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Abstract
The endothelium exerts multiple actions involving 
regulation of vascular permeability and tone, coagulation 
and fibrinolysis, inflammatory and immunological 
reactions and cell growth. Alterations of one or more 
such actions may cause vascular endothelial dysfunction. 
Different risk factors such as hypercholesterolemia, 
homocystinemia, hyperglycemia, hypertension, smo-

king, inflammation, and aging contribute to the 
development of endothelial dysfunction. Mechanisms 
underlying endothelial dysfunction are multiple, 
including impaired endothelium-derived vasodilators, 
enhanced endothelium-derived vasoconstrictors, over 
production of reactive oxygen species and reactive 
nitrogen species, activation of inflammatory and imm-
une reactions, and imbalance of coagulation and 
fibrinolysis. Endothelial dysfunction occurs in many 
cardiovascular diseases, which involves different 
mechanisms, depending on specific risk factors affecting 
the disease. Among these mechanisms, a reduction 
in nitric oxide (NO) bioavailability plays a central 
role in the development of endothelial dysfunction 
because NO exerts diverse physiological actions, 
including vasodilation, anti-inflammation, antiplatelet, 
antiproliferation and antimigration. Experimental 
and clinical studies have demonstrated that a variety 
of currently used or investigational drugs, such as 
angiotensin-converting enzyme inhibitors, angiotensin 
AT1 receptors blockers, angiotensin-(1-7), antioxidants, 
beta-blockers, calcium channel blockers, endothelial NO 
synthase enhancers, phosphodiesterase 5 inhibitors, 
sphingosine-1-phosphate and statins, exert endothelial 
protective effects. Due to the difference in mechanisms 
of action, these drugs need to be used according to 
specific mechanisms underlying endothelial dysfunction 
of the disease.
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and cell growth. Cardiovascular risk factors cause 
vascular endothelial dysfunction through impairing 
endothelium-derived vasodilators, enhancing endo-
thelium-derived vasoconstrictors, producing reactive 
oxygen species and reactive nitrogen species, activating 
inflammatory and immune reactions and promoting 
thrombosis. Among these mechanisms, a reduction 
in nitric oxide bioavailability plays a central role in the 
development and progression of endothelial dysfunction. 
A variety of currently used or investigational drugs 
exert endothelial protective effects according to specific 
mechanisms underlying endothelial dysfunction of the 
disease.
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INTRODUCTION
The endothelium is formed by a monolayer of endothelial 
cells. It constitutes a physical barrier between blood 
and tissues and regulates the exchange of molecules 
between blood and tissues. In addition, endothelial 
cells metabolize, synthesize and release a variety of 
substances, including vasoactive substances regulating 
vascular tone, blood pressure and local blood flow, the 
substances participating in coagulation, fibrinolysis and 
inflammatory and immunological reactions, reactive 
oxygen species (ROS) and reactive nitrogen species 
(RNS) involved in oxidation and nitrosylation of proteins 
and lipids, and growth factors promoting cell growth 
(Table 1). Any perturbation affecting the capacity and 
equilibrium of the endothelium as a physical barrier and 
to metabolize, synthesize and release these substances 
will cause endothelial dysfunction, which contributes 
to the development and progression of cardiovascular 
diseases. After summarizing the role of a number of 
endothelium-derived vasoactive substances and risk 
factors of endothelial dysfunction, this review focus on 
several categories of pharmacological substances that 
may be used for improving endothelial function.

ENDOTHELIUM-DERIVED VASOACTIVE 
SUBSTANCES 
The endothelium releases a variety of vasoactive 
substances, including different vasodilators such as 
nitric oxide (NO), prostacyclin, kinins, and endothelium-
derived hyperpolarizing factors (EDHF), vasoconstrictors 
such as endothelin-1 and PGH2, and ROS. Among 
endothelium-derived vasodilators, NO occupies a central 
position because changes in the release of endothelial 
NO play a crucial role in the perturbation of vascular 
homeostasis and in the development of endothelial 

dysfunction associated with various cardiovascular 
disorders. 

NO
NO is synthesized from the amino acid L-arginine by a 
family of enzymes, the NO synthase (NOS), through 
the L-arginine-NO pathway. Three isoforms of NOS 
have been identified. Neuronal NOS (nNOS), initially 
found in the nervous system, is also constitutively 
expressed in skeletal and cardiac muscles, vessels 
and many other tissues. Endothelial NOS (eNOS) is 
constitutively expressed mainly in endothelial cells, 
whereas the expression of inducible NOS (iNOS) can 
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  Vasoactive substances
     Endothelium-derived vasodilators
        Adrenomedullin
        Endothelium-derived hyperpolarizing factors
        Kinins
        Nitric oxide
        Prostacyclin
     Endothelium-derived vasoconstrictors
        Angiotensin II
        Endothelin-1
        Vasoconstrictor prostanoids
  Coagulation and fibrinolysis 
     Coagulation 
        Factor V
        Heparan sulfate
        Protein C
        Protein S
        Thrombomodulin
        Tissue factor 
        von Willebrand factor
     Fibrinolysis
        Plasminogen activator inhibitor 
        Tissue plasminogen activator
        Urokinase
  Growth factors 
     Basic fibroblast growth factor 
     Insulin-like growth factor 
     Platelet-derived growth factor 
     Transforming growth factor
  Inflammatory and immunological mediators
     Cytokines
        Interleukins
        Monocyte chemoattractant protein 1
        Transforming growth factor
        Tumor necrosis factor-α
     Adhesion molecules
        Intercellular adhesion molecules
        Platelet-endothelial cell adhesion molecules
        Selectins
        Vascular cell adhesion molecules
  Reactive oxygen species and reactive nitrogen species 
     Reactive oxygen species
        Hydrogen peroxide (H2O2)
        Hydroperoxyl (HO2)
        Superoxide (O2

-) 
     Reactive nitrogen species
        Nitrite (NO2

-)
        Nitrogen dioxide (NO2)
        Peroxynitrite (ONOO-)
        Nitryl chloride (NO2Cl)

Table 1  Some of endothelium-derived substances



be stimulated by diverse factors such as cytokines and 
endotoxin in different circumstances. The endothelium-
derived NO release is primarily ensured by eNOS 
and complemented by nNOS expressed in vascular 
endothelial cells. Therefore, eNOS is primordial in the 
regulation of NO production by endothelial cells. The 
activity of eNOS depends on several factors, including 
eNOS mRNA and protein expression, the abundance of 
asymmetric dimethylarginine (ADMA, an endogenous 
eNOS inhibitor that competes with L-arginine for binding 
to eNOS)[1,2], the quantity and quality of cofactors 
such as tetrahydrobiopterin (BH4) and NADPH that 
are necessary for eNOS catalyzing NO production 
from L-arginine[3,4], its interaction with caveolin and 
heat shock protein 90 (hsp90)[5,6], and its translational 
modifications such as phosphorylation at different sites 
by multiple kinases or phosphatases [for example, 
phosphorylation at ser-1179 by phosphotidylinositol-
3-kinase (PI3K)/protein kinase B (Akt) activates eNOS 
to initiate NO synthesis][7,8] and S-nitrosylation at 
cysteine residues[9]. In addition, excessive superoxide 
(O2

-) and hydrogen peroxide (H2O2) production due to 
increased NAD(P)H oxidase[10,11] and eNOS uncoupling 
induced by changes in oxidized low density lipoprotein 
(OxLDL), caveolin-1, BH4, a switch from S-nitrosylation 
to S-glutathionylation and oxidation of the zinc-thiolate 
complex by peroxynitrite (ONOO-) also affects effective 
eNOS activity[12-15].

