by several hundred distinct mutations in many genes found 
in patients and families with HCM[14,15]. The causal genes 
for HCM include those encoding cardiac myosin-binding 
protein C (MYBPC3), β-MyHC (MYH7), cardiac troponin 
C (TNNC1), cardiac troponin I (TNNI3), cardiac troponin 
T (TNNT2), cardiac actin (ACTC), α-tropomyosin (TPM1), 
regulatory myosin light chain, essential myosin light chain 
and titin/connectin. Mutations in these genes account for 
approximately 65% of  all HCM cases[16], indicating that 
HCM is a disease of  sarcomeric protein genes. The total 
number of  mutations in each genes increase depending 
on the gene size, so that any one of  mutations in two large 
genes encoding MYH7 and MYBPC3 are identified in about 
50% of  cases while mutations in other genes only account 
for less than 20% of  cases[16].

Soon after discovery of  these mutations in sarcomeric 
proteins, extensive studies have been started to understand 
the pathogenic mechanisms by exploring the effects of  
mutations on the in vitro sarcomeric function as well as 
the in vivo global structure and function of  the heart using 
genetically modified animal models. In vitro studies revealed 
that HCM-linked mutations in thin filament-associated 
regulatory proteins, including TNNT2, consistently increase 
the myofilament sensitivity to cytoplasmic Ca2+ and thus 
probably impair diastolic function through a malfunction in 
the troponin-tropomyosin regulatory system[17-26]. Animal 

models of  human HCM with mutations in cardiac troponin 
T[17,19,20,22,24], TNNI3[21,23] and TPM1[18,25,26] demonstrated 
that increased cardiac myofilament Ca2+ sensitivity is a root 
cause that initiates molecular cascades involving pathological 
cardiac remodeling in HCM. These findings indicate that 
reversal of  the increased myofilament Ca2+ sensitivity toward 
normal levels is a promising definitive therapeutic strategy 
for HCM. At present, however, there exists no drugs that 
decrease the myofilament Ca2+ sensitivity through directly 
acting on the thin filament regulatory system, making it 
worthwhile to develop novel drugs “Ca2+ desensitizers”. 
Epigallocatechin gallate, a major polyphenol in green tea, 
is a potential lead compound for Ca2+ desensitizers, which 
has been demonstrated to decrease the myofilament Ca2+ 
sensitivity in membrane-permeabilized cardiac muscle fibers 
through binding to a C-terminal lobe region of  TNNC1[27]. 
Poor absorption from the intestine and permeability into 
cells, however, may be serious problems to be solved. 
Another potential lead compound is blebbistatin, which 
has also been demonstrated to decrease the myofilament 
Ca2+ sensitivity in membrane-permeabilized cardiac muscle 
fibers through inhibiting the interaction between actin and 
myosin and prevent arrhythmia induced by Ca2+ sensitizer[28]. 
Crossing transgenic mice harboring HCM-linked sarcomeric 
mutation with transgenic mice harboring DCM-linked 
sarcomeric mutation conferring decreased myofilament Ca2+ 
sensitivity was found to normalize overall myofilament Ca2+ 
sensitivity and prevent cardiac deterioration[29,30], supporting 
the idea that Ca2+ desensitizer might be beneficial for HCM 
patients affected by mutations in sarcomeric protein genes.

HCM-causing mutations that increase the myofilament 
sensitivity to cytoplasmic Ca2+ also alter the regulation of  
intracellular Ca2+ level, which could activate hypertrophic 
response and failure in the myocardium[31]. Cardiomyocytes 
isolated from experimental mouse models of  HCM show 
abnormal intracellular Ca2+ handling, including increased 
diastolic Ca2+ associated with decreased Ca2+ store in 
the sarcoplasmic reticulum (SR), and dysregulation of  
intracellular Ca2+ precede hypertrophic remodeling of  the 
heart[32,33]. The voltage-dependent L-type Ca2+ channel 
inhibitor, diltiazem, restored the normal intracellular Ca2+ 
handling and suppressed cardiac hypertrophy in young mice 
with HCM-causing myosin R403Q mutation[33], indicating 
that pharmacologic interventions targeting early key 
intracellular events caused by abnormal intracellular Ca2+ 
regulation could prevent disease development.

