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Abstract
CARD recruited membrane associated protein 3 (CARMA3) 
is a novel scaffold protein. It belongs to the CARMA pro-
tein family, and is known to activate nuclear factor (NF)-
κB. However, it is still unknown which receptor functions 
upstream of CARMA3 to trigger NF-κB activation. Re-
cently, several studies have demonstrated that CARMA3 
serves as an indispensable adaptor protein in NF-κB 
signaling under some G protein-coupled receptors (GP-
CRs), such as lysophosphatidic acid (LPA) receptor and 
angiotensin (Ang) Ⅱ receptor. Mechanistically, CARMA3 
recruits its essential downstream molecules Bcl10 and 
MALT1 to form the CBM (CARMA3-Bcl10-MALT1) sig-
nalosome whereby it triggers NF-κB activation. GPCRs 
and NF-κB play pivotal roles in the regulation of various 
cellular functions, therefore, aberrant regulation of the 
GPCR/NF-κB signaling axis leads to the development 
of many types of diseases, such as cancer and athero-
genesis. Recently, the GPCR/CARMA3/NF-κB signaling 
axis has been confirmed in these specific diseases and 
it plays crucial roles in the pathogenesis of disease 
progression. In ovarian cancer cell lines, knockdown of 
CARMA3 abolishes LPA receptor-induced NF-κB activa-
tion, and reduces LPA-induced ovarian cancer invasion. 
In vascular smooth cells, downregulation of CARMA3 

substantially impairs Ang-Ⅱ-receptor-induced NF-κB ac-
tivation, and in vivo  studies have confirmed that Bcl10-
deficient mice are protected from developing Ang-Ⅱ-re-
ceptor-induced atherosclerosis and aortic aneurysms. 
In this review, we summarize the biology of CARMA3, 
describe the role of the GPCR/CARMA3/NF-κB signaling 
axis in ovarian cancer and atherogenesis, and speculate 
about the potential roles of this signaling axis in other 
types of cancer and diseases. With a significant increase 
in the identification of LPA- and Ang-Ⅱ-like ligands, such 
as endothelin-1, which also activates NF-κB via  CARMA3 
and contributes to the development of many diseases, 
CARMA3 is emerging as a novel therapeutic target for 
various types of cancer and other diseases.
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MA3) is a novel scaffold protein. CARMA3 belongs to the 
CARMA protein family, which includes CARMA1, CAR-
MA2, and CARMA3[1,2]. CARMA protein is also referred 
to as Bimp (Bcl10-interacting membrane protein), because 
it was first identified as a protein that interacts with Bcl10, 
another CARD domain adaptor protein. Although the bi-
ology and function of  the CARMA protein family has not 
been completely elucidated, it has been shown that all of  
them play important roles in nuclear factor (NF)-κB acti-
vation[1-3]. NF-κB was first identified as a transcription fac-
tor of  immunoglobulin κ light chain in B cells and is char-
acterized by its important roles in the immune system[4]. 
NF-κB is now known to be ubiquitously expressed in all 
cell types and has prominent roles in tumorigenesis and 
the development of  neural, heart and immune diseases[4-8]. 
The NF-κB family has five members: p50, p52, RelA (p65), 
RelB, and c-Rel[4]. In resting cells, all five members form 
homodimers or heterodimers and are sequestered in the 
cytoplasm via coupling with the inhibitor of  κB (IκB) pro-
teins, such as IκBα[9]. IκB masks the nuclear localization 
signal of  NF-κB and inhibits its function.

NF-κB is activated via the classical or the alternative 
pathway[4]. Most receptors, such as the T-cell recep-
tor (TCR) and B-cell receptor (BCR)[4], activate NF-κB 
through the classical pathway. Only a small number of  
receptors activate NF-κB through the alternative path-
way[4,10]. Upon receptor activation, downstream adapters 
bind to these receptors and recruit kinases to activate the 
IκB kinase (IKK) complex[11,12]. IKK comprises IKKα, 
IKKβ, and IKKγ [NF-κB essential modulator (NEMO)] 
in the classical pathway and an IKKα dimer in the alter-
native pathway. The IKK complex directly phosphorylates 
IκBα at serines 32 and 36, which leads to IκBα polyu-
biquitination by the E3 ubiquitin ligase[4]. IκBα is then 
degraded by the 26S proteasome, and the NF-κB dimer 
is released from the cytoplasm and translocated to the 
nucleus, where it transactivates its target genes[13].

