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Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the first 
human retrovirus discovered, is the etiological agent of 
adult-T-cell leukemia/lymphoma. The HTLV-1 encoded 
Tax protein is a potent oncoprotein that deregulates 
gene expression by constitutively activating nuclear 
factor-κB (NF-κB). Tax activation of NF-κB is critical 
for the immortalization and survival of HTLV-1-infected 
T cells. In this review, we summarize the present 
knowledge on mechanisms underlying Tax-mediated 
NF-κB activation, with an emphasis on post-translational 
modifications of Tax. 
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INTRODUCTION
The human T-cell leukemia virus type 1 (HTLV-1) is the 
etiological agent of  adult-T-cell leukemia/lymphoma 
(ATLL) and a neuroinflammatory disease termed HTLV-
1-associated myelopathy/tropical spastic paraparesis 
(HAM/TSP)[1-3]. Ten million to 20 million people world-
wide are infected with HTLV-1, predominantly in en-
demic areas in Southern Japan, the Caribbean, Western 
Africa and South America. ATLL develops in approxi-
mately 5% to 10% of  HTLV-1-infected individuals, after 
a long period of  latency, suggesting a multistep process 
of  T-lymphocyte transformation[4]. In ATLL patients, the 
malignant cells typically consist of  oligoclonal or mono-
clonal outgrowths of  CD4+ and CD25+ T lymphocytes 
carrying a complete or defective provirus of  HTLV-1[5]. 
ATLL consists of  four clinical subtypes including acute, 
lymphoma, chronic and smoldering. The current thera-
pies for acute ATLL, which is the most aggressive form, 
are largely ineffective since the average time of  survival 
after diagnosis with acute ATLL is only 6 mo[6]. HTLV-1 
can be transmitted through sexual contact, blood trans-
fusions, and from mother to child via breast-feeding[7-9]. 
The route of  transmission appears to be one of  the fac-
tors that determines the type of  disease that occurs, with 
blood transmissions increasing the risk for HAM/TSP 
and mucosal transmissions (breast-feeding) increasing the 
risk for ATLL[4]. HTLV-1 predominantly infects CD4+ T 
cells in vivo, although recent studies indicate that other cell 
types such as CD8+ T-cells and dendritic cells (DCs) may 
also serve as reservoirs for HTLV-1[10]. 
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HTLV-1 infects cells by transmission of  virions be-
tween cells (infectious transmission) or by transmission 
of  a provirus to the two daughter cells of  a dividing 
infected cell (mitotic transmission). At least two recep-
tors for HTLV-1 have been identified, including glucose 
transporter type 1 and neuropilin-1 (NRP1)[11,12]. Hepa-
rin sulfate proteoglycans also play an important role in 
facilitating the entry of  HTLV-1[13,14]. There is also evi-
dence for cell-type specific receptors since a recent study 
has reported that HTLV-1 enters DCs by binding to the 
receptor DC-SIGN[15]. Infected cells that express viral 
antigens are rapidly targeted by cytotoxic T cells, there-
fore the viral load is maintained predominantly by cells 
harboring silent provirus spread by mitotic transmis-
sion[12]. HTLV-1 transmission by free virions is very inef-
ficient, at least in T cells, however, recent studies indicate 
that cell-free HTLV-1 virions are highly infectious for 
DCs[16]. When an HTLV-1 infected cell contacts an unin-
fected cell, a microtubule-organizing center (MTOC) is 
polarized at the cell-cell junction, and then viral proteins, 
such as Gag and viral genome RNA, accumulate at this 
junction allowing viral products, such as Gag and viral 
genome RNA, to accumulate at the junction with subse-
quent transfer of  the viral complex into the target cell[17]. 
In HTLV-1-infected cells, expression of  intercellular 
adhesion molecule 1 (ICAM-1) is upregulated, which 
increases the polarization of  the MTOC at the point 
of  contact in HTLV-1-infected cells, suggesting that 
increased expression of  ICAM-1 facilitates cell-to-cell 
transmission of  HTLV-1[18]. The frequencies of  HTLV-1 
provirus integration into transcription units (from the 
first exon to the last exon) are 26.8% (15/56) in carriers 
and 33.9% (20/59) in ATL, equivalent to the frequency 
calculated based on random integration (33.2%)[19]. How-
ever, there is evidence that HTLV-1 provirus is prone to 
integration near the transcriptional start sites in leukemic 
cells[19].