DILATED CARDIOMYOPATHY
DCM is characterized by progressive LV dilatation and 
systolic dysfunction, being the most common indication for 
cardiac transplantation[5]. Many mutations in various genes 
encoding sarcomeric proteins, cytoskeletal proteins, nuclear 
envelope proteins and sarcolemmal membrane proteins have 
been shown to be linked to approximately 25%-30% of  the 
DCM cases[34-39]. Cardiomyocyte hypertrophy and fibrosis, 
but not cardiomyocyte disarray, are commonly observed as 
in the case of  HCM[36]. DCM is frequently accompanying 
with abnormal cardiac conduction system, arrhythmias 
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and sudden death probably due to pathophysiological 
myocardial remodeling and severe fibrosis. Underlying 
molecular mechanisms include diminished force generation/
transmission, altered energy metabolism, and impaired 
intracellular calcium handling in cardiomyocytes[3]. The 
purpose of  current standard therapy for DCM is to prevent 
the progression of  myocardial remodeling and systolic 
dysfunction by a combination of  cardioprotective drugs, 
including β-adrenergic receptor blockers, vasodilators 
(angiotensin converting enzyme inhibitors or angiotensin Ⅱ 
receptor blockers), aldosterone antagonists and diuretics[40].

In contrast to HCM-causing mutations, DCM-causing 
mutations in TPM1[41] and TNNT2 consistently decrease the 
myofilament sensitivity to cytoplasmic Ca2+ and thus impair 
systolic function through a malfunction in the troponin-
tropomyosin regulatory system[42,43]. A mouse model of  
DCM caused by the deletion mutation ΔK210 in TNNT2 
demonstrated that lessened cardiac myofilament Ca2+ 
sensitivity is a root cause that initiates molecular cascades 
involving pathological cardiac remodeling in DCM[44]. This 
mouse model developed an early-onset severe LV dilation 
with high incidence of  sudden death despite showing no 
heart failure symptoms, resembling the phenotypes of  a 
human family of  DCM patients with this mutation[35]. These 
findings indicate that reversal of  the decreased myofilament 
Ca2+ sensitivity toward normal levels is a promising 
definitive therapeutic strategy for DCM linked to sarcomeric 
regulatory protein gene mutations. Early intervention with 
a Ca2+ sensitizer, pimobendan, had remarkable effects of  
preventing cardiac remodeling, systolic dysfunction and 
sudden death in this DCM model mouse[44]. However, it 
remains to be determined whether pimobendan has also 
therapeutic effects on DCM mice with this mutation after 
developing decompensated, end-stage heart failure. It may 
be worth noting that combination therapy with pimobendan 
and β-blocker has provided beneficial effects in DCM 
patients with severe heart failure[45,46].

Cardiomyocyte contraction is evoked by Ca2+, which is 
rapidly released into cytoplasm from SR upon sarcolemmal 
depolarization. Cytoplasmic Ca2+ is rapidly returned to 
a low level during diastole by reuptake into SR through 
SR Ca2+pump (SERCA2a). Myocardial expression of  
SERCA2a is down-regulated in the patients with end-stage 
congestive heart failure[47,48], resulting in a decrease in the 
rate of  Ca2+ reuptake by SR[49-51]. Myocardial expression of  
SERCA2a was also confirmed to be markedly decreased 
in a mouse model of  DCM[52]. In a pressure-overload 
heart failure model of  rats, transfection of  adenovirus 
expression vector carrying SERCA2a cDNA into the 
heart normalized the hemodynamic parameters, including 
LV end-systolic pressure, maximum rates of  LV pressure 
increase and decrease, and isovolumic relaxation rate[53]. 
Another study using a pressure-overload model of  rats 
demonstrated that adenoviral transfection of  SERCA2a 
during heart failure reversed the LV dilation and improved 
the myocardial energy metabolism and survival[54]. 
SERCA2a gene transfer also improved the contractile 
function of  cardiomyocytes taken from patients with 
heart failure by increasing the rates of  contraction and 

relaxation, decreasing and increasing the cytoplasmic 
Ca2+ at diastole and systole, respectively, and normalizing 
the frequency dependence of  force generation[55]. Taken 
together, these studies suggest that enhancement of  
SERCA2a expression in cardiomyocytes may serve as 
potential therapeutic strategy for DCM patients.