Although the CARMA protein family has been shown 
to activate NF-κB, it is still unknown which receptors 
function upstream of  CAMRA3 to trigger NF-κB activa-
tion. Recently, it has been shown that some G protein-
coupled receptors (GPCRs), like lysophosphatidic acid 
(LPA) and angiotensin (Ang) Ⅱ receptors trigger NF-κB 
activation via CARMA3. GPCRs comprise a large protein 
family of  transmembrane receptors that sense molecules 
outside the cell and activate inside signal transduction 
pathways, and ultimately, cellular responses. GPCRs are 
the largest cell surface receptors. Up to 2% of  the hu-
man genome encodes GPCRs[14]. GPCRs are expressed 
throughout the body, including the central nervous sys-
tem, cardiovascular system, gastrointestinal tract, mus-
culoskeletal system, genitourinary system, reproductive 
system, and almost all organs controlled by the autonomic 
nervous system[15]. GPCRs are activated by a diverse array 
of  ligands and play crucial roles in physiology. Further-
more, they are involved in almost all types of  stimulus-
response pathways and are important targets of  40%-50% 
of  modern drugs[16].

GPCRs signal via heterotrimeric G proteins (Gα, Gβ, 
and Gγ) or β-arrestins[17,18]. G proteins are heterotrimeric 
and include eighteen α subunits that are classified into 
four groups (Gs, Gi, Gq, and G12/13), twelve β subunits, 
and five γ subunits[19]. These G proteins independently 
or cooperatively activate their downstream signaling cas-
cades[19]. β-arrestins also function to relay signals rather 
than simply desensitize GPCR-induced signals[20]. Upon 
activation, GPCRs activate numerous downstream effec-
tors. One important target is NF-κB. Constitutive activa-
tion of  NF-κB contributes to various diseases, including 
cancer and atherogenesis[5,21]. In this review, we summarize 
the biology of  CARMA3 and the CARMA protein family, 
discuss the role of  the GPCR/CARMA3/NF-κB signal-
ing axis in ovarian cancer and atherosclerosis, and specu-
late about the potential roles of  this signaling axis in other 
types of  cancer and diseases.

CARMA PROTEIN FAMILY
Structure
CARMA proteins are caspase recruitment domain (CARD)-
containing members of  the membrane-associated guanyl-
ate kinase (GUK) family. The CARMA protein family has 
three members: CARMA1, CARMA2, and CARMA3. 
The three members share similar structures (Figure 1A): 
an N-terminal CARD followed by a coiled-coil domain; 
a linker region; a PDZ domain; an Src homology 3 (SH3) 
domain; and a GUK-like domain[1,3]. The CARD domain 
is found in a variety of  proteins, especially those involved 
in apoptosis and inflammation. This domain consists of  
six or seven antiparallel α helices with a hydrophobic core 
and outer surface. It mediates the interaction of  larger 
protein complexes by association with different individual 
CARD domains[22-24]. The coiled-coil domain mediates 
dimerization[25]. The linker region contains crucial phos-
phorylation sites[26]. Upon phosphorylation of  the linker 
region, CARMA protein is activated, unfolds, and recruits 
downstream molecules (Figure 1B). The PDZ, SH3 and 
GUK domains are membrane-associated domains that act 
in membrane localization. Therefore, they are also known 
as membrane-associated GUK domains[27]. Although the 
structure of  the GUK domain is similar to that of  GUK 
itself, it does not have any kinase activity. 

Distribution
Although the three CARMA proteins have similar struc-
tures, they are transcribed by different genes and ex-
pressed in different tissues[1,3,28]. Specifically, CARMA1 
is predominantly expressed in the spleen, thymus, and 
peripheral blood leukocytes[3]; CARMA2 is expressed only 
in the placenta[1]; and CARMA3 is expressed in a broad 
range of  tissues, especially at high levels in the liver, kid-
ney, heart, and brain, but is not expressed in the spleen, 
thymus, or peripheral blood lymphocytes[28].

