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Abstract
Calpains are ubiquitous non-lysosomal Ca2+-dependent 
cysteine proteases also present in myocardial cytosol 
and mitochondria. Numerous experimental studies 
reveal an essential role of the calpain system in myo-
cardial injury during ischemia, reperfusion and pos-
tischemic structural remodelling. The increasing Ca2+-
content and Ca2+-overload in myocardial cytosol and 
mitochondria during ischemia and reperfusion causes 
an activation of calpains. Upon activation they are able 
to injure the contractile apparatus and impair the en-
ergy production by cleaving structural and functional 
proteins of myocytes and mitochondria. Besides their 
causal involvement in acute myocardial dysfunction 
they are also involved in structural remodelling after 
myocardial infarction by the generation and release of 
proapoptotic factors from mitochondria. Calpain inhibi-
tion can prevent or attenuate myocardial injury during 
ischemia, reperfusion, and in later stages of myocardial 
infarction.
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Core tip: Calpains, calcium-dependant cytosolic cysteine 
proteases, are essentially involved in the pathophysiol-
ogy of myocardial infarction. Their inhibition has shown 
in animal experiments an enhanced tolerance towards 
ischemia, a reduction of myocardial infarction and 
reperfusion injury, and an improvement of the process 
of remodelling. The availability of specific calpain inhibi-
tors offers new prophylactic and therapeutic possibili-
ties for patients with myocardial infarction, revasculari-
sation and coronary surgery.
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INTRODUCTION
Calpains are calcium-dependent, cytosolic cysteine pro-
teases and are expressed as two “ubiquitous” isoenzymes 
(µ- and m-calpains) and several “tissue specific” iso-
forms (n-calpains). Their primary structure contains as 
well calmodulin-like calcium-binding proteins as well as 
papain protease-like components, reflected by the term 
calpain[1]. A non-lysosomal Ca2+-activated cysteine prote-
ase was isolated for the first time by Guroff[2] 1964 from 
rat brain. Calpains are meanwhile found in all cells of  
vertebrates that have been examined[2-5], in cells of  inver-
tebrates[6,7] and fungi[8], but not in bacteria and plants.

Besides their physiological functions they are also 
implicated in pathophysiological processes[4,9-12], especially 
with disturbed calcium homeostasis[4,13,14]. Thus, calpains 
were found to be involved in myocardial tissue damage 
resulting from ischemia and reperfusion[15,16]. Calpain in-
hibition on the other hand ameliorates, respectively, pre-
vents these lesions in animal experiments with potential 
prophylactic and therapeutic implications even in clinical 
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situations.
The following review will give an overview of  the 

physiological and pathophysiological basis of  the calpain 
system and finally focus on its role in myocardial isch-
emia, infarction and reperfusion and the effectiveness of  
calpain inhibition based on experimental studies. 

Basics of the calpain system
Nomenclature
The terms µ -calpain and m-calpain were first used by Cong 
et al[17] in 1989. They indicate the micromolar (µ-calpain) 
respectively millimolar (m-calpain) Ca2+-concentrations 
required for their activation. Thus, µ-calpain is activated 
in the presence of  3-50 µmol/L Ca2+ and m-calpain in 
the presence of  400-800 µmol/L Ca2+[17,18]. Meanwhile, 
more than 25 proteins with structural similarities were 
identified as calpains or calpain-like molecules. The genes 
assigned to 15 of  these proteins are numerically named 
as CAPN1 up to CAPN15 and their coded molecules 
are named as calpain1 up to calpain15, correspondingly. 
Calpain1 as well as Calpain2 are biologically active as 
proteases not as monomers but only as dimers with an 
identical 30-kDa subunit each. Both biologically active 
calpains are usually called µ-calpain (calpain 1 + 30-kDa 
subunit) and m-calpain (calpain 2 + 30-kDa subunit), re-
spectively[4,12].

According to Suzuki et al[19] calpains are subdivided 
into two main categories: (1) “typical” calpains with a 
calmodulin-like domain Ⅳ at their COOH-terminus; and 
(2) “atypical” calpains without this component. Typical 
calpains are µ-calpain, m-calpain and the calpains 5, 7, 10, 
13 and 15 which are also named ”ubiquitous” calpains 
as they are present in almost all cells of  vertebrates.  In 
contrast to  the ”ubiquitous” calpains the “tissue-specific” 
calpains are exclusively expressed in special cells and tis-
sues, such as calpain 3 in skeletal muscle[20], calpain 6 in 
placenta and embryonic muscles[21], calpain 8 and 9 in the 
gastrointestinal tract[22], calpain 11 in the testis[23], and cal-
pain 12 in hair follicles[24].