NO released by eNOS participates in the regulation 
of vascular tone. NO activates soluble guanylate cyclase 
by binding to its ferrous heme, leading to the conversion 
of guanosine triphosphate (GTP) into cyclic guanosine 
monophosphate (cGMP) that causes vascular smooth 
muscle relaxation. Moreover, NO exerts antiinflammatory, 
antiplatelet, antiproliferative and antimigration actions 
that contribute to the maintenance of an adequate 
environment for the endothelium. Lacking eNOS gene 
in mice induces insulin resistance, hyperlipidemia and 
hypertension[16]. NO released by nNOS also participates 
in the regulation of vascular tone, especially for 
the regulation of vascular tone in skeletal muscles. 
Altered nNOS activity and protein levels contribute to 
muscular damage due to sustained vasoconstriction in 
patients with Duchenne muscular dystrophy[17,18] and 
endothelial dysfunction in dogs with Duchenne muscular 
dystrophy[19]. 

Prostacyclin
Prostacyclin (also called PGI2) is generated from 
arachidonic acid by cyclooxygenase (COX) in endothelial 
cells. Activation of IP receptors by PGI2 activates 
adenylate cyclase to synthesize cyclic adenosine 
monophosphate (cAMP) from adenosine triphosphate, 
causing vascular smooth muscle relaxation. However, 
PGI2 synthesis can be inactivated by increased 
cytokines[20] and under certain conditions, PGI2 exerts 
vasoconstrictor action and contributes to endothelial 
dysfunction[21].
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EDHF
The term “EDHF” describes a set of substances causing 
vascular myocyte hyperpolarization and spreading 
endothelial hyperpolarization to vascular myocytes, 
resulting in vascular myocyte relaxation, which is not 
affected by blocking NO or prostacyclin production[22]. 
Interestingly, in eNOS/COX-1 double-knockout mice, 
EDHF-mediated vasodilation plays a compensatory role 
for the absence of endothelial NO[23]. EDHF hyperpolarize 
myocyte membranes by opening calcium-activated 
potassium channels named as BKca, IKca, and SKca 
according to their conductance (big, intermediate, and 
small conductance), leading to K+ efflux[24-26]. EDHF-
mediated vasodilation also involves epoxyeicosatrienoic 
acids (EETs), gap junction, reactive oxygen species and 
hydrogen peroxide, depending on the vascular beds 
and vessel types[24,25,27]. Cytochrome P450 epoxygenase 
catalyzes the production of EETs from arachidonic acid 
in different vessels and EETs participate in, at least 
partly, the hyperpolarization and relaxation of myocytes 
in these vessels[28,29]. It is worth noting that EDHF-
mediated vasodilation is a complex phenomenon, which 
involves multiple signaling pathways that may be not 
exclusive in response to different stimuli[24-26]. Altered 
EDHF signalings may account for endothelial dysfunction 
in some cardiovascular disorders as suggested by 
studies in animals. For example, a defect in connexins 
that compose gap junctions is partly responsible for 
impaired vasodilator responses in hypertensive rats[30] 
and in diabetic rats[31]. However, the role of EDHF in 
endothelial dysfunction in human cardiovascular diseases 
remains elusive. This may be related to the difficulty 
that the function of EDHF can only be deciphered after 
impairment of NO and prostacyclin-mediated responses.

Kinins
Kinins such as bradykinin can be generated in vessel 
walls, especially in endothelial cells that contain the 
components such as kinin precursors and kinin-gen-
erating enzymes, necessary for the production of 
kinins[32]. The biological effects of kinins are mediated by 
stimulation of constitutively expressed B2 receptors and 
inducible B1 receptors. In endothelial cells, activation of 
B2 receptors by bradykinin releases NO, prostacyclin, 
EDHF and tissue plasminogen activator, which exert 
diverse physiological and pathological actions on 
cardiovascular system, including regulation of coronary 
vascular tone and local blood flow of organs, coagulation, 
fibrinolysis, and water-electrolyte[33,34]. Stimulation of 
B1 receptors by its agonists also induce NO-mediated 
vasodilation[35]. Due to very short half-life in the blood, 
bradykinin essentially plays an autocrine/paracrine role. 
Experimental studies have demonstrated a protective 
role of bradykinin B2 receptors on cardiovascular 
function. It is, at least in part, due to opposing effects 
of bradykinin B2 receptor activation on angiotensin II 
AT1 receptor activation because of multiple cross-talks 
between the kallikrein-kinin system and the renin-
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was shown to be increased in rats with heart failure 
though its signification remains elusive[67,68]. Despite its 
protective role in the cardiovascular system, AM was 
shown to be involved in the growth of different tumors 
such as prostate, colorectal and bladder tumors, and AM 
and its receptors are potential targets for the treatment 
of these tumors[69-71].

Angiotensin II
Endothelial cells express ACE and angiotensin AT1 and 
AT2 receptors. Once released, angiotensin II imme-
diately binds to these receptors and those expressed 
on smooth muscle cells. Although angiotensin II causes 
both vasoconstriction via AT1 receptors and vasore-
laxation by stimulating AT2 receptors, angiotensin 
II-induced vasoconstriction is predominant in many 
circumstances. Moreover, angiotensin II exerts multiple 
actions affecting endothelial function. Angiotensin II 
upregulates endothelial receptors for OxLDL, stimulates 
OxLDL uptake, and enhances OxLDL-mediated ROS 
generation and endothelial cell apoptosis[72]. Angiotensin 
II increases receptors for vascular endothelial growth 
factors and matrix metalloproteinases (MMPs), which 
may account for increases in endothelial permeability 
and vascular remodeling[73-75]. Angiotensin II increases 
the expression of plasminogen activator inhibitor 
type 1 (a natural inhibitor of tissue-type plasminogen 
activator and urokinase-type plasminogen activator) 
in endothelial cells[76], thereby favoring thrombosis. 
Angiotensin II favors inflammation by inducing COX-2 
expression[74] and increasing cytokine tumor necrosis 
factor-alpha (TNF-α)[75]. Although angiotensin II can 
upregulate eNOS and inducible NO synthase (iNOS) 
expression, it reduces eNOS-derived NO by promoting 
eNOS uncoupling through monocyte-dependent S-glu-
tathionylation[77]. In addition, the activation of AT2 
receptors also contributes to the angiotensin II-induced 
vascular remodeling[78]. These actions of angiotensin 
II may contribute to endothelial dysfunction as the 
renin-angiotensin system is activated, as is the case in 
atherosclerosis[79] and heart failure.