Function
Overexpression of  CARMA proteins induces robust NF-
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κB activation[1,2]. However, the receptors that employ CAR-
MA proteins to activate NF-κB remain unknown. Recently, 
studies have demonstrated that CARMA1 is required for 
TCR- and BCR-induced NF-κB activation[29-31]. Also, we 
and other groups have shown that CARMA3 is indispens-
able for induction of  NF-κB activation by some GPCR 
ligands (LPA, endothelin-1, and Ang Ⅱ)[32,33]. CARMA1 
and CARMA3 activate NF-κB by recruiting the same 
downstream molecules: Bcl10 (B-cell chronic lymphocytic 
leukemia-lymphoma 10), MALT1 (mucosa-associated lym-
phoid tissue lymphoma translocation gene 1), and TRAF6 
(tumor necrosis factor receptor-associated factor 6)[34-36]. 
Bcl10 and MALT1 are two indispensable proteins thought 
to synergize in NF-κB activation. TRAF6 is an E3 ubiq-
uitin ligase that catalyzes the formation of  polyubiquitin 
chains on IKK and facilitates NF-κB activation[37,38]. In 
addition, overexpression of  CARMA2 activates NF-κB. 
However, because CARMA2 is only expressed in placental 
tissues, its function remains undetermined.

Mechanism of activation
Upon receptor activation, CARMA proteins are recruited 
to the membrane proximal regions of  receptors by adap-
tor proteins, where they can be further phosphorylated by 

specific protein kinase C (PKC) isoforms, which results in 
activation and recruitment of  downstream effectors. In T 
cells, adhesion- and degranulation-promoting adaptor pro-
tein (ADAP) links CARMA1 with the membrane proxi-
mal region of  TCR and facilitates its phosphorylation and 
activation by PKC[39]. In ADAP-deficient T cells, TCR-
stimulated assembly of  the CARMA1/Bcl10/MALT1 
complex and activation of  NF-κB are substantially im-
paired[39]. Upon GPCR activation, CARMA3 is linked with 
the GPCR via β-arrestin 2. In β-arrestin-2-deficient mouse 
embryonic fibroblasts, GPCR (LPA)-induced NF-κB ac-
tivation is completely abolished[40]. Although it has been 
reported that β-arrestins inhibit GPCR-induced NF-κB 
activation[41,42], it is proposed that the phosphorylation sta-
tus of  β-arrestin 2 might critically regulate and determine 
its function in NF-κB activation.

After CARMA proteins are linked to the receptor 
proximal region, PKC is engaged in phosphorylation of  
CARMA proteins. In T and B cells, PKCθ and PKCβ, 
respectively, phosphorylate CARMA1 and play indispens-
able roles in TCR- and BCR-induced NF-κB activation. 
In both pathways, PKCθ and PKCβ phosphorylate similar 
residues on the link region of  CARMA1 and contribute 
to NF-κB activation[43,44]. PKC also functions in GPCR-
induced NF-κB activation. Several groups have revealed 
that PKCα or PKCδ might be required for GPCR-
induced NF-κB activation[33,45]. Also, PKCδ deficiency 
reportedly impairs LPA-induced NF-κB-dependent inter-
leukin (IL)-8 secretion[46], and dominant-negative PKCα 
substantially attenuates LPA-induced NF-κB activation[47], 
which indicates that PKCδ or PKCα is the key PKC iso-
form in phosphorylation and activation of  CARMA3.

In particular, in response to TCR and BCR activa-
tion, PKCθ and PKCβ are activated and phosphorylate 
S552 and S564/S649/S657, respectively, on the CARMA1 
linker region. Mutations on these residues abolish TCR- 
and BCR-induced NF-κB activation[48,49]. Similar to 
CARMA1, it has been proposed that some PKC isoforms 
activate NF-κB through CARMA3 in the presence of  
GPCR[32,33,47]. In determining which residue of  CARMA3 
is phosphorylated, we have demonstrated that CARMA3 
mutant S520A, an analog of  CARMA1 S552A, does not 
rescue TCR-induced NF-κB activation[49]; however, wild-
type CARMA3 does rescue TCR-induced NF-κB activa-
tion in CARMA1-deficient Jurkat T cells[49]. Therefore, 
CARMA3 S520 might be the crucial site for CARMA3 
phosphorylation and activation.

