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Abstract
The airway innate immune system maintains the first line of defense against 
respiratory infections. The airway epithelium and associated immune cells protect 
the respiratory system from inhaled foreign organisms. These cells sense 
pathogens via activation of receptors like toll-like receptors and taste family 2 
receptors (T2Rs) and respond by producing antimicrobials, inflammatory 
cytokines, and chemokines. Coordinated regulation of fluid secretion and ciliary 
beating facilitates clearance of pathogens via mucociliary transport. Airway cells 
also secrete antimicrobial peptides and radicals to directly kill microorganisms 
and inactivate viruses. The phosphoinositide-3-kinase/protein kinase B (Akt) 
kinase pathway regulates multiple cellular targets that modulate cell survival and 
proliferation. Akt also regulates proteins involved in innate immune pathways. 
Akt phosphorylates endothelial nitric oxide synthase (eNOS) enzymes expressed 
in airway epithelial cells. Activation of eNOS can have anti-inflammatory, anti-
bacterial, and anti-viral roles. Moreover, Akt can increase the activity of the 
transcription factor nuclear factor erythroid 2 related factor-2 that protects cells 
from oxidative stress and may limit inflammation. In this review, we summarize 
the recent findings of non-cancerous functions of Akt signaling in airway innate 
host defense mechanisms, including an overview of several known downstream 
targets of Akt involved in innate immunity.

Key Words: Lung; Nitric oxide synthase; Nuclear factor erythroid 2 related factor-2; 
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Core Tip: The human respiratory epithelium is continuously exposed to pathogens during 
each inhalation. Protection of the lung depends on complex signaling networks that 
activate host defense mechanisms. The kinase protein kinase B (Akt) interacts with 
numerous cellular proteins involved in airway innate immunity. In this review, we discuss 
the Akt pathway and known downstream targets involved in airway innate immunity.

Citation: Gopallawa I, Lee RJ. Targeting the phosphoinositide-3-kinase/protein kinase B 
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INTRODUCTION
The respiratory epithelium is the first-point of defense in the respiratory system, which 
is continuously exposed to a wide variety of inhaled pathogens. The classic role of the 
respiratory epithelium in airway defense is clearance of inhaled microbes via ciliary 
beating and mucociliary clearance (MCC)[1]. However, the respiratory epithelium is 
complex and contains not only epithelial cells but also resident macrophages, dendritic 
cells, and other leukocytes. All of these cells sense infection through protein receptors 
like toll-like receptors (TLRs) and taste family 2 receptors (T2R) bitter taste receptors[2] 
which activate production of a wide variety of antimicrobial peptides and radicals as 
well as inflammatory cytokines and chemokines. For example, stimulation of TLRs on 
airway epithelial cells regulates the expression of genes encoding multiple cytokines 
and antimicrobial peptides[3] via nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-kB) signaling[4]. Activation of the innate immune system thus stimulates 
adaptive immunity and is also associated with apoptosis and other signal transduction 
pathways.

One understudied protein in airway innate immunity is protein kinase B, also 
known as Akt, a widely expressed serine/threonine kinase[5]. Activation of Akt by 
upstream kinases such as phosphoinositide-3-kinase (PI3K) stimulates 
phosphorylation of downstream targets involved in cell proliferation, apoptosis, 
and/or cell growth depending on the signaling context. Akt has also recently been 
suggested to play a role in innate immunity by regulating immune cell development, 
survival, and function[6].

Akt also has other targets important for innate immune responses of the airway 
epithelial cells themselves. Akt phosphorylates and activates endothelial (e) nitric 
oxide synthase (NOS), an enzyme that produces nitric oxide (NO)[7]. NO has many 
biological functions in the airway, including activating smooth muscle relaxation, 
increasing ciliary beat frequency, and having direct bactericidal and anti-viral 
effects[8]. Another target activated by Akt is nuclear factor erythroid 2 related factor-2 
(Nrf-2), a transcriptional factor that drives the expression of antioxidant genes that can 
protect against oxidative stress-induced by microbes as well as over-active 
inflammatory pathways[9].

Abnormalities of innate immunity are linked with numerous airway diseases 
including chronic rhinosinusitis[10-12] and cystic fibrosis (CF)[13]. This review focuses on 
the Akt-dependent regulation of innate immunity in the lung and the potential role of 
Akt in protecting the airways against infection. Emphasis will be placed on novel 
directions for drug development. Furthermore, we summarize the current 
understanding of the role of the airway epithelium in Akt-dependent innate immunity 
and host defenses against bacterial infections in CF.