The HTLV-1 genome is 9032 nucleotides in length 
and encodes the structural proteins necessary to form the 
viral core particle (Gag, Env, and Pol) and the enzymatic 
retroviral proteins (reverse transcriptase, integrase and 
protease) and is flanked on both ends by long terminal 
repeats (LTRs) that contain cis-elements that regulate 
viral gene expression[20]. In addition, the HTLV-1 genome 
contains a cluster of  at least five open reading frames 
(ORFs) within the pX region that are generated by 
alternative splicing[1]. The tax gene is the most extensively 
studied and encodes a protein of  40 kDa. The other 
pX genes encode p12Ⅰ, p27Ⅰ, p13Ⅱ, and p30Ⅱ and all 
function as HTLV-1 accessory proteins[21]. The HTLV-1 
accessory proteins encoded in the pX region have 
diverse functions, many of  which involve modulation 
of  host signaling pathways[22]. For example, p12 triggers 
early interleukin-2 (IL-2) expression by increasing the 
level of  intracellular calcium and selectively activating 
nuclear factor of  activated T cells (NFAT)[23]. p13 protein 
accumulates in mitochondria and may function as a 
negative regulator of  cell growth[24]. The p30 protein 

modulates cell cycle and apoptosis regulatory genes[25]. 
Very little is known regarding p27 function. Recently, a 
novel ORF has been identified in the complementary 
strand of  the pX region and encodes the HTLV-1 basic 
leucine zipper gene (HBZ)[26]. There are two transcripts 
of  HBZ representing spliced and unspliced forms. The 
spliced form of  HBZ is expressed in ATLL and has 
been proposed to regulate cell proliferation[27,28]. HBZ 
also functions as a repressor of  HTLV-1 transcription 
by forming heterodimers with CREB, CREB-2, CREM, 
and ATF-1 and forming inactive complexes impaired 
in binding to Tax-responsive elements[26,29]. During the 
late stages of  ATLL, HBZ, which is probably the only 
viral product expressed at this time[30,31], may support 
proliferation and growth of  ATLL cells. 

THE HTLV-1 ONCOPROTEIN TAX
Tax is a 40 kDa phosphoprotein that contains both 
nuclear localization (NLS) and nuclear export sequences 
that enable it to shuttle between the nucleus and cyto-
plasm[32-35]. Tax is a trans-activating protein that regulates 
both viral and cellular gene expression[36,37]. With regard 
to viral gene expression, Tax recruits the transcription 
factor CREB, and the co-activators CBP/p300 and 
PCAF, to the HTLV-1 LTR viral promoters[38-40]. The 
expression of  Tax is required for HTLV-1 viral gene ex-
pression. In addition to regulating viral gene expression, 
Tax also regulates cellular proliferation, apoptosis, genetic 
instability, telomerase activation, and inactivation of  tu-
mor suppressors[41-43]. Tax modulates the activation of  
host transcription factors to deregulate gene expression, 
which favors cell growth and survival[44]. Nuclear factor-
κB (NF-κB) is a key target of  Tax since Tax mutants, un-
able to activate NF-κB, are defective for cell immortaliza-
tion[45]. Furthermore, NF-κB is required for the survival 
of  HTLV-1 transformed cells[46]. 

Tax plays an essential role in HTLV-1-mediated 
leukemogenesis, in part, by driving cellular proliferation 
and enhancing cell survival[47]. Consistent with these 
functions, Tax was shown to be necessary and sufficient 
for the immortalization of  CD4+ T-cells, a hallmark 
of  ATLL[45,48]. Transgenic mice, expressing Tax under 
the control of  the HTLV-1 LTR promoter, develop 
neurofibromas and mesenchymal tumors[49]. When Tax 
expression is regulated by the granzyme B promoter, 
mice developed large granular lymphocytic leukemias 
comprising CD8+ T cells and natural killer cells[50]. 
Two recent studies with novel Tax transgenic mice have 
yielded phenotypes that more closely resemble ATLL[51,52]. 
Transgenic mice expressing Tax under the Lck proximal 
promoter were shown to develop thymus-derived 
immature T-cell leukemia with clinical, pathological, and 
immunologic features characteristic of  acute ATLL[51]. 
In an independent study, Tax expressed in lymphocytes 
in a conditional manner resulted in progressive alopecia, 
hyperkeratosis and skin lesions commonly observed in 
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the preleukemic phase of  ATLL[52]. Importantly, mice 
expressing the Tax M22 point mutant, defective for 
NF-κB activation, did not develop this phenotype[52]. 
Collectively, these studies provide in vivo evidence that 
Tax is both necessary and sufficient for tumor formation. 