Upon phosphorylation, CARMA1 and CARMA3 con-
tribute to NF-κB activation by regulating the activity of  
the IKK complex through IKK NEMO polyubiquitina-
tion[33,38]. Although reports have suggested that phosphor-
ylation of  IKK indicates its activation, we have shown 
that phosphorylation of  IKK is not sufficient to induce 
its kinase activity[33]. Only after both IKKα and IKKβ 
are phosphorylated and IKK NEMO is ubiquitinated, 
is IKK activated and able to phosphorylate downstream 
IκBα[33,38]. In GPCR-induced NF-κB signaling, IKKα/β 
phosphorylation is controlled by a PKC-dependent but 

355 December 26, 2010|Volume 1|Issue 12|WJBC|www.wjgnet.com

CARD Coiled-coil
Linker

PDZ SH3 GUK

CARD Coiled-coil
Linker

PDZ SH3 GUK

CARMA1 (lymphoid tissue)

CARMA2 (placenta)

CARD Coiled-coil
Linker

PDZ SH3 GUK

CARMA3 (other tissues, liver, heart, kidney)

MAGUK Domain

CARD Coiled-coil
Linker

PDZ SH3 GUK

MAGUK domain

P

IKKα

NEMO

IKKβ

Bcl10

MALT1

B

A

Figure 1  CARD recruited membrane associated protein family members. 
A: The CARD recruited membrane associated (CARMA) protein family has 
three members: CARMA1, CARMA2 and CARMA3. Each member shares 
similar structures: an N-terminal caspase-recruitment domain (CARD), followed 
by a coiled-coil domain (CC), a linker region, a PDZ domain, an SH3 domain, 
and a GUK-like domain. Although all CARMA protein members share similar 
structures, they are transcribed by distinct genes, and expressed in different 
tissues. Specifically, CARMA1 is predominantly expressed in spleen, thymus, 
and peripheral blood leukocytes; CARMA2 is expressed only in placenta; and 
CARMA3 is expressed in a broad range of tissues, especially highly in liver, 
kidney, heart, and brain, but not in spleen, thymus, or peripheral blood lym-
phocytes; B: Upon activation, the linker region is phosphorylated. The CARD 
domain of CARMA protein interacts with Bcl10, which further binds MALT1, 
while PDZ and SH3 domains associate with the IκB kinase complex via NF-κB 
essential modulator (NEMO). Additionally, different CARMA proteins also inter-
act with other unique signaling molecules. For example, CARMA3 interacts with 
β-arrestin 2, whereas CARMA1 associates with ADAP.
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CARMA3-independent pathway, and IKK NEMO polyu-
biquitination is controlled by a CARMA3-dependent path-
way (Figure 2). Therefore, in CARMA3-deficient murine 
embryonic fibroblasts, IKKα/β phosphorylation remains 
intact, but IKK NEMO polyubiquitination is impaired. 
Consequently, IKK is not activated and is unable to phos-
phorylate IκBα, thus, LPA-induced NF-κB activation is 
completely abolished[33,38].

THE GPCR/CARMA3/NF-κB SIGNALING 
AXIS
At the molecular level, GPCR activates CARMA3, which 
in turn further activates NF-κB via multiple pathways[19]. 
However, which pathway is important in relaying signals 
to NF-κB via CAMRA3 remains to be determined. Upon 
ligand binding to receptors, G proteins such as Gαq, 
Gαi, and Gα12/13 are activated[50]. Gαq then activates 
phospholipase Cβ, which hydrolyzes phosphatidylinositol 
4 5-bisphosphate. With consequent production of  diac-
ylglycerol and release of  calcium from endoplasm, PKC 
is activated[51], thereby leading to NF-κB activation. This 

pathway promotes cell survival. In addition, Gαi activates 
the phosphatidylinositol 3-kinase (PI3K)/AKT and SOS/
RAS/ERK pathways[52,53], which activate NF-κB and pro-
mote cell spread, migration, invasion, and DNA synthesis. 
Furthermore, Gα12/13 activates NF-κB via the G12/13/
RHO/GEF/RHOA pathway and contributes to contrac-
tion and cell rounding[54]. 