OVERVIEW OF THE PHOSPHOINOSITIDE-3-KINASE / PROTEIN KINASE B 
PATHWAY
Akt was identified almost 30 years ago by its homology to the v-akt retroviral 
oncogene[5] and subsequently found to be a 57 kDa serine and threonine protein kinase 
that plays a pivotal role in cell proliferation, survival, and death[14,15] (Figure 1). There 
are three conserved mammalian Akt isoforms: Akt1 (PKBa), Akt2 (PKBb), and Akt3 
(PKBg). Some Akt isoform knockout studies conducted in mice have suggested there 
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Figure 1  Protein kinase B signaling pathway. Stimulation of receptor tyrosine kinases or G-protein-coupled-receptors activates phosphatidylinositol (3,4,5)-
trisphosphate (PIP3) which phosphorylates phosphatidylinositol 4,5-bisphosphate (PIP2) at the plasma membrane to generate PIP3. Inactive Akt in the cytosol gets 
recruited to the plasma membrane where it gets phosphorylated at T308 in the kinase domain by phosphoinositide dependent kinase 1 and at S473 in the regulatory 
domain by mTORC2 resulting in full activation; Signal termination is achieved by PTEN where it dephosphorylates PIP3 to PIP2; Additionally, PP2A and PHLPP have 
shown to regulate Akt kinase activity by direct dephosphorylation; Activation of Akt is known to regulate crucial transcription factors such as nuclear factor-kB (NF- 
kB), CREB, FOXO, and Nrf-2, each of which regulates a variety of target genes that regulate cell survival, proliferation, differentiation, migration, and metabolism; Akt 
is known to phosphorylate IkB kinase which phosphorylates IkB-a releasing NF-kB to translocate into the nucleus and transcribe genes; Activation of Akt might 
increase or suppress NF-kB regulated genes (IL-8, IL-18) depending on the stimulus. Both FOXO and CREB are known to regulate apoptosis and phosphorylation of 
these transcription factors by Akt, has shown to control cell survival. Nrf-2 activation by Akt increases the production of antioxidant genes such as HO-1 and NQO-1 
that counteracts oxidative stress and inflammation. RTK: Receptor tyrosine kinase; GPCR: G-protein-coupled receptor; PI3K: Phosphoinositide-3-kinase; PIP2: 
Phosphatidylinositol 4,5-bisphosphate; Akt: Protein kinase B; PDK1: Phosphoinositide dependent kinase 1; mTORC2: Mammalian target of rapamycin; PTEN: 
Phosphatase and tensin homolog; PHLPP: PH domain and leucine rich repeat protein phosphatases; NF-kB: Nuclear factor kappa-light-chain-enhancer of activated B 
cells; CREB: cAMP response element binding protein; FOXO: Forkhead family of transcription factors; Nrf-2: Nuclear factor erythroid 2 related factor-2; PP2A: Protein 
phosphatase 2; HO-1: Heme oxygenase; NQO-1: NADPH quinone dehydrogenase 1.

may be specific functions for certain isoforms in growth, metabolism, and 
development, though this may be in large part due to differences in the tissue 
distributions of the isoforms[15,16]. All three isoforms of Akt contain an N-terminal 
Pleckstrin Homology (PH) domain, a kinase domain, and a C-terminal regulatory 
domain. Activation of some receptor tyrosine kinases (RTKs) and/or some G-protein-
coupled-receptors (GPCRs) by growth factors such as insulin-like growth factor-1 can 
activate the Akt pathway via plasma membrane recruitment and activation of class I 
PI3K isoforms[15,17]. Activated PI3K can phosphorylate phosphatidylinositol 4,5-
bisphosphate (PI4, 5P2) to generate phosphatidylinositol (3,4,5)-trisphosphate (PIP3). 
Inactive cytosolic Akt gets subsequently recruited to the membrane via the interaction 
of PIP3 with the Akt PH domain. Akt can also be recruited to the membrane by PI3, 4P2 
produced by class II PI3K phosphorylation of PI4P[15].

Akt localization to the plasma membrane induces conformational changes that 
allow phosphoinositide-dependent protein kinase-1 (PDK-1) to phosphorylate 
threonine (T) 308 within the activation loop of the Akt1 kinase domain (corresponding 
to T309 and T305 in Akt2 and Akt3, respectively) and mTOR Complex 2 (mTORC-2) to 
phosphorylate serine (S) 473 within the hydrophobic C-terminal Akt regulatory 
domain (corresponding to S474 and S471 in Akt2 and Akt3, respectively)[15]. Maximal 
activation of the kinase requires phosphorylation of both residues[15]. Multiple other 
phosphorylation sites exist in Akt that can be phosphorylated by kinase complexes like 
mammalian target of rapamycin (mTORC2) (T450 in Akt1), CK2 (S129 in Akt1) GSK-3a 
(T312 in Akt1), cyclin A-CDK2 (S477 and T479 in Akt1), though how they modulate 
Akt activity is less clear[15].

Once Akt is activated, it can phosphorylate multiple downstream targets and/or 
redistribute to many cellular compartments, including the nucleus[18]. A study done 
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with a genetically-encoded fluorescent biosensor for Akt activity showed that its 
activity in the nucleus was less rapid but more sustained compared with cytosolic Akt 
activity[19], suggesting that Akt can be regulated differently in the cytosol vs nucleus or 
other organelles. Activation of Akt is also negatively regulated by phosphatases, 
including phosphatase and tensin homolog (PTEN) that antagonizes PI3K signaling by 
dephosphorylating PIP3 and converting it back to PI4, 5P2. Protein phosphatase 2 
(PP2A) and PH domain and Leucine-rich repeat Protein Phosphatases (PHLLP) also 
reduce Akt activation by dephosphorylation at T308 and S473, respectively[15].