Domain structure of µ - and m-calpain
Both proteases µ- and m-calpain exist as dimers with two 
subunits of  80-kDa and 30-kDa each (Figure 1)[25,26]. The 
larger 80-kDa catalytic subunits of  µ-calpain and m-cal-
pain are coded in humans by different genes on chromo-
some 11 respectively chromosome 1[27]. On the base of  
their amino acid sequences they are composed of   four 
regions/domains: (1) a N-terminal domain; (2) a catalytic 
CysPc protease domain consisting of  two protease core 
regions PC1 and PC2; and (3) a C2-like Ca2+-regulated 

phospholipid-binding domain, and Ⅳ a Ca2+-binding 
penta-EF-hand domain[28-31] . 

Domain I contains an amphipathic alpha-helix in 
the N-terminus of  µ-calpain which was shown to be 
important in targeting and migrating of  µ-calpain into 
the intermembrane space of  mitochondria. Domain I of  
m-calpain, however, does not contain a similar N-terminal 
component[32].

Domain Ⅱ represents the catalytic CysPc protease 
domain. It consists of  two separate protease core do-
mains PC1 with a cysteine (Cys) residue and PC2 with a 
histidine (His) residue and an asparagine (Asn) residue. 
These residues form a catalytic triade as known from 
cysteine proteases such as papain or cathepsin (Figure 2). 
Both core domains PC1 and PC2  have Ca2+-binding sites 
for a single Ca2+ by each[33,34].

Domain Ⅲ is structurally related to C2 domains and 
can bind phospholipids in a Ca2+-dependent manner. It 
links the Ca2+-binding domains with the catalytic domain 
Ⅱ and is supposed to be involved in the adjustment of  
the calpain activity via electrostatic interactions[35].

Domain Ⅳ shows a slight sequence homology 
to calmodulin (51%-54%) and has five Ca2+-binding 
COOH-terminal EF-hand motifs. The fifth motif  binds 
to the corresponding EF-hand sequences of  domain Ⅵ 
of  the smaller 30 kDa subunit and, thus, contributes to 
the dimer formation of  both calpain subunits[4,31,33,36].

The smaller regulatory 30 kDa subunit, responsible 
for the stability of  the larger catalytic subunit, consists of  
the N-terminal Gly-rich domain Ⅴ and the Ca2+-binding 
calmodulin-like penta-EF-hand domain Ⅵ. The long 
streches of  Gly residues and an unordered structure of  
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Figure 2  Crystallographic structure of human m-calpain by Suzuki et al[33].



the amino acid sequence in domain Ⅴ are supposed to 
bind to other molecules and structures. 

The “calmodulin-like” domain Ⅵ is involved in Ca2+-
binding and dimerization by their penta-EF-hand motifs, 
as also known from domain Ⅴ of  the 80-KDa sub-
unit[4,31,37,38].

Activation of µ- and m-calpain
Increase of  the intracellular Ca2+-concentration is the de-
cisive trigger for calpain activation. The Ca2+-binding core 
domains PC1 and PC2 of  domain Ⅱ and the terminal 
EF-hand motifs of  domain Ⅴ and Ⅵ cause electrostatic 
conformational changes in these domains. By this electro-
static switch mechanism the PC1 and PC2 core domains 
approaches each other. Thus the distance of  the Cys-
residue from the αHis- and Asn-residues of  the initially 
inactive catalytic triade shrinks from 10 to approximately 
3.7 Å to form the proteolytic active centre[30,39]. Simul-
taneously, the change of  conformation intensifies the 
affinity of  calpain to membrane phospholipids and thus 
induces its translocation to the cell membranes (Figure 
3)[40,41].

Immediately with the binding of  Ca2+ the autolysis of  
both subunits of  the calpain dimers happens by splitting 
off  the NH2-terminal amino acids. The 80-kDa subunits 
of  µ- and m-calpain are reduced by this process to active 
fragments of  76-kDa and 78-kDa, respectively, and both 
30-kDa subunits are reduced to fragments of  18-kDa 
each[42-44]. The autolysis facilitates the dissociation and re-
association of  the calpain dimers, but is not necessary for 
their activation, as the dissociated 80-kDa subunits are 
enzymatically full active[45].