Endothelin-1
Although endothelin-1 can upregulate eNOS expression 
by enhancing eNOS mRNA stability via protein tyrosine 
kinases and protein kinase C-dependent pathways[80,81], 
endothelin-1 via type A endothelin receptors induces 
expression of adhesion molecules and neutrophil 
adhesion to endothelial cells, and promotes cytokine 
and ROS generation[82-84]. Elevated endothelin-1 blood 
levels can be seen in atherosclerosis[85], pulmonary 
hypertension[86] and heart failure[87,88], which may 
account for the development of endothelial dysfunction 
under these circumstances. Although the activation 
of Type B endothelin receptors generally induces 
vasodilation, these receptors appear to mediate 
endothelin-1-induced ROS production and contribute to 
endothelial dysfunction in obese rats[82].

angiotensin system[36]. This explains the contribution 
of kinins to the cardiovascular protective effects of 
angiotensin-converting (ACE) inhibitors and angiotensin 
AT1 receptor blockers. Deletion of both B1 and B2 
receptors in diabetic mice exacerbates nephropathy as 
indicated by increased oxidative stress, mitochondrial 
DNA deletions and renal expression of fibrogenic genes, 
suggesting a protective role of the kallikrein-kinin 
system on diabetic nephropathy[37]. However, these mice 
exhibit neither accelerated cardiac dysfunction nor ROS 
production, challenging the protective role of kinins in 
this setting[38]. Otherwise, kinins can increase endothelial 
permeability[39] and are involved in inflammatory 
responses by activating phospholipase A2 to release 
arachidonic acid that is used for the production of vaso-
constrictor prostanoids, which may be harmful for endo-
thelial function.

Adrenomedullin 
Adrenomedullin (AM), a vasodilator peptide initially 
identified from human pheochromocytoma, can be 
secreted by vascular cells, especially by endothelial 
cells[40-42]. AM exerts its action in the cardiovascular 
system through receptor complexes composed of the 
calcitonin receptor-like receptor and receptor activity-
modifying proteins. In vessels, the receptors for AM 
are expressed in both endothelial and smooth muscle 
cells[43,44]. AM-induces endothelium-dependent and - 
independent vasodilation, depending upon species and 
vascular beds[42]. AM-induced endothelium-dependent 
vasodilation is mediated by PI3K/Art/NO/cGMP pathway, 
the activation of cGMP-stimulated protein kinase G 
and/or the production of a vasodilator prostanoid (likely 
prostacyclin)[42,45,46], whereas AM-induced endothelium-
independent vasodilation involves the opening of 
K+ channels (calcium-activated K+ channels or ATP 
sensitive K+ channels, probably depending upon vascular 
beds) and the activation of cAMP-dependent protein 
kinase A[42,47]. In addition to vasodilator effect, AM was 
shown to inhibit angiotensin II-induced ROS generation 
by NAPDH[48], and AM -deficient mice developed insulin 
resistance due to increased ROS[49]. AM protects bone 
marrow-derived mononuclear cell and endothelial 
progenitor cells from apoptosis and exerts a vascular 
protective role[50,51]. AM also exerts an protective effect 
on endothelial barrier function and reduces endothelial 
permeability in response to inflammation and endo-
toxin[52-56].  Otherwise, AM posses angiogenesis property 
and participates in vascular remodeling [50,57,58]. Plasma 
AM levels were shown to be higher in many pathological 
situations such as arteriosclerosis, sepsis, essential 
or pulmonary hypertension and heart failure[52,59-63], 
whereas intracoronary AM levels were lower in patients 
with stable coronary disease[64] and in infants with 
brain damage after surgery under cardiopulmonary 
bypass[65]. Increased AM levels were interpreted as 
a compensatory mechanism to protect cardiac and 
vascular function[61,66]. Expression of receptors for AM 
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impaired endothelium-dependent vasorelaxation in 
response to endothelium-dependent agonists such as 
acetylcholine and bradykinin, or to maneuvers that 
increase shear stress such as flow-mediated dilatation. 
Although mechanisms leading to endothelial dysfunction 
are multiple, a reduction in NO bioavailability is largely 
observed in many cardiovascular disorders. As shown 
in Figure 1, reduced NO bioavailability can be the 
consequence of decreased L-arginine availability[92], 
increased ADMA[1,2], altered interaction with hsp90[93] 
and phosphorylation of eNOS[94], as well as increased 
NO scavenging by excessive ROS generated by NADPH 
and xanthine oxidases[10,11,95] and eNOS uncoupling. It 
is worth noting that changes in caveolin-1[96], BH4[97], 
S-glutathionylation of eNOS[15,98] and OxLDL[12] are all 
involved in eNOS uncoupling. Importantly, a reduction 
in eNOS protein expression also leads to impaired eNOS 
activity and NO production, which can be observed in 
different cardiovascular diseases such as atherosclerosis, 
acute myocardial infarction and heart failure in animals 
and in humans[99-103]. However, mechanisms underlying 
endothelial dysfunction in different cardiovascular 

Vasoconstrictor prostanoids 
Endothelial cells can produce vasoconstrictor prosta-
glandin H2 (PGH2), thromboxane A2 (TXA2) and 
PGF2α. The production of these prostanoids is enhanced 
in hypertension, hypercholesterolemia, diabetes and 
vitamin E deficiency[89], which in turn upregulates 
NAPDH oxidase and type 4 and type 5 phosphodiester-
ases (PDE4 and PDE5)[90,91], resulting in increases in 
ROS production, cAMP and cGMP degradation, and 
vasoconstriction. TXA2 is also a potent activator of 
platelets, while activated platelets in turn release a large 
amount of TXA2 to promote thrombosis. Furthermore, 
TXA2 interacts with EDHF by inhibiting potassium 
channels, EETs and gap junction-mediated signaling 
pathways[27], which could account for the development 
of endothelial dysfunction.