Dysregulation of the PI3K/Akt pathway is associated with diabetes, cancer 
neurological disorders, and cardiovascular diseases[15]. Numerous studies have 
reported that components of the Akt signaling pathway are frequently mutated in 
multiple types of cancer; in some cases, this is associated with tumor 
aggressiveness[18]. In many tumors, Akt activity is upregulated via one or more 
mechanisms including loss of PTEN, mutations in the PI3K catalytic subunit, or loss of 
expression of phosphatases such as leucine rich repeat protein phosphatases (PHLPP)1 
and PHLPP2 that dephosphorylate Akt[15,20].

Beyond the well-known functions of Akt in cell proliferation and survival and, 
consequently, the pathophysiology of cancer, the Akt pathway has several roles in the 
immune system. Akt signaling is important for the maturation and survival of 
dedicated immune cells. Activation of the Akt pathway is a necessity for the 
development of human dendritic cells (DCs)[21] and survival of activated B cells[22]. 
Furthermore, within airway epithelial cells, there are many known downstream 
targets of Akt that have important innate immune functions. The below sections will 
describe the innate immune system of the respiratory epithelium and importance of 
some known Akt targets in airway innate immunity.

OVERVIEW OF RESPIRATORY INNATE IMMUNITY
The innate immune system is the first line of defense against potentially dangerous 
microbes, and its main role is to recognize pathogens and initiate fast defensive 
responses. Because the human respiratory tracts are exposed to a myriad of pathogens 
daily, the immune system needs to recognize and initiate host defenses against these 
pathogens[11]. Akt may regulate multiple points of the airway innate immune system as 
well as the airway’s ability to detect pathogens.

Mucociliary clearance: The physical defense of the airways
The primary physical innate defense mechanism of the airways is mucociliary 
clearance (MCC) (Figure 2). The main functional components of MCC are mucus 
production by airway secretory cells[23] and mucus transport by airway ciliated 
cells[11,24-26]. Cilia are specialized organelles lining airway epithelial cells. Mucus traps 
inhaled particulates and pathogens, and coordinated ciliary beating drives debris-
laden mucus toward the pharynx, where it is swallowed or expectorated[27]. The 
airway surface liquid (ASL) is composed of the mucus layer that rides on top of the 
periciliary liquid (PCL) that surrounds the cilia. The composition of the PCL (volume, 
viscosity, and pH) mainly depends on epithelial ion channels[28]. Dysregulation of 
epithelial ion channels in CF is associated with increased mucus viscosity and PCL 
depletion[29] that impairs MCC. Direct cilia motor protein defects in primary ciliary 
dyskinesia (PCD) also impair MCC. Both CF and PCD patients are more susceptible to 
airway infections[30-32], supporting the importance of effective MCC to airway defense. 
A reduction of ciliated cells is also observed in patients with inflammatory diseases 
like chronic rhinosinusitis[32,33] as well as after exposure to compounds in cigarette 
smoke[24].

The normal mucus layer is composed of mainly water, mucins, proteins, lipids, and 
salts. However, the gel properties of mucus are produced by mucins, large cross-
linked glycoproteins, including mucin 5AC (MUC5AC) produced by surface goblet 
cells[34] and MUC5B produced by mucus cells of submucosal glands[35]. Elevated 
MUC5AC levels are linked to asthma and may contribute to airway obstruction[36-38]. 
Akt has been suggested to be linked to MUC5AC production, though the data are 
conflicting. In human bronchial epithelial cells, direct inhibition of Akt upregulates 
MUC5AC production[39]. Activation of the PI3K/Akt pathway may also significantly 
reduced influenza-induced MUC5AC overproduction via negative cross-talk with the 
mitogen-activated protein kinase (MAPK) pathway[40]. In contrast, other studies 
showed that inhibition of Akt reduces MUC5AC levels[41,42]. The discrepancies in these 
studies might be due to different experimental models used. However, because Akt 
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Figure 2  Mucociliary clearance and innate immunity in the lung. A: Trachea, bronchi, and conducting bronchioles comprise the conducting zone of the 
airways; B: The conducting airway epithelium is lined with columnar motile ciliated cells and secretory goblet cells. Goblet cells secrete mucins like MUC5AC that 
polymerize to form mucus, which traps inhaled pathogens and debris; The mucus layer rides on top of a less viscous PCL composed of salt, water, and 
antimicrobials; Together, the mucus and PCL comprise the airway surface liquid; Coordinated metachronal beating of the motile cilia within the PCL layer pushes the 
sticky mucus layer up to respiratory tree to the oropharynx, where it is expectorated or swallowed; This process is termed MCC, and is the physical defense of the 
airway against infection; Epithelial cells also secrete antimicrobial peptide and radicals (NO, H2O2) to directly kill pathogens and produce cytokines and chemokines to 
activate inflammation; Shown is a representative diagram of tracheal or bronchial epithelium; In lower conducting airways (non-cartilaginous bronchioles < 
approximately 1 mm in diameter), secretory club cells (also known as bronchiolar exocrine cells) are found instead of goblet cells; As described in the text, there are 
several potential mechanisms by which protein kinase B may regulate MCC and other innate immune pathways. Figure made using Biorender.com. PCL: Periciliary 
layer; MCC: Mucociliary clearance; MUC5AC: Mucin 5AC.

may play a role in regulating MCC by controlling MUC5AC levels, Akt inhibitors or 
activators may be a novel therapeutic strategy to manipulate MUC5AC levels to 
reduce mucus hypersecretion in asthma or chronic obstructive pulmonary disease 
(COPD).