RESTRICTIVE CARDIOMYOPATHY
RCM is characterized by increased stiffness of  ventricular 
chambers, with wall thickness and systolic function usually 
being within normal limits. The reduction in myocardial 
compliance results in an abnormally large increase in 
early diastolic ventricular pressure against small increment 
in volume and an abrupt termination of  filling. Most 
individuals with RCM develop heart failure and die within 
a few years[56]. Several reports suggest clinical and genetic 
overlaps between RCM and HCM[56-58]. RCM is rare, and 
its genetic etiology has just started to be explored. To date, 
RCM-linked mutations are found in sarcomere protein 
genes, including TNNI3, TNNT2, MYH7 and ACTC[58-61].

Like sarcomeric gene mutations in other types of  
cardiomyopathy, RCM-causing sarcomeric gene mutations 
alter myofilament sensitivity to cytoplasmic Ca2+ through 
a malfunction in the troponin-tropomyosin regulatory 
system. Membrane-permeabilized cardiac muscle fibers 
prepared from transgenic mouse model of  RCM are more 
sensitive to Ca2+ and show more force at low Ca2+ levels 
than those from transgenic mice overexpressing wild-type 
proteins[62]. This is consistent with the findings from earlier 
in vitro studies in which recombinant RCM-causing mutant 
proteins are exchanged into membrane-permeabilized 
cardiac muscle fibers[63-65]. Kobayashi et al[66] demonstrated 
that the increase in myofilament Ca2+ sensitivity was 
caused by increased affinity of  troponin C for Ca2+ in 
the thin filament. Thus, the myofilament hypersensitivity 
to cytoplasmic Ca2+ is a common feature that RCM-
causing mutations share with HCM-causing mutations. In 
vitro experiments using membrane-permeabilized cardiac 
muscle fibers reconstituted with recombinant mutant 
proteins revealed that RCM-causing mutations give much 
greater Ca2+ sensitivity to the myofilament compared with 
HCM-causing mutations[62,63]. Consistent with these in 
vitro reconstitution experiments, membrane-permeabilized 
cardiac muscle fibers prepared from transgenic mice 
expressing RCM-causing TNNI3 R145W mutant showed 
a much larger increase in the Ca2+ sensitivity of  ATPase 
activity and force generation compared with those 
from transgenic mice expressing HCM-causing TNNI3 
R145G mutant[62,67]. Crossing transgenic mice expressing 
RCM-causing TNNI3 R193H mutant with transgenic 
mice expressing N-terminal truncated TNNI3, known to 
decrease myofilament Ca2+ sensitivity, corrected the impaired 
relaxation in R193H RCM transgenic mice[68], supporting 
the idea that myofilament Ca2+ desensitizer could also be 
beneficial to treat RCM caused by sarcomeric protein 
gene mutations. Design of  new compounds that exert 
lusitropic action on the heart directly through decreasing the 
myofilament Ca2+ sensitivity is an innovative and exciting 
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It is somewhat surprising that these numerous aspects of  
HCM phenotype can be reproduced in an in vitro cultured 
system without any neurohormornal stimulation, since 
these phenotypes are thought to develop as a long-term 
consequence of  adaptation or compensation in vivo to an 
abnormal contractile function conferred by the mutation in 
a motor protein encoded in MYH7. The results of  this study 
on patient-specific iPSC-derived cardiomyocytes, however, 
clearly show that iPSC-derived cardiomyocytes are a useful 
platform to elucidate molecular and cellular pathogenic 
mechanisms underlying inherited HCM and to identify novel 
therapies for this disease.

iPSC-derived cardiomyocytes from a three-generation 
family of  DCM patients affected by a missense mutation 
R173W in TNNT2 have been shown to exhibit a lessened 
force generation capability, one of  the common root causes 
for DCM, with impaired Ca2+ handling and abnormal 
distribution of  Z-band α-actinin but no abnormalities in 
electrophysiological properties and cell size[74]. β1-selective 
adrenergic receptor blocker metoprolol improved the 
sarcomeric disorganization judged by α-actinin distribution, 
and over-expression of  SERCA2a improved contractile 
function and Ca2+ handling. These findings demonstrated 
that cardiomyocytes differentiated from iPSCs of  DCM 
patients recapitulated the disease phenotype to some 
extent and could be used as an in vitro experimental model 
to explore molecular and cellular pathogenic mechanisms 
underlying inherited DCM and to carry out drug screening 
for this disease.

CONCLUSION
Abnormal sensitivity to cytoplasmic Ca2+ or force 
generation/transmission of  cardiac myofilament, which is 

challenge to overcome RCM as well as HCM.