Confusion still exists with regard to the Ca2+-concen-
tration required for calpain activation. The in vitro con-

centrations for µ-calpain (3-50 µmol/L) and m-calpain 
(200-1000 µmol/L) to cause a half-maximal calpain 
activity are far above the physiological concentrations of  
100-300 nmol/L necessary in living cells[46-48]. Additional 
mechanisms and factors are therefore supposed to con-
tribute to the activation and activity in a physiological en-
vironment. Autolysis is known to increase the Ca2+-sen-
sitivity of  µ- and m-calpain for activation[19,49], however, 
the problem remains, that far higher Ca2+-concentrations 
are required to initiate autolysis as they occur in a physi-
ological environment[50]. Autolysis normally happens in 
contact with biological membranes in presence of  phos-
pholipids such as PIP2 which considerably reduces the 
Ca2+-concentration necessary for autolysis[10,51]. Thus, in 
presence of  PIP2 autolysis of  µ-calpain already happens 
with 10-5-10-7 mol Ca2+. 

In addition, activator proteins from rat brain lower 
the Ca2+-concentrations necessary for autolysis of  
µ-calpain to a tenth[52] and from rat skeletal muscle for au-
tolysis of  m-calpain from 400 µmol/L to 15 µmol/L[53]. 
Both activators are Ca2+-binding proteins combining with 
calpains and becoming effective upon contact with cell 
membranes. Further activator proteins are known which 
increase the catalytic activity of  calpains against particular 
substrates twice[54], ten times[55] or twenty-five times[56] 
without influencing the required Ca2+-concentration.

Regulation of calpain activity
Calpastatin is the only known specific endogenous in-
hibitor and regulator of  µ- and m-calpain. In addition 
also H-kininogen and α2-macroglobulin are inhibiting 
calpain besides other proteases[57]. Human calpastatin is 
encoded by a single gene on chromosome 5[58] and ex-
pressed in several isoforms from 17.5 to 107 kDa[59-61]. 
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of  NMDA-receptors[85], αⅡ-spectrin[16], ß-spectrin[86], ta-
lin[87,88], titin[89], tropomyosin and troponin Ⅰ[78], troponin 
T[90], vimentin[79,91], and vinculin[92].

Furthermore, kininases, phosphatases and transcrip-
tion factors are cleaved, such as: EGF-rezeptor-kinase[93], 
myosin light-chain kinase[94], protein-kinase C[95], calcineu-
rin[96], inositol-polyphosphat-4-phosphatase[97], protein-
tyrosin-phosphatase-1B[98], the transcription factors c-Jun, 
c-Fos[99,100], and p53[101,102]. 

PHYSIOLOGICAL FUNCTIONS AND 
PATHOPHYSIOLOGICAL IMPLICATIONS 
OF THE CALPAIN SYSTEM
Physiological function of µ- and m-calpain 
Calpains are not seen to play an essential role in the in-
tracellular protein digestion. In contrast to lysosomal 
proteases and the proteasome calpains split proteins by 
a limited proteolysis into large fragments with potential 
regulatory and signalling functions[4]. Many studies includ-
ing experiments with transgenic mice indicate, that cal-
pains are involved in the embryonic development and cell 
function[103-105], cytoskeletal/membrane attachments/cell 
motility[79,81,86-88,106], intracellular signal transduction[95,107-109], 
cell cycle[110,111], regulation of  gene expression[99,101], apop-
tosis[112-115], and in the long-term potentiation of  synaptic 
transmission[84, 85,116].

Involvement of calpains in inherited and acquired 
diseases
A lacking synthesis of  calpains or the dysregulation of  
the calpain activity disturbing the proteolysis of  structural 
and regulatory proteins is found in a series of  genetic and 
acquired diseases, such as: limb girdle muscular dystrophy 
(LGMD2A)[117,118], muscular dystrophy (type Duchenne 
and Becker)[119], diabetes mellitus (type 2)[120], gastric can-
cer[121], Alzheimer’s disease[122-125], multiple sclerosis[126,127], 
and cataract formation[127].

THE KEY ROLE OF CALCIUM 
HOMEOSTASIS WITHIN THE CALPAIN 
SYSTEM
Regulation of Ca2+-homeostasis
Many vital cell functions are regulated by the concentra-
tion of  intracellular available Ca2+, such as muscle con-
traction, neurotransmitter release, glandular secretion, and 
intercellular communication[128,129]. And last but not least, 
calpains are Ca2+-activated proteases. Because of  its key 
role, normally the Ca2+ concentration is controlled at dif-
ferent cellular levels via mitochondria, plasmalemma/sar-
colemma and endoplasmatic reticulum. The transmem-
brane transport of  ions is regulated  actively, selectively 
and directionally-oriented by voltage gated ion channels, 
by ATP-consuming ion pumps (Na+-K+-ATPases, Ca2+-
ATPases, proton-ATPases) and by the concentration 
gradient due to carrier proteins (Na+/H+-exchanger, 