Immune surveillance receptors in the airway
Beyond the airway’s physical defenses, Akt is also involved in immune surveillance in 
the airway. The airway utilizes a gamut of receptors such as toll-like receptors (TLRs), 
nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), and T2R 
bitter receptors to detect invading pathogens[10,43-45]. TLRs are pattern recognition 
receptors (PRRs) initially discovered based on homology to Drosophila toll receptors[46]. 
TLRs recognize pathogen-associated microbial patterns (PAMPs) and activate 
signaling pathways that can lead to increased transcription of cytokines as well as 
production of antimicrobial peptides and iNOS[47]. Dysfunction of TLR signaling has 
been linked to COPD, acute lung injury, CF, and CRS[10,48-50].

In humans, 11 TLRs have been identified and are involved in the innate sensing of 
microbial products[51]. These TLRs are found in dedicated immune cells such as 
macrophages and dendritic cells. TLRs are also found in fibroblasts, epithelial cells in 
the lung, intestine, and many other cell types[10,11,52,53]. Primary and immortalized 
airway cells express TLRs 2 through 10 at varying expression levels[50,54-57]. Lung 
epithelial cell TLRs respond to a variety of factors such as Pseudomonas aeruginosa 
flagellin (via TLR5), gram-negative bacterial lipopolysaccharide (LPS; via TLR4), 
unmethylated CpG from prokaryotic DNA (via TLR9), bacterial peptidoglycan (via 
TLR2), gram-positive bacterial lipoteichoic acid (via TLR2), viral double-stranded RNA 
(via TLR3), and fungal zymosan/beta-glucan (via TLR2)[43,50,57].

The broad principles of TLR signaling are already described by several excellent 
reviews[58,59]. Briefly, binding of PAMPs to TLRs activate their intracellular Toll/IL-1 
receptor (TIR) domains[2] and recruits one or more TIR domain-containing adaptor 
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proteins, including myeloid differentiation primary response protein 88 (MyD88), TIR-
domain-containing adaptor protein (TIRAP), TIR-domain-containing adaptor protein 
inducing interferon-β (TRIF), and TRIF-related adaptor molecule (TRAM)[59]. Signaling 
then proceeds through a serious of adapter proteins. Association of MyD88 recruits IL-
1R-associated kinase (IRAK)[60] through interactions of N-terminal death domains in 
both proteins[61]. Phosphorylation of IRAK activates tumor necrosis factor receptor-
associated factor-6 (TRAF6) which in turn activates transcription factors such as NF-kB 
and JNK to promote the production of cytokines or initiate apoptosis signaling 
pathways, respectively[62]. Some TLRs, like TLR3, can also activate MyD88-
independent signaling pathways leading to NF-kB activation[63].

In epithelial and immune cells, experimental studies have identified both positive 
and negative cross-talk between TLR activation and the PI3K/Akt pathway[64-66]. It is 
not yet fully understood how Akt is linked to TLR signaling, and these links maybe 
cell type-dependent or even TLR-isoform-dependent. PI3K, upstream of Akt, is often 
activated by TLRs in many cells[67], with Akt phosphorylation peaking at 
approximately 20 min and decreasing by approximately 1 h after stimulation[68]. 
Activation of Akt via TLR stimulation may increase NF-kB signaling and cytokine 
expression in macrophages[65], while other studies showed that the PI3K/Akt pathway 
suppresses TLR-induced cytokine secretion in monocytes via inhibition of NF-kB[69-71]. 
One study suggested that binding of vasoactive intestinal peptide (VIP) to GPCRs 
reduced TLR4 expression via Akt in macrophages and regulatory T cells[52,72,73]. Another 
group demonstrated the activation of PI3K/Akt after stimulation of TLR4 is crucial for 
B cell survival[22]. The role of Akt in airway TLR signaling is relatively unexplored, but 
data suggest that pharmacological manipulation of PI3K or Akt signaling may be a 
mechanism by which NF-kB activity could be controlled during bacterial or viral 
infection and the resulting activation of TLRs in the airway.

