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Abstract
Inhibitors of protein deacetylases have recently been 
established as a novel therapeutic principle for several 
human diseases, including cancer. The original notion of 
the mechanism of action of these compounds focused 
on the epigenetic control of transcriptional processes, 
especially of tumor suppressor genes, by interfering 
with the acetylation status of nuclear histone proteins, 
hence the name histone deacetylase inhibitors was 
coined. Yet, this view could not explain the high speci-
ficity for tumor cells and recent evidence now suggests 
that non-histone proteins represent major targets for 
protein deacetylase inhibitors and that the post-transla-
tional modification of the acetylome is involved in vari-
ous cellular processes of differentiation, survival and cell 
death induction. 
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INTRODUCTION
Histones were historically viewed as structural proteins 
allowing the chromatin to be folded into the nucleus. 
The discovery of  post-translational modifications like 
methylation and acetylation in the 1960s proposed func-
tions in addition to mere scaffolding of  DNA[1,2]. Acety-
lation and deacetylation are achieved by two groups of  
highly conserved enzyme families termed histone acetyl 
transferases (HAT) and histone deacetylases (HDAC) 
because histones were their first identified targets.

HISTONE ACETYL TRANSFERASES
HAT comprise an evolutionary highly conserved group of  
enzymes. The first HAT was identified in yeast as Hat1[3] 
and so far more than 30 different HATs with known 
substrate specificity have been described in mammals[4-6]. 
Two general classes of  HATs have been described: A-type 
HATs which mainly regulate transcriptional processes and 
show a nuclear localization and B-type HATs which are 
predominantly expressed in the cytoplasm[7,8].

HATs usually transfer acetyl groups to ε-amino groups 
of  lysine residues in basic core histone proteins which 
alters the DNA-histone or DNA-protein interaction due 
to altered electrochemical properties between positively 
charged histones and the negatively charged DNA back-
bone[9,10]. This and additional steric effects of  acetylated 
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lysine residues render the chromatin in an “open” con-
formation and thus facilitates the binding of  transcription 
factors[11]. These post-translational modifications were 
viewed as a key regulatory process for gene transcription 
and hence the term “histone code” was coined[12-14]. As the 
effect of  HAT and HDAC are rather broad, the concept 
of  a code that specifically regulates target gene expression 
has been weakened and data from gene array experiments 
show that only 2%-10% of  all genes are regulated by this 
mechanism[15,16].

HISTONE DEACETYLASES
Today, four different classes with at least 18 subtypes of  
HDAC have been described[11,17,18]: class Ⅰ (Rpd3-like) 
represents the ubiquitously expressed zinc-dependent 
isotypes HDAC1, 2, 3 and 8. These isotypes are usually 
localized in the nucleus and act as transcriptional core-
pressors. Class Ⅱ (Had1-like), consisting of  HDAC4, 5, 6, 
7, 9 and 10, shows a tissue-specific distribution and is lo-
calized in the nucleus and the cytoplasm, although histone 
proteins also seem to represent the major target. Class 
Ⅲ (sirtuins) represents the zinc-independent enzymes 
SIRT1 to SIRT7 that have been associated with cell pro-
liferation and cell cycle control. HDAC11 has homology 
to the class Ⅰ HDACs but shows a more restricted tissue 
distribution and also has a cytoplasmic localization and is 
therefore considered a distinct 4th class of  HDAC[19,20]. 
Interestingly, HDAC6 and HDAC10 (also designated as 
class Ⅱb) have two catalytic sites and show a mainly cyto-
plasmic localization.

The overexpression of  HDAC isoenzymes has also 
been linked to a variety of  human cancer diseases[17], e.g. 
HDAC1 in gastric[21] or breast cancer[22], HDAC3 in colon 
cancer[23] and HDAC6 also in breast cancer[24], without a 
complete understanding of  whether this overexpression 
is a precondition of  the malignant phenotype or a conse-
quence of  a general process of  gene dysregulation. Little 
is known about the different functions of  the HDAC iso-
types in the investigated tissues.

INHIBITORS OF HISTONE DEACETYLASES
Several chemically distinct histone deacetylase inhibitors 
(HDACi) have been developed and are currently under-
going clinical trials[11,18]. So far, only the hydroxamate 
vorinostat [suberoylanilide hydroxamic acid (SAHA)] has 
been approved for clinical use in patients with cutane-
ous T-cell lymphoma[25]. Generally, hydroxamates like 
vorinostat, panobinostat (LBH589), trichostatin A or 
belinostat (PXD101) are unspecific HDACi with activity 
against classes Ⅰ, Ⅱa, Ⅱb and Ⅳ of  HDAC[26]. Other 
compounds specifically inhibit class Ⅰ HDACs, e.g. the 
benzamide MS-275 or the cyclic tetrapeptide depsipep-
tide, or class Ⅰ and Ⅱa HDACs, e.g. the short-chain fatty 
acids valproic acid or butyrate[26,27]. As the various roles 
of  HDAC isotypes are still unclear it is also under debate 
whether isotype or class specific HDACi should be pre-