It consists of  four inhibitory domains Ⅰ, Ⅱ, Ⅲ and 
Ⅳ, and one N-terminal domain L without inhibitory 
capability[62, 63]. Each inhibitory unit inhibits one calpain 
molecule competitively by blocking the substrate access 
to the catalytic centre[64,65]. Calpastatin inhibits exclusively 
calpain and not other proteases[57]. Binding of  calpastatin 
to calpain and its inhibition is Ca2+-dependent. The Ca2+-
concentrations for this are lower as needed for the half-
maximal proteolytic activity of  µ- and m-calpain[66]. 
Calpains and calpastatin are found in physical proximity 
within the cells[67,68]. Therefore, mechanisms are necessary 
to enable calpain to perform its biological purpose, since 
calpastatin already binds to calpain with increasing Ca2+-
concentrations. Thus, the translocation of  calpain to the 
membranes could cause a spatial distance to calpastatin.  
Furthermore, special mechanisms/factors could lower 
the threshold for Ca2+ to activate calpain without influ-
encing the binding of  calpastatin[3]. With regard to activa-
tion and deactivation of  calpain many questions are still 
open concerning a regulating, respectively, modifying role 
of  substrate phosphorylation.

Localization of µ- and m-calpain in cell and tissue
In all examined cells of  vertebrates µ-calpain, m-calpain 
and calpastatin are found at least as the only constitu-
ents of  the calpain system or they exist in various com-
binations with great varying patterns of  distribution. 
Thus, human erythrocytes and platelets only contain 
µ-calpain, and smooth muscles of  vessels and stomach 
predominantly contain m-calpain, whereas,  in skeletal 
muscles and kidneys of  the most representatives of  
vertebrates nearly equal amounts of  µ- and m-calpain 
are found[67,69,70]. Both calpains as well as calpastatin 
are exclusively localized intracellular and apparently as-
sociated with subcellular structures. Thus, 93% of  the 
µ-calpain are found in human red blood cells within the 
cytosol and 7% membrane associated[71]. Most of  the 
µ-calpain, m-calpain and calpastatin is localized close 
to the Z-disc in the myofibrils of  skeletal and cardiac 
muscle, smaller amounts are found in the I- and A-bands. 
In mitochondria and nuclei only a tenth, respectively, a 
fifth of  calpains and calpastatin was identified compared 
to their concentration in the Z-disc region[67,72,73]. Calpain 
and calpastatin are normally localized with a close spatial 
proximity.

Substrates for calpain
Normally, calpains have only access to intracellular sub-
strates, whereby their cleavage decisively depends on the 
local activity of  calpain and its inhibitor calpastatin. Many 
proteins are cleaved by calpains in vitro, but there is no 
conclusive evidence that they cannot also be splitted by 
calpain in vivo. 

Calpain cleaves the cytoskeleton and membrane-
associated proteins: adducin[74], ankyrin[75], caldesmon[9], 
cadherin[76,77], C‑protein[78], desmin[79], dystrophin[80], the 
filamin/actin-binding proteins MAP1 and MAP2[81], 
myosin[82], the neurofilament-proteins NFH, NFM and 
NFL[83], NR2-subunit[84], the anchoring protein PSD-95 
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Na+/HCO3
- ‑symporter, Na+/Ca2+‑exchanger)[130-133]. Fail-

ing of  this control mechanisms may result in an excessive 
intracellular accumulation of  Ca2+ (Ca2+-overload) with 
severe cellular dysfunction up to cell death[14,134,135].

Events with increasing myocardial Ca2+ concentration
Studies with isolated perfused mammalian hearts have 
shown an increasing cytosolic Ca2+ concentration dur-
ing hypoxia in hearts of  rabbits[136] and ferrets[137], during 
ischemia in hearts of  rabbits[138] and rats[139], and dur-
ing post-ischemic reperfusion in hearts of  rats[140] and 
ferrets[141]. Severe burn trauma also augments the Ca2+ 

content in myocytes[142,143] and mitochondria[144] of  rat 
hearts. The same effect can be observed upon exposure 
of  isolated perfused rabbit hearts[145] and isolated rat 
cardiomyocytes[146,147] to hydroxyl free radicals. In anal-
ogy to the heart, a Ca2+-overload was also observed in rat 
brains[148,149] during hypoxia/ischemia and in the spinal 
cord[150] after traumatisation.