RISK FACTORS CAUSING ENDOTHELIAL 
DYSFUNCTION 
Clinically, endothelial dysfunction is characterized by 
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Figure 1  Mechanisms underlying the reduction in nitric oxide bioavailability involve both reduced nitric oxide production and increased nitric oxide 
scavenging. A reduction in NO production can be resulted from: (1) decreased L-arginine availability due to L-arginine deficiency and/or changes in L-arginine 
transporter; (2) accumulation of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of endothelial NO synthase (eNOS); (3) deficiency or modification of 
cofactor tetrahydrobiopterin (BH4); (4) altered interactions between eNOS and caveolin due to increased caveolin-1; (5) changes in receptor-coupled G proteins; (6) 
altered eNOS-heat shock protein 90 (Hsp90) interaction due to changes in Hsp90 abundance; (7) changes in calcium-independent phosphatidylinositol 3-kinase (PI3K)/
protein kinase B (Akt)-mediated eNOS activation by tyrosine or serine phosphorylation; and (8) decreased eNOS expression due to reduced eNOS gene transcription 
and/or decreased eNOS mRNA stability. Increased NO scavenging by reactive oxygen species (ROS) and reactive nitrogen species (RNS) can be due to: (9) eNOS 
uncoupling related to changes in BH4, caveolin-1 and oxidized low density lipoproteins; (10) increased NADPH (reduced form of nicotinamide adenine dinucleotide 
phosphate) expression and activity; and (11) increased xanthine oxidase expression and activity. CaM: Calmodulin; DDAH: Dimethylarginine dimethylaminohydrolase; 
SOD: Superoxide dismutase; NO: Nitric oxide.
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generation. Furthermore, homocysteine downregulates 
eNOS expression in human endothelial cells[113], and 
induces endothelial loss, vascular deendothelialization 
and increases platelet adherence and consumption 
in baboons[114]. Homocysteine also increases ROS 
generation by phosphorylating NAPDH oxidase[115], and/
or by increasing ACE activity via ACE homocysteinylation 
to generate angiotensin II that activates NAPDH 
oxidase[116]. 

Hyperglycemia/diabetes mellitus 
Endothelial dysfunction is associated with both insulin-
dependent and independent diabetes mellitus. In this 
setting, hyperglycemia increases ROS generation 
through activating protein kinase C-mediated NAD(P)H 
oxidases[117] and peroxynitrite-mediated eNOS uncoup-
ling[118], which also leads to reduced NO bioavailability. In 
addition, hyperglycemia increases iNOS expression and 
iNOS-derived NO and peroxynitrite production, leading 
to increased ROS and RNS levels and pancreatic islet 
endothelial cell apoptosis[119]. Moreover, hyperglycemia 
promotes platelet aggregation by increasing expression 
and circulating levels of endothelial adhesion molecules 
through protein kinase C-NFκB signaling pathway[120-122], 
and increases endothelial apoptosis[123]. All of these 
effects of hyperglycemia contribute to endothelial 
dysfunction observed in diabetes mellitus. Otherwise, 
increased release of vasoconstrictors such as pro-
stanoids and endothelin-1 through protein kinase 
C-mediated pathway in response to hyperinsulinemia 
and hyperglycemia appears to precede changes in 
vascular complication or NO production[124,125]. Changes 
in EDHF also contribute to endothelial dysfunction, 
especially in type 2 diabetes as suggested in rat models 
in which an impaired EDHF-mediated vasorelaxation 
was observed before marked alteration in NO-mediated 
responses[126-129]. Therefore, altered NO bioavailability 
in type 2 diabetes appears to be a relatively late event 
worsening endothelial dysfunction.

Hypertension
An impaired endothelium-dependent vasorelaxation has 
been observed in patients with essential hypertension[130] 
and in several animal models of hypertension. This is 
related to a lower production of endothelium-derived 
vasodilators and/or over production of vasoconstrictors. 
An increased endothelin-1 production also plays a 
role in endothelial function, especially in pulmonary 
hypertension as lung is an important metabolic organ 
of circulating peptides such as adrenomodullin and 
endothelin-1. In this regard, pulmonary endothelin-1 
extraction affects the incremental resistance of 
pulmonary vascular bed in response to increased 
cardiac work[131] and plasma endothelin-1 levels are 
closely related to clinical worsening of patients with 
pulmonary hypertension[132]. An impaired NO and 
EDHF-mediated vasorelaxation linked to an increased 
ADMA that inhibit eNOS and downregulates SKca in 

disorders may be different, depending on risk factors 
contributing to the development of specific disease.

Hypercholesterolemia/atherosclerosis
Atherosclerosis is a chronic arterial disease involving the 
formation of multiple atheromatous plaques within arteries 
by accumulation of lipids due to the inability to remove 
LDL from macrophages. In this process, endothelial 
dysfunction related to hypercholesterolemia plays a 
pivotal role in the development of atherosclerosis. 
Hypercholesterolemia induces endothelial cell activation, 
leukocyte recruitment and adherence, platelet activation 
and adhesion within the vasculature, reflecting an 
inflammatory response and high thrombotic state that 
may cause endothelial dysfunction. Hypercholesterolemia 
increases superoxide and hydrogen peroxide production 
by increasing NAD(P)H oxidases[79], xanthine oxidase[95], 
and myeloperoxidase[104]. Increased superoxide reacts 
with NO, resulting in the formation of RNS and reduced 
eNOS-derived NO bioavailability. ROS induce oxidation 
of lipids, proteins and DNA, which cause cell damage, 
necrosis and cell apoptosis. Increased RNS induce 
nitrosylation reactions that modify the structure and 
function of proteins. Hypercholesterolemia increases 
caveolin-1 levels[105], also contributing to impaired eNOS 
activity. In addition, hypercholesterolemia disturbs 
reactions between oxygen radicals or enzymatic oxida-
tion and lipoproteins, particularly LDL phospholipids 
and results in the production of oxidized phospholipids. 
These phospholipids contain arachidonic acid and bind 
to their membrane receptors, resulting in their accu-
mulation within the cellular membrane, immune and 
inflammatory responses and ROS generation, which 
in turn induces eNOS uncoupling that impairs endothe-
lium-dependent vasodilation induced by endogenous 
vasodilator such as kinins but enhances the role of 
endogenous vasoconstrictors such as angiotensin II and 
endothelin-1, and promote endothelial dysfunction[106,107]. 
Therefore, endogenous vasoactive substances such 
as NO, prostanoids, ROS, RNS, AM, angiotensin II, 
endothelin-1 and other substances interact and reduced 
NO bioavailability due to eNOS uncoupling is a key 
event contributing to the development of endothelial 
dysfunction and ultimately atherosclerosis.

Hyperhomocysteinemia
Homocysteine is a non-protein α-amino acid synthe-
sized from methionine. Hyperhomocysteinemia is 
observed in patients with coronary disease and is 
correlated with endothelial dysfunction[108]. Homocys-
teine causes endothelial dysfunction through NO 
inhibition, vasoconstrictor prostanoid production, EDHF 
inhibition[109,110], angiotensin AT1 receptor activation, 
and ROS generation[111]. Homocysteine reduces eNOS 
activity by increasing asymmetric dimethylarginine 
production[112] and eNOS uncoupling via decreasing 
intracellular do novel synthesis of BH4[97], leading 
to decreased NO bioavailability and increased ROS 
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endothelial dysfunction is often associated with impaired 
NO bioavailability. For example, typhoid vaccination 
induced an inflammatory response as indicated by 
increased cytokines and oxidative stress as well as a 
decreased endothelium-dependent vasodilation that 
was partially restored by antioxidant vitamin C[148]. In 
patients with viral myocarditis, acetylcholine induced 
a coronary vasoconstriction rather vasodilation[149]. 
Similar responses were also observed in mice with virus-
induced myocarditis, which was attributed to reduced 
eNOS activity and expression[150]. In some autoimmune 
diseases, anti-endothelial antibodies cause abnormal 
immune activation that activates endothelial cells to 
release adhesion molecules and cytokines, leading to 
inflammation, increased permeability of the endothelium, 
thrombosis and cell apoptosis[151-153], which are, at least 
in part, responsible for endothelial dysfunction in this 
setting. Patients with rheumatoid arthritis have increased 
levels of cytokines and ADMA and impaired flow-
mediated dilation[154]. Similarly, increased arterial stiffness 
is closely correlated with ADMA blood levels in systemic 
lupus erythematosus patients[155]. The increase in ADMA 
levels may account for reduced NO bioavailability in 
these autoimmune diseases.