Cross-talk between TLRs and Akt maybe particularly important during cellular 
hyperoxia in the lung. Oxygen therapy is commonly used to reduce tissue hypoxia in 
patients with pulmonary disease. However, hyperoxia can induce lung damage that 
may be tied to a reduction of Akt signaling. Expression of a constitutively active form 
of Akt protected mouse lungs from hyperoxic injury[74]. In a rat model of 
bronchopulmonary dysplasia (BPD), exposure of neonatal lungs to high (95%) oxygen 
reduced the expression of Akt, while overexpression of Akt was protective against 
lung damage[75]. TLR4-deficient mice showed increased lung injury, higher mortality, 
and reduced levels of phospho (p)-Akt after hyperoxia. Expression of anti-apoptotic 
BCL-2 and activation of p-Akt significantly attenuated hyperoxia-induced lung injury 
in these TLR4-deficient mice[76]. Thus, activating the Akt pathway with receptor 
ligands or direct activators like SC-79[77] may be useful for treatment of lung injury 
during hyperoxia.

Other PRRs exist beyond TLRs. NLRs are PRRs that activate signaling pathways 
leading to activation of the inflammasome. Unlike the transmembrane TLRs, NLRs are 
cytosolic. NLRs can respond to microbial pathogens and stimulate the production of 
cytokines. Depending on the domains that are expressed, NLRs can be categorized as 
NOD receptors, NLRP, NLRC, or NLRB, and have been extensively reviewed[78,79]. 
NOD1 and NOD2 are expressed in lung epithelial cells, endothelial cells, alveolar 
macrophages, and airway smooth muscle cells[78]. Binding of NOD1 and NOD2 to 
secreted bacterial moieties results in activation of NF-kB, and polymorphisms of these 
receptors may increase susceptibility to respiratory infections[80]. NLRP3 may play a 
major role in recruiting neutrophils and dendritic cells during Mycoplasma pneumoniae 
lung infection in mice[81]. Because NLRs are relatively novel compared with TLRs, the 
knowledge of NLRs/Akt/PI3K/NF-kB in the lung immunity field is still rapidly 
developing.

Two decades ago, the GPCRs for bitter taste (known as taste family 2 receptors or 
T2Rs) were discovered in taste bud type II cells on the tongue[82]. There are 25 T2R 
isoforms in humans[82,83] that detect bitter compounds in food. However, in recent 
years, the discovery of the T2Rs in extraoral tissues has suggested other roles for these 
receptors beyond taste, including immune surveillance[83]. A variety of bitter receptors 
are expressed in the motile cilia in human airway epithelial cells[44] and macrophages[84] 
which are stimulated by bitter molecules such as denatonium benzoate[85], thujone 
from the wormwood plant[85], sodium thiocyanate[12], phenylthiocarbamide (PTC)[12], 
and bitter plant flavonoids[25]. These T2Rs also recognize gram-negative bacterial 
products such as acyl-homoserine lactone (AHL)[12] and quinolone[86] quorum-sensing 
molecules, suggesting they may play a role in sensing developing biofilms.

Stimulation of bitter receptors in sinonasal epithelial cell cilia activates Ca2+-
dependent nitric oxide (NO) production which is bactericidal[12]. Additionally, NO can 
act as a second messenger to stimulate soluble guanylyl cyclase (sGC) and protein 
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kinase G (PKG) to phosphorylate downstream effector proteins within the cilia and 
increase the ciliary beat frequency and thereby MCC[87]. One T2R isoform expressed in 
respiratory cilia is T2R38. Common polymorphisms in the TAS2R38 gene that render 
the T2R38 receptor nonfunctional are associated with increased susceptibility to upper 
respiratory infection[12,88], susceptibility to chronic rhinosinusitis[89-94], and surgical 
outcomes after functional endoscopic sinus surgery[95].

T2Rs also play other roles in the airway. A different subset of T2R isoforms in non-
ciliated solitary chemosensory cells (SCCs), sometimes called tuft cells[44,96], leads to the 
propagation of Ca2+ to neighboring ciliated cells via gap junctions, triggering the 
neighboring cells to release anti-microbial peptides such as beta-defensin 1 and 2[96,97], 
which can permeabilize fungi and both gram-positive and negative bacteria[44]. 
Moreover, in mouse asthma models, bitter receptor agonists are effective in reducing 
airway smooth muscle contraction by modulating Ca2+ signaling[98-100].

Such studies of primary cells in vitro and patients in vivo suggest that T2Rs may 
contribute to the recognition of bacterial products similarly to TLR signaling[45,86]. Since 
T2Rs activate endothelial nitric oxide synthase (eNOS) to acutely produce NO in 
ciliated cells, targeting this pathway through Akt, which phosphorylates and activates 
eNOS[101,102] independently of Ca2+, as described below, is possibly a way to activate 
these innate immune responses in patients with polymorphisms that render specific 
T2Rs like T2R38 nonfunctional. Akt also has many other downstream targets, 
including Nrf-2[103] that play a role in the above innate immune processes. Several of 
these targets are reviewed below.