ferred over the broad-spectrum inhibitors. The selectiv-
ity of  the compounds has also been demonstrated by a 
divergent pattern of  acetylation of  α-tubulin, histone 
H3 and histone H4, which indicates that these proteins 
may not be suitable biomarkers for the clinical use of  all 
HDACi[26,28]. Except for the HDAC6-specific compound 
tubacin[29], all classes of  HDACi lead to a G1/S-phase ar-
rest of  the cell cycle which is commonly associated with 
an increased expression of  the endogenous cyclin-depen-
dent kinase inhibitor p21cip1/waf1[17,30,31]. Although p21cip1/waf1 
has been shown to be a transcriptional target of  p53[32-34], 
HDACi mediated induction of  p21cip1/waf1 can occur by 
p53-dependent and -independent mechanisms[35,36], and 
our own results showed that the anti-tumor effect of  
HDACi is independent of  p53 but is facilitated by the 
absence or inhibition of  p21cip1/waf1[37-39]. 

CLINICAL APPLICATION AND 
EXPERIENCE WITH HDACI
Today, only the pan-deacetylase inhibitor SAHA (vorino-
stat) has been approved for clinical use in cutaneous T-cell 
lymphoma by the FDA[40]. Other HDACi are currently 
undergoing intensive clinical investigations in various 
human tumor entities, with most trials focusing on he-
matologic indications such as acute or chronic leukemias, 
myelodysplastic syndrome or lymphomas[41,42]. Although 
the currently available results are promising with regard 
to their overall response rates (usually around 30%), no 
long-term experience with these compounds has been 
reported. From a clinical point of  view, it is also unclear 
whether the more specific class Ⅰ and Ⅱ inhibitors like 
MS-275 or the pan-deacetylase inhibitors like SAHA or 
panobinostat provide better treatment responses. Inter-
estingly, the toxicity profiles of  HDACi are comparable, 
mainly gastrointestinal side effects (diarrhea), myelosup-
pression and cardiac QT prolongation, over the different 
types of  HDACi. Most HDACi have a rather short half-
life in plasma (2-8 h) and undergo hepatic metabolization 
with subsequent intestinal excretion[43-48]. Yet, the effect 
of  HDACi on histone H3 acetylation in peripheral blood 
mononuclear cells is stable for approximately 10 h after 
oral dosing[43]. This was initially considered a suitable bio-
marker for the efficacy of  HDACi in tumors but several 
studies were unable to establish a correlation between 
peripheral H3 acetylation and tumor target effects, prob-
ably due to the numerous non-histone targets of  HDACi 
to be discussed later[41,42].

APOPTOSIS INDUCTION BY HDACI
HDACi have been demonstrated to be potent induc-
ers of  apoptotic cell death in human tumor cells and 
also show strong effects in various animal models and 
in clinical trials. Interestingly, these compounds show a 
high specificity for tumor cells with a so far unknown 
mechanism of  action. This observation (along with the 
low number of  genes affected by HDACi) is in contrast 
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to the established view of  these compounds as general 
modulators of  chromatin and transcription.

It was demonstrated that HDACi induce apoptotic cell 
death by activating both, the extrinsic (TRAIL-mediated) 
and the intrinsic (mitochondria-related) pathway of  apopto-
sis, e.g. by upregulation of  death receptors (hDR4, hDR5) 
or suppression of  bcl-2 family proteins[38,49-56]. Although 
most of  these effects are also mediated by the transcrip-
tional control of  hyperacetylated p53 or histones[57], other 
pro-apoptotic effects of  HDACi, e.g. the generation of  re-
active oxygen species, also contribute to this effect[58-60] and 
are currently not understood at the molecular level.

Additional anti-cancer effects of  HDACi include a syn-
ergistic enhancement of  other cytostatic agents, including 
gemcitabine[61], 5-fluorouracil and irinotecan[62], but also tar-
geted agents like imatinib[63], bortezomib[64], sorafenib[65,66] 
or antibodies like trastuzumab[67]. In vivo, HDACi also 
inhibit angiogenesis by decreasing the expression of  pro-
angiogenic factors like vascular endothelial growth factor 
and hypoxia inducible factor-1α (HIF-1α) or inducing 
endothelial cell death[39,68-71]. These effects are also closely 
associated with an inhibition of  invasion and metastasis by 
HDACi[72,73].

HDACi have also been associated with a variety of  
immunomodulatory effects, e.g. by hyperacetylation of  
STAT1, STAT3 or NF-κB and a subsequent modulation 
of  downstream inflammatory pathways[74-80]. Besides these 
gene regulatory effects, HDACi can also exert immuno-
logic effects by affecting the acetylation status of  regular 
cellular proteins which are then presented via major histo-
compatibility complexes Ⅰ and Ⅱ.