In some cases, an over production of NO occurs 
in response to inflammation. Septic shock associated 
with a severe infection and sepsis is characterized by 
a profound hypotension, widespread endothelial injury 
and activation, multiple organ failure and death. In this 
setting, toxic microbe products, including endotoxins 
(bacterial membrane lipopolysaccharides, LPS) of gram-
negative bacteria and analogous molecules in the 
walls of gram-positive bacteria and fungi, dramatically 
activate mononuclear cells to release cytokines[156] that 
upregulate bradykinin B1 receptors[157,158], inducible NO 
synthase[159] and COX-2[160], which increase NO and 
prostaglandin E2. In this regard, blocking or deleting 
bradykinin B1 receptors might yield benefits for the 
treatment of septic shock. However, experimental 
studies showed conflicting results regarding the role 
of kinins in septic shock in animals. Mice with overex-
pression of B1 receptors exhibited an increased 
susceptibility to develop septic shock and mice lacking 
B1 receptors or both B1 and B2 receptors had an 
enhanced resistance to LPS-induced sepsis[161-163], 
whereas mice lacking B1 receptors had an higher mor-
tality in response to LPS[164] and additional B1 receptor 
blockade suppressed the beneficial effect of B2 receptor 
blockade[165]. Similarly, B2 receptor blockade showed 
no effect or amelioration in porcine sepsis[165,166].  
Results regarding the role of NO, particularly iNOS in 
septic shock are also elusive. Experiments in rats and 
in human blood cells showed that iNOS expression is 
correlated with cell apoptosis in septic shock[167,168]. 
Selective iNOS inhibition improved hemodynamics and 
mortality in nondiabetic rats with LPS-induced sepsis 
but not in diabetic rats[169], whereas depletion of iNOS 
resulted in increased dysfunctional mitochondria, IL-

endothelial cells has been reported in hypertensive 
patients and in spontaneous hypertensive rats[133]. 
Interestingly, alterations in EDHF appears to occur 
before alterations in NO pathways in different rat models 
of hypertension[134]. An reduced vasodilator response 
to AM has been observed in hypertensive patients[45]. 
However, an increased eNOS expression is generally 
observed in animal models of hypertension associated 
with angiotensin II. In this case, angiotensin II-induced 
oxidative stress and increases in the production of vaso-
constrictor prostanoids and cytokines may account for 
the development of endothelial dysfunction. Further-
more, a reduced NO bioavailability has been reported 
in some models of hypertension. This appears to be 
linked to reduced substrate availability due to L-arginine 
deficiency and changed L-arginine transport[92] and 
to eNOS uncoupling due to oxidation of BH4 and/
or S-glutathionylation, leading to increased ROS 
production[4,15]. Thus, although altered NO bioavailability 
may not be an initial event to induce endothelial 
dysfunction, it participates in its progression in hyper-
tensive subjects.  

Smoking
Endothelial dysfunction is one of the primary damages 
induced by cigarette smoke. Circulating cigarette 
toxins such as free radicals and reactive glycation 
products can react with endothelial cells and cause 
vascular impairment[135]. Cigarette smoking induces 
inflammatory state as indicated by elevation of white 
blood cells, adhesion molecules and cytokines, and 
increases ROS production and lipid peroxidation[136-141]. 
These mechanisms may contribute to impaired endo-
thelium-dependent vasodilation observed in active 
smokers, even at young healthy adult, and in passive 
smokers[142,143]. However, despite a reduced NO bioa-
vailability, eNOS expression has been shown to be 
increased in different endothelial cells or decreased in 
platelets in response to cigarette smoke[144,145]. Cigarette 
smoke extracts inhibits eNOS activity of pulmonary 
arterial endothelial cells through modifying eNOS 
phosphorylation pattern, which cannot be protected 
by antioxidants such as vitamin E and C[146,147]. In 
this setting, decreased NO bioavailability is probably 
the consequence of decreased eNOS activity due to 
modified eNOS phosphorylation and uncoupling as well 
as NO scavenging by increased ROS. 

Inflammation
Endothelial cells produce inflammatory and immune 
mediators (Table 1) and undergo morphological 
modifications in response to inflammatory stimuli. 
The inflammatory and immune mediators increase 
endothelial permeability and promote adhesion of 
leukocyte to endothelial cells and interactions between 
chemokine receptors on leukocyte and proteoglycans on 
endothelial cells, leading to leukocyte transendothelial 
migration to inflammation sites. Inflammation induced 

Su JB. Endothelial dysfunction and cardiovascular drugs



726 November 26, 2015|Volume 7|Issue 11|WJC|www.wjgnet.com

are specific[183]. 

CARDIOVASCULAR DRUGS IMPROVING 
ENDOTHELIAL FUNCTION
Experimental and clinical studies have shown that 
numerous currently used or investigational drugs 
can improve endothelial function, although they have 
different structure and mechanisms of actions.

ACE inhibitors and AT1 blockers
Since the success of ACE inhibitors in the treatment 
of heart failure and discovery of their multiple actions, 
ACE inhibitors and AT1 blockers are widely used to the 
treatment of hypertension, arthrosclerosis, diabetes 
and some autoimmune diseases. It is well established 
that ACE inhibitors can improve endothelial function 
in animals with heart failure[184] and in patients with 
coronary artery disease[185,186]. This effect is related 
to both reduction in angiotensin II and increase in 
bradykinin accumulation. In addition, ACE inhibitors 
upregulate eNOS expression in animals[102,187]. The 
effect of ACE inhibitors on eNOS expression is mediated 
by bradykinin B2 receptors, which can be blocked 
by B2 receptors blockers[102,187]. ACE inhibitors and 
AT1 blockers also inhibit ROS production and COX-2-
derived vasoconstrictors, which contribute to endothelial 
protective effects of these drugs[188]. It appears 
that the combination of both ACE inhibitor and AT1 
blocker does not produce more beneficial effects on 
endothelial dysfunction than monotherapy in a murine 
model of atheroclerosis[189], whereas the combination 
of a stain with an ACE inhibitor or an AT1 blocker 
produces additive effects on  systemic inflammation 
biomarkers[190]. Also, the combination of ramilapril with 
felodipine, an calcium channel blocker does not induce 
more effect on endothelium-dependent vasodilation than 
each drug alone but increases endothelium-independent 
vasodilation in spontaneous hypertensive rats[191].