DOWNSTREAM TARGETS OF AKT INVOLVED IN INNATE IMMUNITY AND 
INFLAMMATION
Nitric oxide synthases
Nitric oxide synthase (NOS) enzymes catalyze the production of NO. L-arginine and 
NAD(P)H are converted to NO, NAD(P),  and L-citrull ine,  requiring 
tetrahydrobiopterin (BH4) as a co-factor. NO is an important physiological signaling 
molecule that regulates processes like pulmonary vascular tone. NO also stimulates 
sGC to produce cyclic GMP (cGMP), which then activates PKG[104]. PKG increases 
ciliary beat frequency to enhance MCC of detrimental pathogens, as described 
above[105]. Enhancing airway cell NO production by addition of L-arginine, adding 
artificial NO donors, introducing cell-permeant cGMP analogues, or using cGMP 
phosphodiesterase inhibitors to increase cGMP can all enhance ciliary beat frequency 
in rat, mouse, bovine, and human airway ciliated cells[60,106-111]; conversely, inhibition of 
NOS reduces the ciliary beat frequency in cultured ciliated airway epithelial cells[60].

There are three mammalian NOS isoforms; endothelial (eNOS, or NOS3), neuronal 
(nNOS or NOS1), and inducible (iNOS or NOS2) isoforms, named after the tissue 
where they were originally discovered. The main NOS isoform in neurons is nNOS[112], 
but nNOS has been detected in epithelial cells of various organs, pancreatic islets, and 
vascular smooth muscle, and exocrine acinar cells[113]. The dominant isoform in 
endothelial cells that maintains vascular tone and blood pressure is eNOS[101]. The 
airway epithelium generally expresses eNOS at baseline, while iNOS expression can 
be up-regulated during inflammation[11,25,101,106,110,114]. Pollutants and cigarette smoke can 
downregulate eNOS expression and subsequently reduce the production of NO[115].

Both eNOS (NOS3) and nNOS (NOS1) are generally constitutively expressed and 
are regulated acutely via  binding of Ca2+-bound calmodulin as well as 
phosphorylation, described below. Activation of airway epithelial cells or immune 
cells by inflammatory mediators can cause transcription of iNOS (NOS2) via 
NFkB[101,116]. Like eNOS and nNOS, iNOS requires Ca2+ for function, but the affinity is 
so high that iNOS is maximally activated at resting Ca2+ levels, and iNOS can output 
high levels of NO in the cell microenvironment, ranging from 10 nmol/L to μmol/L 
amounts[117]. These high levels of NO can be involved in immune cell killing of 
bacteria[117]. In contrast, nNOS and eNOS produce lower levels of NO often associated 
with cellular signaling pathways that regulate a variety of physiological endpoints like 
ciliary beating and vascular tone, as described above, and also macrophage 
phagocytosis[84]. However, Ca2+-dependent activation of eNOS in sinonasal airway 
epithelial cells can directly kill bacteria like P. aeruginosa in the airway surface 
liquid[12,118]. The sinuses are thought to be sites of high NO production, important for 
immune function in the airways, and reduced fractional exhaled NO (FeNO) is 
correlated with several airway diseases[10,11,119].

Beyond Ca2+-calmodulin binding to eNOS, it can also be activated by Ca2+- 
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independent mechanisms. Akt is an important regulator of eNOS function. Akt 
increases eNOS-mediated NO production by phosphorylation at Ser-1177 in humans 
and S1176 in mice[101]. Akt inhibitors such as wortmannin and LY294002 reduce NO 
production and PKG activity in platelets[120], while Akt co-immunoprecipitates with 
eNOS, suggesting the two proteins physically interact[121]. In mice in vivo, defective 
angiogenesis in Akt1 knockout mice can be rescued by a phospho-mimetic (S1176D) 
mutation in eNOS rendering the enzyme constitutively active[122]. This demonstrates 
the physiological importance of the regulation of eNOS by Akt.

Other proteins such as heat shock protein 90 (HSP90) can also associate with eNOS 
and modify its activity. Biochemical studies have shown a synergetic activation of 
eNOS by HSP90 and Akt in a calcium-independent manner in response to 
physiological agonist like insulin[123-126]. However, HSP90 also enhances Ca2+-
calmodulin activation of eNOS[124].

An important role for eNOS has been demonstrated in various models of lung 
injury. In the lungs of male C57BL/J6 wild-type or eNOS knockout mice exposed to 
mechanical ventilation, reduced phospho-Akt, phospho-eNOS, and NO leads to 
increased epithelial permeability. The authors concluded that the PI3K/Akt/eNOS 
pathway exerts significant protective effects against ventilation-induced lung 
injury[127]. Production of NO by eNOS may also be important for protection against 
neonatal hypoxia in mice[119]. Thus, data presented above suggest that activating eNOS 
by directly targeting PI3K/Akt signaling may have several beneficial effects in lung 
disease, including protection against bacterial infections, reduced damage during 
mechanical ventilation, or reduced inflammation.