Disturbance of Ca2+ homeostasis in the heart:
Pathomechanisms and consequences
The underlying mechanisms and consequences of  an 
imbalance in Ca2+ homeostasis are documented the most 
extensively in heart during hypoxia, ischemia and post-
ischemic reperfusion. They are initiated by the decreas-
ing ATP generation and developing acidosis resulting 
from oxygen deficiency. The activation of  the Na+/H+-
exchanger (NHE-1)[132,151,152], which causes the influx 
of  Na+ into the cell for exchange with H+ in order to 
regulate pH, and the simultaneous inhibition of  the Na+-
K+-ATPase[153], due to lack of  ATP, plays a key role in 
the intracellular Ca2+-overload. Thus, Na+ accumulates 
intracellular and lowers the transmembranous Na+ gradi-
ent, which is the driving force behind the Na+/Ca2+‑ex-
changer by transporting Ca2+ out off  the cell, resulting 
in Ca2+-accumulation. The Na+/Ca2+‑exchanger which 
represents a bidirectional transport system is also able to 
transport Ca2+ in exchange with Na+ in a reverse mode 
into the cell[152,154,155]. Driving forces for this are the in-
creasing intracellular Na+ concentration and depolarisa-
tion of  the sarcolemma. 

Today, disturbance of  Ca2+-homeostasis is seen as the 
main triggering factor of  cardial dysfunction and myocar-
dial injury during ischemia and reperfusion, such as the 
myocardial stunning, a long-lasting reversible reduction 
of  heart contraction after ischemia[156-158], or like the Ca2+-
overload induced hypercontracture during reperfusion/
reoxygenation[14,159-161], or the incidence of  arrhythmias 
during reperfusion[162]. Other factors, such as reactive 
oxygen species or inflammation seem to play a minor role 
in these situations[163].

Many studies demonstrate as a consequence of  an 
increasing intracellular Ca2+-concentration the activation 
of  calpains, which cleave numerous functional and struc-
tural proteins, and thereby decisively contribute to isch-
emic and postischemic injury. Thus, the activation of  the 
calpain system during hypoxia or ischemia is well docu-
mented in the myocardium of  rats[164-167] and humans[168], 

as well as in the brain of  rats[169-171]. In rat renal proximal 
tubules hypoxia induces the increase of  µ-calpain ac-
tivity[172], whereas calpain inhibition reduces the renal 
functional and structural damage following ischemia and 
reperfusion[173]. Hypoxia was also found to up-regulate 
the activity and gene expression of  calpains in endothelial 
cells of  the pulmonary artery[174].

Role of calpains in myocardial 
ischemia/reperfusion injury
Global ischemia
Most studies on the implication of  calpains for myocar-
dial dysfunction and failure are based on experiments in 
isolated perfused mammalian hearts, in which the dura-
tion of  perfusion stop (global ischemia) is restricted to 
enable at least a recovery with reperfusion.

Global ischemia in isolated perfused rat hearts was 
found to induce a time-dependent translocation of  
m-calpain to the membrane initially not associated with 
calpain activation which occurred only during reperfusion 
and intracellular pH normalization[175]. Under comparable 
conditions, a loss of  myofibrillar desmin, α-actinin, and 
spectrin was observed in guinea pig hearts, which was 
reduced by calpain inhibitor I[176]. Immunohistochemical 
studies revealed the proteolysis of  calspectin and α-fodrin 
at the intercalated discs and the sarcolemma after pos-
tischemic reperfusion in rat hearts. Degradation of  both 
proteins could be suppressed and myocardial function 
improved by calpain inhibitor Ⅰ[16,177]. The inhibition of  
α-fodrin degradation associated with the attenuation of  
myocardial dysfunction could also be observed after car-
dioplegic cardiac arrest in rat hearts in the presence of  
calpain inhibitor SNJ-1945[178]. As a result of  calpain acti-
vation, the essential Ca2+-handling proteins Ca2+-ATPase 
(SERCA2a) and the SERCA regulatory protein PLB 
were degraded upon global ischemia and reperfusion in 
a working rat heart preparation. Their degradation, the 
depression of  cardiac performance and the release of  
lactate dehydrogenase, indicating the myocardial damage, 
could be significantly attenuated by calpain inhibition 
with calpain inhibitor Ⅲ (MDL28170)[179]. As an indica-
tor of  myocardial tissue damage creatine phosphokinase 
and lactate dehydrogenase are released from myocytes 
into the perfusion fluid during reperfusion in concentra-
tions dependent on the duration of  ischemia (Figure 4). 
Calpains seem to be responsible or to contribute to these 
effects, as calpain inhibition with A-705239 significantly 
reduces the enzyme release[180].