Antioxidant agents
Several substances having very different molecular 
structure and proprieties, such as vitamin C and E, 
N-acetylcysteine and genistein exert antioxidant effects 
through different mechanisms.

Vitamin C can improve endothelium-dependent 
response in circumstances such as chronic smoking, 
diabetes mellitus, hypercholesterolemia and hyper-
tension[136,192-195]. Vitamin C protects the endothelium 
by scavenging superoxide, which in turn prevents NO 
scavenging, lipid peroxidation, platelet and neutrophil 
activation, and adhesion molecule upregulation[136,196]. 
Vitamin C scavenges peroxidase-generated reactive 
nitrogen species and inhibits myeloperoxidase/H2O2/
nitrite-mediated LDL oxidation[197]. Vitamin E also 
exerts endothelial-protective effects in smoking and 
hypercholesterolemia[194,198] but its effects in diabetes 
remains controversial[199,200]. Vitamin E acts as a lipid 

1β production and caspase-1 activation in response to 
LPS in myeloid cells from both mice and humans and 
increased NLRP3 inflammasome-mediated cytokine 
production and mortality in mice with LPS-induced 
sepsis, which was prevented by NLRP3 deficiency[170]. 
Although treatment with methylene blue that has the 
ability to scavenge NO and to inhibit NO synthase 
showed a transient and reproducible beneficial effect 
on systemic vascular resistance, arterial pressure and 
organ function in patients with septic shock, but its 
effect on mortality remains unknown[171,172].

Aging
Aging is accompanied by complex structural and 
functional modifications of the vasculature, leading 
to dysfunction of both the endothelium and smooth 
muscle cells. Changes in aged smooth muscle cells are 
characterized by changed migration, proliferative and 
apoptotic behavior, increased response to vasocons-
trictors and decreased expression of Ca2+-activated K+ 
channels in coronary arteries[173,174]. Aged endothelial 
cells are associated with decreased NO synthesis 
and sensitivity to agonist and mechanic stimuli that 
promote eNOS expression but increased sensitivity 
to be apoptotic[175,176]. Loss of PI3K/Akt-dependent 
eNOS phosphorylation seems to be a main mechanism 
explaining the reduction in NO production in old rats[94]. 
In addition, aging of endothelial cells is associated with 
increased production of vasoconstrictor prostanoids, 
endothelin-1 and ROS[176-178]. ROS are mainly produced 
by mitochondrial respiratory chain and NADPH oxidases, 
although eNOS uncoupling my also contribute to 
increased ROS during aging[179]. 

METHODS FOR MEASURING 
ENDOTHELIAL DYSFUNCTION
In animals, endothelial dysfunction can be measured 
by examining vasodilator responses to endothelium-
dependent substances such as acetylcholine, bradykinin 
and serotonin in comparison with responses to endo-
thelium-independent molecules such as NO donor in 
the absence and presence of NOS inhibitor and COX 
inhibitor in vivo[180,181] and in isolated vessels[19,182]. 

The methods used in clinical practice to measure 
endothelial dysfunction are detailed elsewhere[183]. 
This includes invasive methods by using quantitative 
angiography and intracoronary Doppler wire within 
coronary circulation and non-invasive methods, inclu-
ding venous occlusion plethysmography to measure 
forearm blood flow, flow-mediated dilatation in brachial 
artery, and peripheral arterial tonometry measuring 
pulsatile volume changes in the distal digit[183]. 

In addition, some circulating biomarkers such as 
endothelin-1, E-selectin, von Willebrand factor, throm-
bomodulin, intercellular adhesion molecules and vas-
cular cell adhesion molecules can also be analyzed to 
detect endothelial dysfunction, although none of them 

Su JB. Endothelial dysfunction and cardiovascular drugs



727 November 26, 2015|Volume 7|Issue 11|WJC|www.wjgnet.com

smokers[218,219]. Carvedilol, a non-selective β1- and β2 
antagonist with α-antagonist property, also improves 
endothelium-dependent responses in patients with 
essential hypertension but this seems to be related to its 
antioxidant capacity[218]. The combination of carvedilol 
with an ACE inhibitor produces more beneficial effect 
on endothelial function than each drug alone in hyper-
tensive patients with obesity[221]. Thus, this type of 
beta blockers and its combination are suitable for the 
treatment of endothelial dysfunction associated with 
hypertension, atherosclerosis, and probably diabetes.

Dihydropyridine calcium channel blockers
Nicardipine and nifedipine protect against ROS-induced 
endothelial cell death and lose of glutathione in cultured 
cells[222]. Benidipine exerts an endothelial protective 
effect against OxLDL induced ROX generation in human 
endothelial cells[223]. Israpidine improves endothelial 
function in cholesterol-fed rabbit[224]. Thus, the endo-
thelial protective effect of dihydropyridine calcium 
channel blockers is mainly mediated by their antioxidant 
actions related to reduction in lipid peroxidation and 
associated ROS generation[222,225]. In addition, some 
dihydropyridines such as, amlodipine, azelnidipine and 
nifedipine were shown to exert an antiinflammatory 
action as indicated by decreased C-reactive protein and 
interleukin-6 levels as well as leucocyte activation[226,227]. 
Amlodipine or in combination with an renin inhibitor 
improves endothelial dysfunction in hypertensive pati-
ents, which seems to be linked to its NO-releasing 
action and anti-inflammatory effect[181,228-230]. In addi-
tion, the combination of amlodipine with a statin 
induces more favorable vascular effects than each drug 
alone in rats with hypertension or diabetes[231,232]. Thus, 
in addition to hypertension, dihydropyridines may also 
be useful for the treatment of endothelial dysfunction in 
diabetes.

Phosphodiesterase-5 inhibitors
Phosphodiesterase-5 (PDE5) is a cytosolic enzyme 
localized in vascular smooth muscle, heart, skeletal 
muscle, platelet, placenta, brain, kidney, liver, pancreas, 
gastrointestinal tissues and lung[233]. In vasculature, the 
primary action of PDE5 is to degrade cGMP and thereby 
induces vasoconstriction. PDE5 inhibitors are a class 
of drugs used to improve erectile dysfunction. These 
drugs block PDE5-induced cGMP degradation, leading 
to tissue cGMP accumulation and vasodilation[234]. PDE5 
inhibitors upregulate eNOS expression and thereby 
increase NO release[235,236], which may contribute to 
long-term vasodilator effects of PDE5 inhibitors. PDE5 
inhibitors also exert other initially unexpected effects. 
For example, in mouse hind limb ischemia model, 
treatment with sildenafil not only improves blood 
flow recovery but also increases capillary density and 
endothelial progenitor cell mobilization[237]. In patients 
with vasculogenic erectile dysfunction, daily treatment 
with vardenafil reduces both arterial stiffness and 
plasma AM level[238]. These effects may also account 

soluble antioxidant, scavenging hydroperoxyl radicals in 
lipid milieu[201].