The expression of  Tax promotes the dysregulation of  
hundreds of  cellular genes including proto-oncogenes, 
cytokines, growth factor receptors, cyclin-dependent 
kinases, inhibitors of  cyclin-dependent kinases, and genes 
involved in DNA repair and cell adhesion[47,53]. Tax also 
upregulates the expression of  the T-cell growth factor 
IL-2 as well as its high affinity receptor IL-2R (also known 
as CD25)[54]. In the early phases of  infection, HTLV-
1-infected cells are dependent upon the presence of  
IL-2, possibly contributing to the early clonal expansion 
of  infected T cells through an IL-2/IL-2R autocrine/
paracrine loop. Disease progression, however, occurs 
in the absence of  IL-2 secretion or expression. HTLV-
1-infected cells are not dependent on IL-2, which is 
concomitant with constitutively activated Janus kinases 
and signal transducers and activators of  transcription, 
leading to the induction of  Shc/Ras/Raf/mitogen-
activated protein kinase and PI3K/AKT pathways[55]. 
Tax mainly exerts its pleiotropic functions through direct 
interaction with numerous cellular proteins, many of  
which regulate signal transduction pathways[56-59]. In this 
review, we will focus on recent studies illustrating the 
importance of  Tax post-translational modifications as well 
as Tax targeting of  NF-κB negative regulatory proteins. 

REGULATION OF NF-κB BY TAX
In mammalian cells, NF-κB is composed of  five struc-
turally related proteins, RelA (p65), RelB, c-Rel, p50/
p105 (NF-κB1) and p52/p100 (NF-κB2), organized in 
different homo- and hetero-dimer NF-κB complexes. 
NF-κB1 and NF-κB2 are translated as precursor pro-
teins, p105 and p100, for which proteasome-mediated 
processing generates the mature NF-κB subunits, p50 
and p52, respectively. All NF-κB proteins share a com-
mon Rel-homology domain mediating their dimerization, 
DNA binding and NLS. NF-κB is normally sequestered 
as an inactive form through physical interaction with 
inhibitory κB (IκB) regulatory proteins in the cytoplasm. 
There are two distinct NF-κB signaling pathways: the ca-
nonical and noncanonical or alternative pathways. Gen-
erally, the canonical pathway regulates inflammation and 
cell survival, whereas the noncanonical pathway regulates 
lymphoid organogenesis and B-cell survival (Figure 1)[60]. 
The canonical NF-κB pathway is induced in response to 
diverse stimuli, including the pro-inflammatory cytokines 
tumor necrosis factor-α (TNF-α) and IL-1, engagement 
of  the T-cell receptor or exposure to viral and bacterial 
products. Following induction by various stimuli, the 
IκBs are phosphorylated by the IKK complex, which 
is composed of  the catalytic subunits IKKα and IKKβ 
and a non-catalytic scaffolding subunit IKKγ/NEMO, 
leading to their ubiquitination and degradation, thus free-

ing NF-κB dimers to translocate to the nucleus[61]. The 
noncanonical pathway regulates the processing of  p100 
to p52 and is induced by TNF superfamily members, in-
cluding CD40 Ligand, CD70, B-cell activating factor and 
RANK Ligand. In response to these specific TNF su-
perfamily ligands, the MAP3K, NF-κB inducing kinase 
(NIK) phosphorylates IKKα, which in turn, phosphory-
lates p100 triggering proteasome-dependent processing 
to p52[62,63]. NIK stability, and hence p100 processing, is 
regulated by an E3 ubiquitin ligase complex consisting 
of  TRAF2, TRAF3, cIAP1 and cIAP2[64,65]. 