Cardiac muscle contraction is initiated by Ca2+ via 
troponin/tropomyosin which are known as substrates 
of  calpain. Therefore, their cleavage is supposed to be 
jointly responsible for myocardial dysfunction in isch-
emia/reperfusion injury. With regard to this, degradation 
of  troponin T (TnT) was observed during ischemia/re-
perfusion of  isolated perfused rat hearts and was reduced 
by calpain inhibition with PD150606 and PD151746[181]. 
In addition, “overexpression of  calpastatin by gene trans-
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fer prevents troponin I (TnI) degradation and ameliorates 
contractile dysfunction in rat hearts subjected to global 
ischemia followed by reperfusion”[182].

Mitochondrial function impairment
Damage of  mitochondria plays a central role in the 
pathophysiology of  reperfusion injury via the impairment 
of  oxidative metabolism, respectively, energy produc-
tion and the generation and accumulation of  metabolic 
products toxic to the myocytes. Cardiac mitochondria are 
located subsarcolemmal beneath the plasma membrane 
and interfibrillar between the myofibrils[183-185]. In animal 
and human hearts µ-calpain, m-calpain and calpain 10 are 
present in cytosol and in the intermembrane space of  mi-
tochondria[67,186-189]. Cytosolic calcium content is found to 
increase in hearts of  rats and rabbits during myocardial 
ischemia and reperfusion and is made responsible for the 
subsequent activation of  calpains[190,191]. The damage of  
Ca2+-handling proteins by direct cleaving or detaching the 
Na+/K+-ATPase and the Na+/Ca2+-exchanger from their 
binding ankyrin[174,192], and by proteolysis of  sarcoplasmic 
reticulum Ca2+-ATPase (SERCA)[179,193] and Ryanodine 
receptor RyR)[194], sustains Ca2+-influx and calpain activa-
tion and aggravates myocardial injury. Thus, SERCA2a 
and the SERCA regulatory protein PLB were found to 
be degraded upon global ischemia and reperfusion in 
a working rat heart preparation. Their degradation, the 
depression of  cardiac performance and the release of  
lactate dehydrogenase, indicating the myocardial damage, 
could be significantly attenuated by calpain inhibition 
with calpain inhibitor Ⅲ (MDL28170)[179]. 

One of  the most serious consequences of  mitochon-
drial damage by calpains is the impairment of  oxidative 
phosphorylation with loss of  ATP generation. Damage 
to mitochondrial oxidative metabolism can be caused on 
various levels of  the electron transport chain (ETC). In 
isolated renal cortical mitochondria from rats and rab-
bits calpain 10 was shown to cleave complex I subunits 
of  the ETC, which could be prevented by pretreatment 
with calpeptin[195]. The impairment of  mitochondrial 
respiration is documented in isolated perfused rabbit 
hearts[180,196]. State 3 respiration decreased significantly 
during 45 min of  global ischemia and further decreased 
during 60 min of  reperfusion, and this reaction could be 

significantly attenuated by addition of  calpain inhibitor 
A-705239 to the perfusion fluid (Table 1).   

Reduced state 3 respiration reflects the impairment of  
the electron transport chain (ETC), above all complex Ⅰ, 
which is an early target of  myocardial ischemia[197]. 

Calpain inhibitor A-705239 administered before 
ischemia and reperfusion also attenuated the increase in 
permeability of  the inner mitochondrial membrane (mi-
tochondrial permeability transition), as reflected by the 
reduced state 4 respiration and leak-respiration[180].

Besides their deleterious effect on mitochondrial oxi-
dative metabolism, calpains are also recognized to cause 
the generation and release of  substances toxic to myo-
cytes. 

During reperfusion, mitochondria generate reactive 
oxygen species that lead to additional mitochondrial and 
myocyte injury[197-200].

Dependent on the degree of  oxidative damage in 
concert with mitochondrial calcium overload and calpain 
activation, mitochondrial permeability transition can oc-
cur by formation of  inner membrane pores[201,202]. Mito-
chondrial permeability transition can result in disruption 
of  the outer mitochondrial membrane and the release 
of  cytochrome c, a key step inducing apoptosis[203]. Cy-
tochrome c is detectable in the cytosol of  rabbit myo-
cardium at 30 min of  ischemia[204], whereas cytochrome 
c content decreases in subsarcolemmal mitochondria[205]. 
Mitochondrial calpain plays an important role in pro-
grammed cell death by generation or release of  apoptotic 
factors in mitochondria during ischemia and reperfusion. 
Thus, the cleavage of  Bid, a pro-apoptotic BH3-only 
Bcl-2 family member, is documented in isolated perfused 
adult rabbit hearts during ischemia/reperfusion, and in 
secondary in vitro studies recombinant Bid was cleaved 
by calpain to an active fragment that was able to mediate 
cytochrome c release[206]. It was also shown, that activated 
mitochondrial µ-calpain, mostly located in the inter-
membrane space, cleaves and releases apoptosis inducing 
factor (AIF) from isolated mouse heart mitochondria. 
Besides, mitochondrial µ-calpain activity increased in 
buffer perfused mouse hearts during ischemia/reperfu-
sion whereas the mitochondrial AIF content decreased. 
Inhibition of  mitochondrial µ-calpain using MDL-28170 
preserved the AIF content within the mitochondria and 
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reduced cardiac injury[186].