N-acetylcysteine is a non-essential amino acid, 
essentially used in the treatment of cough. However, 
experimental studies have demonstrated that N-acety-
lcysteine is a potent antioxidant. It acts on the produc-
tion of glutathione, which protects the cardiovascular 
system from harmful effects of TNF-α that induces 
glutathione depletion and ROS production via NADPH 
oxidase and ceramide[202-206]. For example, N-acety-
lcysteine improves coronary and peripheral vascular 
endothelium-dependent responses in patients with or 
without atherosclerosis[203]. The effect of N-acetylcysteine 
on endothelial dysfunction is associated with inhibition 
of NADPH oxidase expression, leukocyte adhesion 
and inflammatory cytokine secretion[204]. In addition, 
N-acetylcysteine inhibits von Willebrand factor de-
pendent platelet aggregation and collagen binding 
in human plasma and in mice[207], attenuates MMPs 
expression in microvascular endothelial cells and in 
rats[202,208], and inhibits caveolin-1 upregulation and 
improves endothelial barrier function in mice[209], which 
may also contribute to the endothelial protective effect 
of N-acetylcysteine. N-acetylcysteine interacts with 
endogenous and exogeneous vasodilators. For example, 
in patients with systemic sclerosis, N-acetylcysteine 
induces vasodilation in association with a reduction 
in plasma AM concentrations[210] and potentiates 
hypotensive effects of ACE inhibitors in hypertensive 
patients[211].

Genistein is a soya-derived phytoestrogen and 
exerts an antioxidant effect. Genistein attenuates 
endothelial dysfunction in hypertensive rats and hyper-
homocysteinemic rats. This endothelial protective 
effect appears to be due to increases in eNOS activity 
and expression and decreases in cytokine and ROS 
generation[212-215]. Genistein also improves endo-
thelium-dependent vasodilator response in healthy 
postmenopausal women, increases plasma nitrite/
nitrate concentration but decreases plasma endothelin-1 
levels[216]. In this regard, genistein may be useful for 
the treatment of endothelial dysfunction associated with 
atherosclerosis and hypertension.

Beta blockers
Some beta blockers, particularly the β1-selective beta 
blockers exert endothelial protective effects. Nebivolol, 
a β1-antagonist with β2,3-agonist property, improves 
endothelium-dependent vasodilator responses in 
patients with essential hypertension[217,218] and in 
smokers[219]. Nebivolol also improves endothelial 
function, which is associated with reduced vascular 
remodeling and expression of endothelin-1 and 
cytokines in rats with pulmonary hypertension and 
in endothelial cells taken from these rats[220]. The 
effect of Nebivolol on endothelial function appears to 
be mediated by increasing NO release and reducing 
prothrombotic blood levels of fibrinogen, homocysteine 
and plasminogen activator inhibitor-1, especially in 
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molecules and C-reactive protein blood levels in hypercho-
lesterolemic patients[259], while rapid withdrawal of 
statin treatment increases proinflammatory and pro-
thrombotic biomarkers[260]. Statins were also shown 
vascular benefice in other inflammatory diseases such 
as rheumatoid arthritis[261]. Otherwise, statins increase 
circulating endothelial progenitor cells, likely through the 
PI3K/Akt pathway[262], which could contribute to long-
term effects of statins on endothelial function.

Another type of LDL-lowering drugs, the proprotein 
convertase subtilisin/kexin type 9 (PCSK9) inhibitors, 
may be expected to improve endothelial function. In 
humans, PCSK9 mutation is closely correlated with 
LDL cholesterol levels and inhibition of PSCK9 with a 
monoclonal antibody reduces LDL cholesterol levels[263] 
and enhances the LDL cholesterol-lowering effect of 
atorvastatin[264]. Studies in cells and animals have 
shown that PCSK9 is associated with inflammation 
and endothelial cell apoptosis. In mice, systolic inflam-
mation and OxLDL upregulate PCSK9, whereas 
PCSK9 interacts with macrophage, leading to NF-κB 
activation[265,266]. Knockdown of PCSK9 with PCSK9 
siRNA or induction of gain of function mutant D374Y-
PCSK9 reduces expression of stress-response genes 
and specific inflammation pathways, inflammation 
pathway activation and OxLDL-induced endothelial 
apoptosis[266-268]. Nonetheless, the effects of PCSK9 
inhibition on human endothelial function are not yet 
explored.

Angiotensin-(1-7)
Angiotensin-(1-7) is a metabolite of angiotensin I 
under the action of various enzymes, including neutral 
endopeptidase, prolylendopeptidase, aminopeptidase 
A and neprilysin[36]. It can also be generated from 
angiotensin II by prolylcarboxypeptidase[269] and 
carboxypeptidase (ACE2)[270]. In endothelial cells, angio-
tensin-(1-7) activates eNOS via the Mas/PI3K/Akt 
pathway and inhibits angiotensin II-induced NAD(P)H 
oxidase activation[271,272]. Chronic treatment with 
angiotensin-(1-7) improves renal endothelial dysfunction 
associated with apolipoprotein E-deficiency[273] and diet-
induced obesity in mice[274], which is likely mediated by 
increasing NO release[275] and eNOS expression[276,277]. 
Otherwise, angiotensin-(1-7) restores vascular ACE2-
angiotensin-(1-7)-Mas receptor axis function that impairs 
ROS production by angiotensin AT1 receptor-activated 
NAD(P)H oxidases in hypertensive or diabetic rats[278,279]. 
Angiotensin-(1-7) restores NO/cGMP production and 
migration, decreases NADPH oxidase activity, and 
enhances survival and proliferation of endothelial pro-
genitor cells isolated from the blood of diabetic patients 
in a Mas/PI3K/Akt-dependent manner[280]. Interestingly, 
overexpression of angiotensin-(1-7) gene restores the 
vasoreparative function of endothelial progenitor cells 
in mice[280]. Despite these encouraging results in cells 
and in animals, the information regarding the effects 
of angiotensin-(1-7) on human endothelial function 

for the effects of chronic PDE5 inhibition. In addition 
to erectile dysfunction, PDE5 inhibitors can improve 
endothelial dysfunction in other circumstances. For 
example, PDE5 inhibition improves coronary and 
peripheral vascular endothelial function, and inhibits 
platelet activation in patients with coronary artery 
disease[239] or with congestive heart failure[240-242], and 
improves endothelium-dependent vasorelaxation in 
rats with experimental diabetes mellitus[243]. PDE5 
inhibitors also improves erectile function in patients with 
systemic sclerosis and reduces plasma endothelin-1 
concentration[244]. Similarly, PDE5 inhibitors improve 
Raynaud’s phenomenon characterized by reduced blood 
flow to fingers and toes in response to cold and stress, 
probably through decreasing plasma endothelin-1 and 
improving microcirculation[245]. However, the mechanism 
underlying endothelin-1-reducing effect of PDE5 inhibi-
tors remains to be determined.     