Most human cancers exhibit constitutively activated 
NF-κB[66], in stark contrast to the transient NF-κB activa-
tion observed upon stimulation of  cells with proinflam-
matory cytokines TNF-α or IL-1. NF-κB is constitutively 
activated in both HTLV-1-transformed T-cell lines and 
freshly isolated ATL cells[67]. Tax stimulates both ca-
nonical and non-canonical pathways, and constitutively 
activates NF-κB in HTLV-1 infected cells, by interact-
ing with several NF-κB members, including RelA, p50, 
and p52[66,68], and also members of  the IκB family such 
as IκBα and the precursor proteins p105 and p100. Tax 
interaction with NF-κB transcription factors does not 
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Figure 1  Canonical and noncanonical nuclear factor-κB (NF-κB) activation 
pathways. The binding of a specific ligand to a receptor (i.e. tumor necrosis 
factor-α (TNF-α) binding to TNFR1) leads to the recruitment and activation of an 
IKK complex comprising IKKα, IKKβ catalytic subunits and the regulatory subunit 
IKKγ/NEMO. The IKK complex then phosphorylates IκBα leading to degradation 
by the proteasome and concomitant translocation of NF-κB to the nucleus where 
it activates target genes. The NF-κB negative regulators, A20, TAX1BP1, Itch and 
RNF11, form a complex and inhibit activation of NF-κB upstream of IKK in the 
canonical pathway. In the noncanonical pathway, NIK is activated downstream 
of select TNFR superfamily members, and phosphorylates IKKα that in turn 
phosphorylates p100 resulting in its ubiquitination, limited degradation by the 
proteasome and nuclear mobilization of RelB/p52 dimers. Ubc13: Ubiquitin-
conjugating enzyme 13.
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fully explain Tax-mediated NF-κB activation since the 
completion of  this process also requires cytoplasmic 
events. A key event in Tax-mediated NF-κB activation 
is binding with IKKγ/NEMO[69-72]. Tax interacts with 
IKKγ/NEMO in transfected cells as well as HTLV-1 
transformed cell lines[73]. Notably, Tax activation of  NF-
κB is defective in T-cells genetically deficient for IKKγ[74]. 
Thus, it is likely that Tax binds to IKKγ/NEMO as a 
mechanism to be assembled into IKK complexes[75]. Tax 
interactions with IKKγ/NEMO are also essential for 
activation of  the noncanonical pathway as well; however, 
Tax does not require NIK to trigger p100 processing[75]. 
Tax likely triggers the activation of  the IKK catalytic 
subunits by recruiting upstream kinases, such as TGF-β 
activating kinase 1, to IKK[72]. Tax therefore promotes 
IκB degradation at multiple levels, thereby allowing nu-
clear translocation of  NF-κB independently of  external 
stimuli (Figure 2). In HTLV-1 transformed cell lines, Tax 
has been shown to promote the relocalization of  IKK 
subunits to a perinuclear compartment co-localizing to 
the Golgi apparatus[73,76]. Consistent with these finding, 
another study has indicated that Tax hijacks IKK to lipid 
raft microdomains in the Golgi where it is activated[77]. 
Therefore, the Golgi appears to be a cellular compart-
ment where Tax triggers the activation of  IKKs. 

In order to promote a persistent NF-κB response, it 
can be predicted that Tax would impair the function of  
NF-κB inhibitory proteins. Indeed, recent studies from 

our laboratory demonstrated that Tax targets the NF-
κB negative regulatory protein A20 for inactivation. A20 
(also known as TNFAIP3) is a zinc finger protein that is 
essential for the termination of  NF-κB signaling. A20-
deficient mice die prematurely because of  uncontrolled 
multi-organ inflammation and cachexia[78]. A20 functions 
as an ubiquitin-editing enzyme that targets ubiquitinated 
signaling proteins, such as RIP1 and TRAF6, for 
inactivation[79-81]. A20 contains a deubiquitination domain 
of  the ovarian tumor family and seven C-terminal 
zinc finger domains[82]. A20 first removes lysine K63 
(K63)-linked polyubiquitin chains from RIP1 and then 
polyubiquitinates RIP1 with lysine 48 (K48)-linked 
chains leading to its degradation[82]. A20 is an essential 
component of  a ubiquitin-editing complex together with 
the regulatory proteins TAX1BP1, Itch and RNF11[79]. 
TAX1BP1 was originally cloned as an interacting protein 
of  Tax in a yeast two-hybrid screen[83,84]. Mice lacking 
TAX1BP1 have been generated by two groups, and 
TAX1BP1 has been shown to be an essential negative 
regulator of  NF-κB by serving as an adaptor molecule 
for A20[80,85]. Shembade and coworkers have shown that 
ectopic expression of  Tax leads to the disruption of  the 
A20 ubiquitin-editing complex[79-81]. The mechanism by 
which Tax disrupts the A20 ubiquitin-editing enzyme 
complex is unclear, although Tax may potentially impair 
protein-protein interactions by steric hindrance or by 
modifying post-translational modifications.