CARMA3 is an indispensable signaling component in 
GPCR-induced NF-κB activation, therefore, it plays a cru-
cial role in the development of  diseases that result from 
the aberrant regulation of  GPCR/NF-κB signaling, such 
as tumor progression and atherogenesis. GPCR activates 
NF-κB via CARMA3, and NF-κB in turn upregulates the 
expression of  numerous genes that are involved in cell 
proliferation, anti-apoptosis, angiogenesis, migration, inva-
sion, metastasis and inflammation, such as cyclin D1[55], 
bcl-2[56], vascular endothelial growth factor (VEGF)[57,58], 
cyclooxygenase-2[59], matrix metalloproteinase (MMP)-2[58], 
MMP-9[58], urokinase plasminogen activator (uPA)[57,58,60], 
growth-regulated oncogene α[61-63], IL-6[64], and IL-8[58,65]. 
Thus, sustained NF-κB activity has emerged as a hallmark 
of  many diseases[5,21].

Recently, we have discovered that CARMA3 is indis-
pensable for GPCR-induced NF-κB activation in murine 
embryonic fibroblasts[33]. However, whether the GPCR/
CARMA3/NF-κB signaling axis is found in some specific 
diseases has yet to be completely elucidated. Below, we 
briefly describe the role of  the GPCR/CARMA3/NF-
κB signaling axis in ovarian cancer and atherogenesis, and 
speculate about its potential roles in other types of  cancer 
and diseases (Figure 3).

GPCR/CARMA3/NF-κB signaling axis in ovarian cancer
Ovarian cancer is among the four most common cancers 
worldwide. In 90% of  patients, LPA expression level is 
significantly elevated[66]. LPA is a typical GPCR ligand that 
activates NF-κB and leads to tumor progression. LPA re-
ceptors LPA1, LPA2, and LPA3 are aberrantly expressed 
in ovarian cancer cells[50]. Consequently, LPA serves as a 
diagnostic marker for ovarian cancer[67]. 

As a major active constituent of  serum, LPA is a water-
soluble phospholipid derivative of  an intermediate in 
intracellular metabolism[50] or it is produced extracellularly 
from lysophosphatidylcholine by phospholipase A1/A2 
or autotaxin (lysophospholipase D)[50,68,69]. Autotaxin is a 
widely expressed extracellular exophosphodiesterase that 
contributes to synthesis of  LPA and promotes tumor 
invasion and metastasis[70]. LPA activates NF-κB and 
exerts striking wide hormone- and growth-factor-like ef-
fects, such as proliferation, apoptosis, differentiation, and 
chemotaxis[50]. Mechanistically, LPA activates NF-κB and 
transactivates numerous NF-κB target genes, such as cy-
clin D1, VEGF, uPA, IL-6, and IL-8. All of  these genes 
play crucial roles in tumor progression.

Hu et al[55] have demonstrated that, at concentrations 
found in ascitic fluid, LPA can directly promote ovar-
ian tumor growth by increasing the expression of  cyclin 
D1, a key G1-phase checkpoint regulator, which results 
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Figure 2  Working model of CARD recruited membrane associated protein 
3-dependent nuclear factor-κB activation in the G protein-coupled recep-
tor (lysophosphatidic acid) signaling pathways. G protein-coupled receptor 
(GPCR) [lysophosphatidic acid (LPA)]-induced nuclear factor (NF)-κB activa-
tion involves the recruitment of CARD recruited membrane associated protein 
3 (CARMA3) to the receptor by β-arrestin 2, which leads to formation of the 
CARMA3/Bcl10/MALT1/TRAF6 complex, which results in polyubiquitination of 
the IκB kinase (IKK) complex. A CARMA3-independent, PKC-dependent signal 
induces phosphorylation of the IKK complex by an unknown kinase in the pres-
ence of GPCR. After IKK is both polyubiquitinated [NF-κB essential modulator 
(NEMO)] and phosphorylated (IKK), it is activated, which leads to NF-κB activa-
tion. In the absence of CARMA3, GPCR (LPA)-induced polyubiquitination of the 
IKK complex is defective, which results in defects in IKK and NF-κB activation. 
WT: Wild-type; Ub: Ubiquitin.
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in cell proliferation. In addition, LPA stimulates secretion 
of  VEGF[71] and promotes ovarian cancer angiogenesis, 
migration, and invasion[72]. Furthermore, LPA enhances 
secretion of  IL-6, a pleiotropic cytokine that is involved 
in ovarian carcinogenesis via the Gi/PI3K/AKT/NF-κB 
pathway[64].