CARDIOMYOCYTES DIFFERENTIATED 
FROM PATIENT’S INDUCED 
PLURIPOTENT STEM CELLS AS AN 
IN VITRO MODEL FOR INHERITED 
CARDIOMYOPATHIES
Although the contribution of  gene-manipulated animal 
models to the understanding of  inherited cardiomyopathies 
in in vivo system has been enormous, small animals have 
significantly different intrinsic properties in the heart from 
human, including faster heart rate, shorter plateau phase in 
the action potential of  ventricles, and much higher ratio of  
α/β-MyHC isoforms in ventricles. Intact cardiomyocytes 
are difficult to obtain from healthy parson and even from 
cardiomyopathy patients. The iPSC technology may offer 
a unique opportunity for creating disease-specific models 
directly from human patients with monogenic disease to 
investigate underlying mechanisms and carry out drug 
screening in human cardiomyocytes, though only in vitro[69,70]. 
Premature but self-beating cells like cardiomyocytes have 
been shown to be differentiated from human iPSC[71,72]. 
Patient-specific iPSC-derived cardiomyocytes have been 
created for HCM-causing missense mutation R663H in 
MYH7[73]. These iPSC-derived cardiomyocytes developed 
cellular hypertrophy and arrhythmia at the single cell level 
accompanying irregular Ca2+ cycling and elevation in 
resting cytoplasmic Ca2+ level. Further, pharmacological 
inhibition of  Ca2+ entry with L-type Ca2+ channel blockers 
verapamil, nifedipine and diltiazem prevented development 
of  cellular hypertrophy and electrophysiological abnormality. 
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Figure 1  Essentials of pathogenic mechanisms in inherited cardiomyopathies and potential definitive drug therapies. HCM: Hypertrophic cardiomyopathy; 
DCM: Dilated cardiomyopathy; RCM: Restrictive cardiomyopathy.
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DOI: 10.1074/jbc.275.1.624]
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erties of human cardiac troponin I mutants that cause hyper-
trophic cardiomyopathy. J Biol Chem 2000; 275: 22069-22074 
[PMID: 10806205 DOI: 10.1074/jbc.M002502200]
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Tombe PP, Solaro RJ. Ca(2+) activation of myofilaments 
from transgenic mouse hearts expressing R92Q mutant 
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H705-H713 [PMID: 11158969]

25	 Prabhakar R, Boivin GP, Grupp IL, Hoit B, Arteaga G, Solaro 
RJ, Wieczorek DF. A familial hypertrophic cardiomyopathy 
alpha-tropomyosin mutation causes severe cardiac hypertro-
phy and death in mice. J Mol Cell Cardiol 2001; 33: 1815-1828 
[PMID: 11603924 DOI: 10.1006/jmcc.2001.1487]

26	 Wolska BM, Wieczorek DM. The role of tropomyosin in 
the regulation of myocardial contraction and relaxation. 
Pflugers Arch 2003; 446: 1-8 [PMID: 12690456 DOI: 10.1007/
s00424-002-0900-3]

27	 Tadano N, Du CK, Yumoto F, Morimoto S, Ohta M, Xie MF, 
Nagata K, Zhan DY, Lu QW, Miwa Y, Takahashi-Yanaga 
F, Tanokura M, Ohtsuki I, Sasaguri T. Biological actions 
of green tea catechins on cardiac troponin C. Br J Pharma-

incurred as a direct functional consequence of  mutations in 
genes encoding proteins in cardiomyocytes, is the primary 
root cause that initiates subsequent molecular and cellular 
events leading to pathological remodeling in inherited 
cardiomyopathies. HCM/RCM-causing mutations usually 
heighten the myofilament sensitivity to cytoplasmic Ca2+ or 
force generation, whereas DCM-causing mutations lessen 
the myofilament sensitivity to cytoplasmic Ca2+ or force 
generation/transmission. Therefore, reversal of  the altered 
myofilament Ca2+ sensitivity or force generation/transmission 
capability toward normal levels should be a promising 
definitive therapeutic strategy to prevent or even reverse the 
progression of  the disease in inherited cardiomyopathies 
(Figure 1). Further studies using gene-manipulated animal 
models and patient’s iPSC-derived cardiomyocytes briefly 
summarized in this review are important to develop novel 
therapeutic drugs for inherited cardiomyopathy patients.
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