The nuclear factor erythroid 2 related factor-2 transcription factor
Another downstream target of Akt is Nrf-2, a transcription factor that serves as a 
master regulator of cellular responses against oxidative stress. Nrf-2 belongs to the cap 
“n” collar (CNC) family of transcription factors. Nrf-2 counteracts oxidative stress and 
inflammation by initiating transcription of genes encoding antioxidant proteins such 
as NADP(H): quinone oxidoreductase (NQO1) and heme oxygenase (HO-1)[128,129]. Nrf-
2 binds to a specific approximately 41 base pair consensus enhancer sequence known 
as the antioxidant response element (ARE) to promote transcription of antioxidant and 
other genes[130-132]. Nrf-2 is regulated by Kelch-like ECH- associated protein-1 (Keap1), 
which binds to and sequesters Nrf-2 in the cytosol and targets Nrf-2 for ubiquitination 
and proteasomal degradation[133,134]. Nrf-2 is rapidly turned over, with a half-life of 
approximately 20 min in many cells[135-137]. Keap-1 facilitates the interaction of Nrf-2 
with its E3 ubiquitin ligase. However, when the Nrf-2-Keap1 interaction is disrupted, 
Nrf-2 can escape ubiquitination and translocate to the nucleus[134]. Disruption of the 
Nrf-2-Keap-1 interaction can occur by oxidative modification of cysteine thiols on 
Keap-1, binding of heavy metal oxidants like Cd2+ or Cr6+ to Keap-1, or activation of 
Akt signaling[135,138].

Activation of antioxidant gene transcription by Nrf-2 may be protective in multiple 
tissues against injury and inflammation in a variety of conditions such as autoimmune 
and neurodegenerative diseases[139,140]. Nrf-2 induction may counterbalance excess 
mitochondrial production of ROS, and Nrf-2 levels may be decreased in mitochondria-
related neurodegenerative diseases such as Alzheimer's and Parkinson's diseases[141,142]. 
Nrf-2 activators are in clinical development for cancer, although, due to Nrf-2’s role in 
promoting cell survival, there is controversy over whether activating or inhibiting Nrf-
2 will be useful in different types of cancer[143,144]. In head and neck cancer, high levels 
of Nrf-2 may be associated with poorer patient outcomes[145]. Multiple mechanisms for 
aberrant activation of Nrf-2 in cancer have been reported, including Keap-1 mutations, 
epigenetic factors, and genetic changes[146]. Thus, while Nrf-2 is cytoprotective against 
oxidative stress, hyperactive Nrf-2 may be deleterious in some cancers.

Induction of Nrf-2 reduces the expression of pro-inflammatory cytokines such as 
IL6, IL1β, and COX2 in mice exposed to UV radiation; the same study showed that in 
healthy human subjects, Nrf-2 activator sulforaphane reduced solar-stimulated UV 
radiation-induced skin erythema[147]. Nrf-2 may interfere with lipopolysaccharide 
(LPS)-induced production of IL6 and IL1β in murine macrophages[148]. In the lung 
specifically, Nrf-2 activation may attenuate airway inflammation linked to allergy[149,150] 
or COPD and emphysema[151-155]. In most studies using mouse models of airway 
disease, the deletion of Nrf-2 results in increased inflammation and injury. Nrf-2 
deficient mice are more susceptible to cigarette-smoke induced emphysema[156,157], and 
when cigarette-smoke-exposed Nrf-2 deficient and Wt. mice were exposed to influenza 
virus, Nrf-2-deficient mice exhibited higher mortality[158]. Nrf-2 may also directly 
modulate TLR4 signaling[159], though most studies of inflammation point to 
downstream effects of Nrf-2 on NF-kB-induced cytokine secretion. Nrf-2 knockout 
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mice exhibit more lung inflammation in response to LPS or TNFa compared with Wt. 
mice[9,160,161], likely via enhanced NF-kB signaling.

Nrf-2 is also likely important during oxidative stress induced by airway hypoxia or 
hyperoxia. Nrf-2-dependent reduction of alveolar growth inhibition caused by 
hyperoxia increases survival in newborn mice[162]. Pharmacological inhibition of Akt 
resulted in higher levels of inflammation and lower expression levels of antioxidant 
genes in mice exposed to hyperoxia, likely via reduced Nrf-2 signaling[163]. However, 
this study also found that PI3K/Akt signaling promoted inflammation after hyperoxic 
injury in a Nrf-2-independent manner[163]. These studies suggest that activating 
PI3K/Akt/Nrf-2 signaling may reduce inflammation in lung diseases where oxidative 
stress is an important component of the pathophysiology, though more work is 
needed to understand the relationship of Akt and Nrf-2 to initial injury and 
subsequent sustained inflammatory responses after injury.

Many experimental studies in the airway have focused on the beneficial effects of 
Nrf-2 activation against commonly seen oxidative stressors in lung diseases. 
Activation of Nrf-2 (either via endogenous receptors, overexpression, or activators like 
curcumin or sulforaphane) is protective against oxidative stress-induced lung damage 
caused by exposure to compounds in cigarette smoke[164-173] or H2O2

[174]. While Nrf-2 
activators have shown benefit in animal models, we hypothesize that activation of 
upstream PI3K/Akt signaling may also be beneficial and requires more investigation, 
as it would combine Nrf-2 activation with the activation of other beneficial pathways, 
like eNOS.