POST-TRANSLATIONAL MODIFICATION 
OF TAX 
Post-translational modifications of  Tax are important in 
the constitutive activation of  NF-κB pathways, inhibition 
of  DNA repair, activation of  the p53 tumor suppressor 
and cell cycle control. Tax undergoes numerous post-
translational modifications including phosphorylation, 
ubiquitination and sumoylation[86-89]. Phosphorylation of  
Tax at multiple sites on serine residues is important for 
Tax localization to nuclear bodies and for Tax-mediated 
activation of  gene expression via both the ATF/CREB 
and NF-κB pathways[90,91]. However, the kinases for Tax 
phosphorylation and activation of  NF-κB have not yet 
been identified.

Polyubiquitination of  Tax leads to its cytoplasmic 
retention and is critical for the activation of  IKK and 
NF-κB[86-88,92]. Shembade and others have shown Tax 
polyubiquitination is predominantly composed of  K63-
linked polyubiquitin chains[86,93,94]. Tax polyubiquitination 
can occur on multiple lysine residues, although lysine 263, 
280, and/or 284 are the most critical sites[87]. Physical 
interaction of  Tax with ubiquitin-conjugating enzyme 
13, an E2 enzyme for K63 linked polyubiquitination, 
is essential for Tax ubiquitination and interaction with 
NEMO[86]. However, the Tax E3 ligase is currently 
unknown, although it is likely to be an E3 ligase capable 
of  K63-linked polyubiquitination. Recently, the regulatory 
molecules TAX1BP1 and NRP/Optineurin were shown 
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Figure 2  Mechanisms of Tax activation of the canonical and noncanonical 
NF-κB pathways. In the canonical pathway, Tax interacts with TAX1BP1 
to disrupt the formation and function of the A20 ubiquitin-editing complex.  
Ubiquitinated Tax interacts with IKKγ and activates the canonical NF-κB 
pathway. Tax triggers activation of the noncanonical pathway downstream of 
NIK by recruiting IKKα to p100 thus stimulating phosphorylation, ubiquitination, 
and processing to p52. 
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to be required for Tax polyubiquitination and activation 
of  NF-κB[76]. However, how these molecules promote 
Tax polyubiquitination is not completely understood.

In addition to phosphorylation and polyubiquitination, 
Tax also undergoes sumoylation[87]. Tax sumoylation 
leads to its nuclear retention and the formation of  
nuclear bodies that include NF-κB, p300 and CBP as 
well as components of  the transcription and splicing 
machineries[87]. The sites of  Tax sumoylation overlap 
with polyubiquitination[87] thus the localization of  Tax 
may determine whether it becomes polyubiquitinated 
or sumoylated. Nevertheless, it is clear from published 
studies that ubiquitination and sumoylation act in concert 
for Tax-mediated activation of  gene expression via the 
NF-κB pathway. 

Yet another post-translational modification of  Tax 
is acetylation, which modulates transcription factor 
functions such as DNA binding affinity, stability and 
ability to interact with coactivators and corepressors[95,96]. 
Tax acetylation occurs at a lysine residue at amino acid 
position 346 in the carboxy-terminal domain of  Tax 
by the transcriptional coactivator p300[95]. When Tax is 
acetylated, it favors activation of  gene expression via the 
NF-κB pathway, suggesting that Tax oncogenic potential 
depends on Tax acetylation[95]. This modification may 
also compete with ubiquitination or sumoylation for 
overlapping targeted lysine residues. 

CONCLUSION
HTLV-1 Tax interacts with several host proteins to 
activate IKK and NF-κB for proliferation and trans-
formation of  HTLV-1 infected cells. Tax activates both 
the canonical and noncanonical NF-κB pathways. It is 
clear that Tax ubiquitination is critical for interaction 
with IKKγ/NEMO for NF-κB activation; however it is 
unknown whether Tax ubiquitination is important for 
activation of  the noncanonical NF-κB pathway. Future 
studies will be necessary to identify host factors such as 
adaptor molecules and E3 ligases that Tax requires to 
activate NF-κB. 
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