Recently, Li et al[60] have shown that LPA-induced, NF-
κB-mediated ovarian cancer migration and invasion is 
partially dependent on expression of  the NF-κB target 
gene uPA. Mutation of  an NF-κB binding site in the uPA 
promoter region results in reduction of  LPA-induced 

activation of  the uPA promoter by > 80%. Li et al[60] have 
concluded that the Gi/Ras/Raf/NF-κB/uPA signaling 
cascade is responsible for LPA-induced ovarian cancer cell 
migration and invasion.

More recently, Mahanivong et al[47] have demonstrated 
that the LPA/CARMA3/NF-κB signaling axis is found 
in ovarian cancer cells. In this study, they observed that 
CARMA3 nucleated the LPA/NF-κB signaling pathway. 
LPA-induced NF-κB activation and ovarian cancer cell 
migration and invasion are substantially attenuated upon 
silencing CARMA3, Bcl10, and MALT1 with specific siR-
NAs. Mechanistically, Mahanivong et al[47] have found that 
the Ras/PKCα signaling cascade is involved and PKC 
might phosphorylate CARMA3. Thus, they delineated 
the entire GPCR/CARMA3/NF-κB signaling pathway in 
ovarian cancer cells.

Before the discovery of  CARMA3, accumulating evi-
dence suggested that the LPA/NF-κB signaling axis con-
tributes to ovarian cancer tumorigenesis and progression, 
whereas the precise signaling components and mechanisms 
are not well defined. The study by Mahanivong et al[47]  
has provided the first evidence that the LPA/CARMA3/
NF-κB signaling axis exists in ovarian cancer, plays impor-
tant roles in ovarian cancer cell progression, and is a novel 
therapeutic target for ovarian cancer. In addition, it offers 
insight into other types of  cancer. For example, aberrant 
regulation of  LPA/NF-κB/IL-6/8 signaling pathways has 
been confirmed in breast cancer[57,61,73-82], colon cancer[83-88], 
prostate cancer[89-94], and lung cancer[95,96]. Inhibition of  
LPA activation or NF-κB signaling has been shown to 
prevent tumor progression and enhance sensitivity of  che-
motherapy[82]. Although the roles of  CARMA3 in tumor 
progression have yet to be confirmed in these cancer types, 
the LPA/CARMA3/NF-κB signaling axis might also be 
found in these cancer types due to the high conservation 
of  signaling pathways in most cell types. Future research 
will focus on the role of  CARMA3 in these cancer types.

GPCR/CARMA3/NF-κB signaling axis in atherogenesis
Ang Ⅱ is another type of  GPCR ligand. It is a seven-
amino-acid oligopeptide that is derived from Ang Ⅰ and 
angiotensinogen. Ang Ⅱ is a powerful hormone in the 
blood and regulates blood pressure[97]. In addition, it plays 
a crucial role in atherogenesis[98]. Atherogenesis results 
from vascular inflammation[99-101]. Epidemiologically, the 
hallmark of  vascular inflammation is the elevation of  
IL-6[21]. IL-6 leads to the recruitment of  circulating leu-
kocytes and macrophages into the vascular wall, thereby 
leading to oxidation of  lipoprotein, and atherogenesis[21]. 
It has been shown that Ang Ⅱ infusion induces IL-6 pro-
duction, which results in atherogenesis and vascular dis-
eases[102]. IL-6 is an NF-κB targeted gene. Accumulating 
evidence has also illuminated the central role of  NF-κB 
as a signal regulator that controls the process of  vascular 
inflammation[21]. Therefore, the NF-κB/IL-6 signaling 
pathway plays a crucial role in atherogenesis and vascular 
inflammation.