Statins
Statins, inhibitors of hydroxymethylglutaryl-coenzyme 
A (HMG-CoA) reductase are a class of drugs utilized to 
reduce hypercholesterolemia, especially LDL cholesterol. 
In 1994, pravastatin was shown to improve endothelium-
dependent response of coronary and peripheral arteries 
in patients with hypercholesterolemia[246], which was 
confirmed later by other studies[247]. The beneficial 
effect of statins on endothelial function involves multiple 
mechanisms. Statins improving endothelial dysfunc-
tion is partly due to their lowering LDL cholesterol 
effect, while native LDL and OxLDL reduce eNOS ex-
pression[248,249] and increase levels of caveolin-1[250]. 
Statins also exert direct antioxidant effects on LDL 
to reduce electronegative form of LDL[251,252]. Statins 
increase NO bioavailability by activating eNOS via the 
PI3K/Akt signaling pathway[253], agonist-stimulated 
eNOS-hsp90 interaction[250], and BH4-mediated eNOS 
coupling. This latter was demonstrated in patients with 
atherosclerosis[254] and in rat model of insulin resistance 
of diabetes[231]. These studies showed that atorvastatin 
increased vascular BH4 content and NO bioavailability 
and reduced O2

- production via upregulating GTP-
cyclohydrolase I gene expression and activity. These 
effects occurred rapidly in patients with atherosclerosis 
and could be reversed by mevalonate, indicating a direct 
effect of vascular HMG-CoA reductase inhibition[254]. In 
addition, statins upregulate eNOS expression through 
enhancing eNOS mRNA stability. Indeed, statins 
increase eNOS mRNA polyadenylation through Rho-
mediated changes in the actin cytoskeleton[255,256]. 
However, a study showed that statins can increase 
eNOS gene transcription by upregulating Kruppel-like 
factor 2 through inhibition of Rho pathway[257]. The effect 
of statins on eNOS expression may account for the long-
term effect of stains on endothelial function. Statins 
also exerts antiinflammatory effects[258]. For example, 
atorvastatin treatment reduces proinflammatory 
cytokines (TNF-α, IL-1 and IL-6), intercellular adhesion 
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the treatment of stable coronary disease[304].

Sphingosine-1-phosphate
Sphingosine-1-phosphate (S1P), a signaling sphingolipid 
formed by sphingosine kinase in the blood and in 
tissues, regulates different biological responses such 
as angiogenesis, vascular permeability and trafficking 
of T- and B-cells. S1P enhances endothelial barrier 
function[305,306], stimulates endothelial NO release 
through Akt-mediated phosphorylation of eNOS[307], and 
reconstitutes high density lipoproteins[308]. S1P also has 
antiinflammatory properties and exerts protective effect 
against endotoxin-induced lung injury[309,310]. Moreover, 
S1P exhibits a potent effect on the differentiation of 
adipose-derived stem cells into endothelial-like cells 
and upregulation of eNOS in these cells[311]. All of these 
properties of S1P may contribute to its endothelial 
protective effects. Interestingly, an orally active of S1P 
analogue, FTY720 also shows similar effects[312]. Thus, 
S1P and analogues may be used to improve endothelial 
function, especially in atherosclerosis and acute lung 
injury where presents an impairment of endothelial 
barrier function[313]. 

CONCLUSION
Endothelial dysfunction is a common mechanism involved 
in many cardiovascular diseases, although in some 
diseases such as atherosclerosis, endothelial dysfunction 
plays a critical role in the development of diseases, 
whereas in others such as essential hypertension and 
type II diabetes, endothelial dysfunction generally 
occurs as a complication but thereafter contributes to 
the development and progression of organ damages. 
Clearly, multiple mechanisms such as inflammation, 
increased ROS and RNS, cellular apoptosis, increased 
vasoconstrictor production, decreased vasodilator 
production and vascular remodeling are involved 
in endothelial dysfunction and a specific pathology 
may involve more or less them as described above. 
However, a decreased NO bioavailability appears to 
play a central role because in many pathologies such 
as atherosclerosis, diabetes, essential and pulmonary 
hypertension and heart failure except for septic shock 
where there is a overproduction of NO, a reduction in 
NO bioavailability occurs sooner or later in response to 
different risk factors. This may explain the beneficial 
effects of some drugs in the treatment of a variety 
of cardiovascular disorders. It appears that a drug 
with endothelium-protective property may yield more 
therapeutic benefits than that without such feature. For 
this reason, the evaluation of endothelium-improving 
action may be helpful for the development of a novel 
cardiovascular drug. Moreover, due to the differences in 
risk factors contributing to the different cardiovascular 
diseases and the differences in mechanisms of action, 
treatment of endothelial dysfunction with drugs needs 
to be carried out according to specific mechanisms 

remains lacking.

Bradykinin
As discussed above, endogenous bradykinin exerts 
multiple actions that affect endothelial function. It is 
worth noting that bradykinin as an investigational drug 
protects against ROS- and toxin-induced microvascular 
endothelial cell death[281], and chronic treatment with 
bradykinin not only preserves eNOS expression in 
dogs with pacing-induced heart failure[101], but also 
upregulates eNOS and nNOS expression in vessels and 
in the heart of dogs with dystrophin-deficiency cardio-
myopathy[19,282]. However, due to the very short half-life 
and implication of bradykinin in the inflammation[283] and 
cancers[284,285], the clinical use of bradykinin remains a 
challenge.

eNOS transcription enhancer
Interestingly, specific targeting eNOS transcription 
with a chemical compound, AVE3085, increases eNOS 
expression but reduces oxidative stress and platelet 
activation, which is associated with improved endo-
thelium-dependent relaxation and cardiac function in 
animals with different experimental diseases[286-289]. This 
compound also prevents the inhibitory effect of ADMA 
on endothelium-dependent vasodilation in human 
internal thoracic artery rings and in pig coronary artery 
rings[290,291]. Thus, this compound showed a potential 
for the treatment of endothelial dysfunction although 
its effects in human clinical situations remain to be 
demonstrated.

If inhibitor, ivabradine
If current is an inward current carried by Na+ and 
K+, activated by hyperpolarization and conducted by 
hyperpolarization-activated cyclic nucleotide-gated 
channels (f-channels)[292]. If current participates in 
the spontaneous depolarization during Phase 4 of 
the action potential and plays a crucial role in the 
pacemaker activity of pacemaker cells located in the 
sinus node and atrioventricular node. Inhibition of this 
current by ivabradine slows down heart rate and exerts 
cardioprotective effects[293-296], which may involves 
pleiotropic actions of ivabradine[297]. Among them, 
beneficial effects of ivabradine on the endothelium-
dependent vasodilation and on the expression of eNOS 
expression in both animals and humans have been 
reported[298-300]. Nevertheless, the effects of ivabradine 
on human endothelial dysfunction are controversial. 
Several studies did not observe significant improvement 
in flow-mediated vasodilation by ivabradine in patients 
with microvascular angina pectoris[301] or stable 
coronary heart disease[302] and in patients with type 
II diabetes[303]. In addition, in patients with stable of 
coronary disease without heart failure, the additional 
ivabradine plus standard treatment did not improve 
outcome but was associated with increased frequency 
of atrial fibrillation, questioning the utility of this drug in 
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