Partial ischemia and myocardial infarction
In contrast to models of  global ischemia, in the experi-
mental setting of  partial ischemia by temporary occlusion 
of  coronary arteries the duration of  ischemia can be 
extended in time to enable irreversible myocardial dam-
age to a restricted area with myocardial infarction without 
the risk of  early global heart failure with reperfusion. In 
isolated perfused rat hearts it was shown, that during a 30 
min occlusion of  the left anterior descendent coronary 
artery calpain translocates to the cell membranes without 
being activated initially. Calpain activation, as indicated 
by the hydrolysis of  α-fodrin, only started with the onset 
of  reperfusion and could be prevented by calpain inhibi-
tion with MDL-28170, just as the infarct size could be 
reduced by 32%[175]. 

Inhibition of  α-fodrin degradation and improvement 
of  left ventricular function by calpain inhibitor SNJ-1945, 
administered 30 min before a gradual and partial coro-
nary occlusion, was also found after mild ischemic-
reperfusion in another study in rat hearts[207].  Protecting 
effects of  calpain inhibition on myocardial injury could 
also be demonstrated by own experiments with inhibitor 
administration both before and during reperfusion. “Two 
novel calpain inhibitors (A-705239 and A‑705253) were 
studied in isolated perfused rabbit hearts subjected to a 
60 min occlusion of  the ramus interventricularis of  the 
left coronary artery (below the origin of  the first diagonal 
branch), followed by 120 min of  reperfusion[208,209]. The 
inhibitors were added to the perfusion fluid in various fi-
nal concentrations from the beginning of  the experiments 
before the coronary artery was blocked. The infarct size 
was significantly reduced in presence of  both calpain 
inhibitors. The best effect was achieved with 10-8 mol/L 
A-705253 which reduced the infarcted area by 61.8 % 
(Figure 5A). In a second study in isolated perfused rab-
bit hearts subjected to a 60 min occlusion of  the ramus 
interventricularis of  the left coronary artery followed by 
120 min of  reperfusion calpain inhibitor A‑705253 and/
or the Na+/H+-exchange inhibitor cariporide® were add-
ed to the perfusion fluid at the beginning of  reperfusion 
solely or in combination[210]. The infarct size was signifi-

cantly reduced dose-dependently in presence of  both 
inhibitors (Figure 5B). The best effect was achieved with 
10-6 mol/L A-705253, which reduced the infarcted area 
by 33.6%. Cariporide® (10-6 mol/L) reduced the infarct 
size in the same extent. The combination of  both inhibi-
tors, however, didn’t further improve cardioprotection. 
Thus, the protective effect can be attributed exclusively to 
its influence on the calpain system, since the combination 
of  both inhibitors didn’t augment the protective effect of  
sole calpain inhibition. The calpain inhibitor A‑705253 is 
known to directly block the catalytic centre of  activated 
calpains, whereas the Na+/H+-exchange inhibitor caripo-
ride® prevents or reduces the ischemic intracellular Ca2+-
overload and thus prevents or reduces the following cal-
pain activation”. This is shown in postischemic perfused 
rat and rabbit hearts where reduced calpain activation[211] 
and calcium overload[212] were observed upon inhibition 
of  Na+/H+-exchange. Even in patients undergoing coro-
nary bypass surgery pretreatment with cariporide® re-
duced mortality and the risk of  myocardial infarction[213], 
however, cerebrovascular events increased[214]. In accord-
ance with the findings in rabbit hearts, also in pigs under-
going occlusion of  the left anterior descending coronary 
artery for 45 min followed by 6 h of  reperfusion infarct 
size was reduced  by 35% and hemodynamic alterations 
attenuated using calpain inhibitor A‑705253[215]. In experi-
ments with isolated mouse hearts undergoing ischemia 
and reperfusion infarct size was decreased and ventricular 
function improved in calpain-1 kockout mice, whereas 
myocardial injury was greatly increased in transgenic mice 
hearts with calpain-1 overexpression[216].