Although Ang Ⅱ is known to activate NF-κB and 
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Figure 3  Proposed working model of G protein-coupled receptor/CARD 
recruited membrane associated protein 3/nuclear factor-κB signaling 
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protein-coupled receptor (GPCR) [lysophosphatidic acid (LPA), angiotensin 
(Ang) Ⅱ] activates CARD recruited membrane associated protein 3 (CARMA3), 
which in turn triggers nuclear factor (NF)-κB activation. NF-κB plays an impor-
tant role in regulation of many physiological and pathological processes. Aber-
rant regulation of the GPCR/CARMA3/NF-κB signaling axis results in cancer, 
cardiovascular diseases, and probably other diseases. Mechanistically, it pro-
motes cell proliferation, angiogenesis and metastasis, and inhibits apoptosis. 
In addition, it also induces inflammation. CARMA3 is indispensable for GPCR 
(LPA, Ang Ⅱ)-induced NF-κB activation. Consequently, it plays pivotal roles in 
GPCR-induced tumor progression and cardiovascular diseases. Full definition 
of GPCR/CARMA3/NF-κB signaling events could aid the discovery of new drug 
targets and production of profoundly significant clinical therapies for cancer, 
cardiovascular diseases, and many other diseases. TNF: Tumor necrosis fac-
tor; IL: Interleukin; VEGF: Vascular endothelial growth factor; uPA: Urokinase 
plasminogen activator; MMPs: Matrix metalloproteinases.
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IL-6, the detailed molecular mechanism has remained elu-
sive. Recently, McAllister-Lucas et al[32] have revealed that 
CARMA3 is an essential mediator of  Ang-Ⅱ-dependent 
NF-κB signaling. They have shown that all components 
of  the CARMA3/Bcl10/MALT1 signaling pathway are 
present within the liver in the Ang-Ⅱ-responsive HepG2 
hepatocyte cell model. Ang-Ⅱ-induced NF-κB activa-
tion is significantly abolished, upon knocking down of  
CARMA3, Bcl10 or MALT1. This study first provided the 
evidence that the CARMA3/Bcl10/Malt1 signalosome 
does exist and is indispensable for NF-κB activation upon 
Ang Ⅱ receptor activation in hepatic cells.

To explore further the physiological and pathologi-
cal function of  CARMA3 signaling in the cardiovascular 
system, McAllister-Lucas et al[98] recently have revealed 
that CARMA3, Bcl10 and MALT1 are also expressed in 
vascular tissues. Consistent with previous results, Ang-
Ⅱ-induced NF-κB activation was significantly impaired 
upon knocking down of  CARMA3, Bcl10, and MALT1 
in vascular smooth muscle cells. Most importantly, when 
they crossed the Bcl10-/- and ApoE-/- mice, they found 
that Bcl10 deficiency protected ApoE-/- mice from Ang-
Ⅱ-dependent atherosclerosis and aortic aneurysms. 
Mechanistically, they revealed that serum levels of  several 
pro-inflammatory mediators, which have all been im-
plicated in the pathogenesis of  atherogenesis, were also 
lower in ApoE-/- Bcl10-/- mice than in ApoE-/- mice (P < 
0.01)[98]. Together, these results first demonstrated that 
Ang Ⅱ/CARMA3/NF-κB signaling also exists and plays 
an important role in atherogenesis in addition to cancer. 
Further research will focus on its function and therapeutic 
application in atherogenesis and other vascular diseases, 
such as LPA- and NF-κB-induced ischemia-reperfusion 
injury[103,104] and coronary artery disease[104,105].

OUTLOOK
The GPCR/CARMA3/NF-κB signaling axis is a novel 
signaling pathway. GPCRs belong to a large family, which 
comprises more than 1000 receptors. Characterization of  
the role of  CARMA3 in the GPCR-induced NF-κB acti-
vation signaling pathway will help create a holistic view of  
GPCR-induced NF-κB activation in the progression of  
various types of  cancer (ovarian, colon, prostate, breast, 
and head and neck)[50,84], atherogenesis, as well as other 
diseases, such as LPA- and NF-κB-induced ischemia-
reperfusion injury[103,104] and coronary artery disease[104,105]. 
With a strongly increasing tendency to identify more LPA-
like ligands, such as the recently identified Ang Ⅱ and en-
dothelin-1, which also activate NF-κB via CARMA3 and 
contribute to many diseases, CARMA3 is expected to play 
crucial roles in a broad range of  physiological and patho-
logical conditions.

Future research will define the molecular mechanisms 
underlying induction of  NF-κB activation by GPCR, 
β-arrestin 2, CARMA3, PKC, IKK, and whether CAR-
MA3 signaling induces NF-κB activation under non-GP-
CR receptors. Also, we will determine what other novel 

signaling pathways CARMA3 mediates, and investigate the 
aberrant regulation of  signaling cascades in diseases. Char-
acterization of  the roles and mechanisms of  CARMA3 
signaling will aid the discovery of  new drug targets and be 
of  major significance for many diseases and therapies.
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