NON-HISTONE TARGETS AND EFFECTS 
OF DEACETYLASE INHIBITORS
Post-translational modifications of  proteins, including 
phosphorylation, ubiquitination, methylation, acetylation 
and other processes, are important regulators of  protein 
function and homeostasis in eukaryotic cells[81]. Although 
protein acetylation at lysine residues was discovered in 
the 1960s[2], analysis of  the acetylome was hampered due 
to technical reasons[82,83]. Two recent studies have now 
provided new insights into the acetylome as well as the 
effects of  different HDACi, and showed that various cel-
lular networks, e.g. RNA splicing, DNA damage repair, 
cell cycle control, nuclear transport, actin remodeling, ri-
bosome and chaperone function are intensively affected 
by changes in protein acetylation[84,85] which were previ-
ously postulated on a theoretical basis[86]. These stud-
ies also showed that > 20% of  mitochondrial proteins 
are acetylated, which provides a functional connection 
between the localization of  the class Ⅲ HDAC to mito-
chondria[87,88] and the effect of  HDACi on the mitochon-
drial transmembrane potential (∆Ψm)[37,38,61]. Analysis of  
the acetylome revealed for the first time that this mecha-
nism of  regulation is as complex as the known pathways 
of  protein phosphorylation, although no clear signaling 
cascades have be established so far[10,82].

Besides the already discussed effects via acetylation of  
transcription factors like STAT1, STAT3, Nf-κB and oth-
ers[10], HAT and HDAC enzymes are also part of  multi-
enzyme complexes involved in post-transcriptional pre-
mRNA processing, mRNA stability and translation, e.g. by 
interfering with DNA methyltransferases[89,90]. Recently, an 
influence of  HDACi on miRNA expression profiles has 
been described[91].

Protein acetylation contributes to the protein turnover 
via proteasomal and non-proteasomal pathways[92]. Inter-
estingly, acetylation can either prevent ubiquitination and 
subsequent proteasomal degradation (e.g. for p53 or p73) 
or enhance the degradation of  tagged proteins (e.g. HIF-
1α or pRb)[93,94]. The stabilization of  proteins by acetyla-
tion has been shown to involve sites also necessary for the 
effect of  ubiquitin ligases, e.g. at C-terminal lysine residues 
of  p53[95]. In contrast, HDACi have also been shown to 
induce the expression of  E2 and E3 ubiquitin conjugases 
and ligases Ubc8 and RLIM that can then lead to enhanced 
ubiquitination of  target proteins[96,97]. Although these con-
tradicting phenomena are not completely solved, most 
reports show a synergistic effect of  HDACi with a protea-
some inhibitor[98-101]. The tolerability of  these combination 
therapies still needs to be investigated in clinical trials.

DACI AND THE UNFOLDED PROTEIN 
RESPONSE 
The correct folding of  proteins by chaperones is a crucial 
step for homeostasis and maintenance of  cellular physiol-
ogy. Chaperones like heat shock proteins (Hsp) are also a 
direct target of  deacetylases[102]. Hyperacetylation inacti-
vates chaperone function, e.g. of  Hsp90, which then leads 
to misfolding and degradation of  Hsp90 target genes[103,104]. 
This pathway has been demonstrated, among many oth-
ers, for the oncogene bcr-abl[105] and the receptor tyrosine 
kinase Erb2[67].

Chaperone function also plays a critical role in the 
activation of  the unfolded protein response (UPR). This 
pathway is part of  a cellular stress response when physi-
ologic conditions of  protein folding at the endoplasmic 
reticulum (ER) are disturbed[106], e.g. after nutrient depriva-
tion or by hyperacetylation of  lysine residues[107]. ER stress 
and UPR can lead to apoptotic cell death by activation of  
caspase 4/12[108-110] and inhibition of  p53[111]. Vorinostat 
was recently shown to inhibit the function of  the chaper-
one protein GRP78 which leads to activation of  PERK 
and execution of  apoptosis[112]. Interestingly, our own data 
with the pan-deacetylase inhibitor panobinostat (LBH589) 
also shows that apoptotic cell death is not achieved via 
the canonical intrinsic or extrinsic pathways but by the 
contribution of  the UPR with activation of  caspase 12[39]. 
However, it is unclear if  this mechanism is activated via 
hyperacetylation of  Hsp chaperones or by so far unknown 
proteins that might e.g. regulate protein export from the 
ER or the Golgi apparatus. ER stress and the UPR can 
also activate autophagy as another means of  clearing mis-
folded proteins, which can also lead to cellular death path-
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ways[113]. Several HDACi have been shown to induce au-
tophagic cell death[114-117] and interestingly, vorinostat could 
also abrogate the survival mechanism of  autophagy[118].

CONCLUSION 
Deacetylase inhibitors interfere with a plethora of  cel-
lular proteins that are involved in regulating central 
processes of  cellular homeostasis and survival. In cancer 
cells, the interference with these pathways opens new 
ways for therapy and the current pharmacologic inhibi-
tors of  deacetylases are clearly potent agents with more 
effects than only chromatin remodeling. Further stud-
ies are thus urgently warranted to depict the above de-
scribed pathways and mechanisms more clearly to gain 
a better understanding of  the high tumor cell specificity 
of  these compounds. 
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