No sufficient information is available to what ex-
tent polymorphonuclear leukocytes (PMN) contribute 
to ischemic/reperfusion injury. In one study in isolated 
rat hearts perfused with PMNs, exposed to 20 min of  
ischemia and followed by 45 min of  reperfusion, calpain 
inhibition with Z-Leu-Leu-CHO reduced the adherence 
of  PMNs to the vascular endothelium and improved 
ventricular function, however, controls without PMNs 
are missing[217]. Thus, with regard to the numerous exper-
iments discussed in this review, which were all performed 
without PMNs in the perfusion fluid, polymorphonu-
clear leukocytes appear not to be essential for reperfusion 
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n State 3 respiration (nmol 
O2/min per milligram)

State 4 respiration (nmol 
O2/min per milligram)

RCI (state3 rate): 
(state 4 rate)

Leak respiration(nmol 
O2/min per milligram)

Stimulation by 
cytochrome c %

  Control
     Before ischemia 4 6.4 ± 1.1 0.5 ± 0.1 12.5 ± 2.7 0.15 ± 0.07     6.0 ± 10.0
     Ischemia 45 min 8    3.5 ± 1.4a,c  0.9 ± 0.3a    4.4 ± 2.5a  0.32 ± 0.14a 10.0 ± 6.0  
     Reperfusion 60 min 4   2.6 ± 1.3a,c  0.9 ± 0.3a    3.2 ± 2.1a 0.43 ± 0.29   28.0 ± 16.0
  A-705239 treated hearts 
     Before ischemia 4 6.8 ± 1.3 0.6 ± 0.1 12.4 ± 1.1 0.12 ± 0.06 16.0 ± 9.0
     Ischemia 45 min 9    5.0 ± 0.8a,c 0.6 ± 0.2      8.2 ± 2.3a,c  0.20 ± 0.14a   15.0 ± 13.0  
     Reperfusion 60 min 5   4.2 ± 1.2a,c 0.7 ± 0.2    6.4 ± 2.7a 0.26 ± 0.24   

Table 1  Effect of calpain inhibitor A-705239 on impairment of mitochondrial function following myocardial ischemia and 
reperfusion[180]

Data are presented as means of 4 to 9 experiments mean ± SD measured as duplicates or triplicates. A significant difference from baseline before ischemia is 
represented by aP < 0.05, and between both groups by cP < 0.05.
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injury.

Remodelling after myocardial infarction
Myocardial infarction is followed by a progressive struc-
tural remodelling of  the heart, replacing and reconstruct-
ing the irreversibly damaged myocardium[218,219]. After 
the early phase of  ischemia-induced myocyte necrosis 
a longer lasting myocyte death by apoptosis can be ob-
served. Proapoptotic factors are generated and released 
from myocardial mitochondria already during ischemia 
and reperfusion which are considered to be essentially in-
volved in remodelling after myocardial infarction[186,203,206]. 
Characteristics of  apoptosis, DNA fragmentation and 
chromatin condensation, could be detected in isolated 
perfused rabbit hearts subjected to 30 min ischemia and 
4 h reperfusion[220]. In ischemic/reperfused rat hearts 
undergoing 30 min coronary occlusion followed by 6 h 
reperfusion the administration of  calpain inhibitor I (CAI) 
10 min before reperfusion significantly reduced DNA 
fragmentation and infarct size[221]. Comparable results 
were achieved in mouse hearts with persistent coronary 
artery ligation for 4 d. Calpain inhibition with calpeptin 
was started 15 min before artery occlusion and continued 
during the observation time. Calpeptin administration 
reduced apoptotic cell death, as detected by TUNEL 
staining, and reduced infarct size and myocardial dysfunc-
tion[222]. The important contribution of  calpains to the 
process of  myocardial remodelling is also documented by 
a transgenic mouse model with cardiomyocyte-specific 
deletion of  gene Capn4 (Capn4-ko) which is indispens-
able for µ- and m-calpain stability and activity. Mice were 
subjected to persistent left coronary artery ligation and 
followed up for 30 d. Deletion of  Capn4 reduced infarct 
expansion, apoptosis, myocardial remodelling and dys-
function[223].

CONCLUSION
Numerous studies have shown an essential contribution 

of  calpains in myocardial injury following ischemia and 
reperfusion. Proven prevention or attenuation of  post-
ischemic heart damage by calpain inhibition with various 
tested inhibitors could offer a novel prophylactic or ther-
apeutic approach for patients with myocardial infarction, 
revascularisation and coronary surgery.
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