Only a limited number of studies exist on protective effects of Akt-dependent Nrf-2 
activation. In prostate cancer, increased Akt and Nrf-2 activity correlated with cell 
survival[175]. Another study reported that raw garlic can reduce cardiac hypertrophy in 
fructose-fed type 2 diabetic mice through activation of the PI3K/Akt pathway; this 
study showed that activation of Akt increased Nrf-2 activity that protected mouse 
hearts from oxidative stress[176]. Similarly, overexpression of constitutively active Akt 
increased Nrf-2 activation in retinal pigment epithelium[177]. In this study, both the 
induced levels of Nrf-2 and basal levels were reduced by PI3K inhibitors wortmannin 
and LY294002, confirming the Nrf-2 is activated downstream of PI3K/Akt[177].

Inositol trisphosphate receptors
Inositol trisphosphate receptors (IP3Rs) are endoplasmic reticulum (ER)-resident Ca2+ 
channels that contribute to Ca2+ release downstream of GPCR activation and other 
stimuli that activate phospholipase C[178]. Phospholipase C catalyzes hydrolysis of 
membrane phosphatidylinositol 4,5-bisphosphate (PIP2) to release inositol 1,4,5-
trisphosphate (IP3) and diacylglycerol. While diacylglycerol can activate protein kinase 
C, IP3 can bind to the IP3 receptor and sensitize it to resting cytosolic Ca2+ levels to 
cause the channel to open and promote Ca2+ release from endoplasmic reticulum 
stores[178]. The IP3 sensitivity and Ca2+ release activity of IP3Rs can be regulated by IP3R 
phosphorylation by multiple kinases[179]. A consensus motif for Akt phosphorylation is 
contained within the C-terminal tail of all three IP3R isoforms[180].

Phosphorylation of IP3Rs by Akt has been suggested to reduce Ca2+ efflux from the 
ER in response to apoptotic stimuli, thus protecting cells from apoptosis[180-182]. The 
activity of Akt2 in lymphocytes can reduce the duration of Ca2+ signaling and reduce 
activation of the NFAT transcription factor[183,184]. However, one study suggested that 
the effects of Akt on IP3Rs is specific to the type III IP3R, while Akt activation does not 
affect type I IP3R[184]. As cytokine secretion can also be driven by Ca2+, reduction of Ca2+ 
signaling may reduce inflammation. However, the ability of Akt to inhibit apoptosis or 
inflammation may depend on the predominant subtype of IP3R expressed in a specific 
cell type.

However, further research needs to be done on the role of Akt in Ca2+ release in 
airway cells. In some cells, Akt signaling may enhance Ca2+ release. In neurons, 
progesterone was shown to potentiate IP3R-dependent Ca2+ release via Akt 
signaling[185,186]. Akt activity may also regulate the expression of IP3Rs through multiple 
pathways. Akt2 activation of the ETS1 transcription factor may increase the expression 
of type II IP3R expression in dendritic cells[187]. Additionally, Nrf-2 was shown to bind 
to the promoter of the gene encoding the type III IP3R and reduce its expression in 
cholangiocytes, resulting in reduced Ca2+ signaling and reduced secretion from the bile 
duct[188]. Pharmacological targeting of the Akt pathway may modulate airway cell 
cytokine release and apoptosis through alteration of Ca2+ signaling, but it remains to be 
determined if inhibition or activation of Akt would be more beneficial.
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POTENTIAL ROLES OF THE PHOSPHOINOSITIDE-3-KINASE/AKT 
PATHWAY IN CYSTIC FIBROSIS
Cystic fibrosis (CF) is an autosomal recessive disease caused by nearly 2000 different 
known mutations in the CFTR gene, which encodes the CF transmembrane 
conductance regulator (CFTR) protein. Although the life expectancy of CF patients is 
increasing with current small molecule therapies[189], CF affects approximately 75000 
people in North America, Australia, and Europe[190]. The CFTR protein is expressed in 
the apical membranes of airway surface epithelial cells[191], airway submucosal gland 
serous cells[23,192,193], and a recently discovered rare cell type termed the ionocyte[194,195]. 
CFTR functions as chloride (Cl-) and bicarbonate (HCO3

-) anion channel[196] to regulate 
salt and fluid homeostasis and control the volume and pH of the airway surface 
liquid[96]. Dehydration of the ASL caused by defective CFTR function leads to 
thickened mucus that impairs mucociliary clearance and increases susceptibility to 
respiratory pathogens[31], particularly the gram-negative opportunistic bacterium P. 
aeruginosa[197]. Respiratory failure is responsible for > 95% of CF patient deaths[198]. 
However, the reduced flux of Cl- and HCO3

- ions through CFTR also affects multiple 
other organs where CFTR is expressed, including the exocrine pancreas, male 
reproductive tract, and sweat glands[31].

CFTR belongs to ATP binding cassette (ABC) superfamily of proteins and consists 
of two membrane-spanning domains (MSD), two nucleotide-binding domains (NBD), 
and a regulatory (R) domain[199]. The R domain consists of charged amino acids and 
several sites for phosphorylation by cAMP-dependent protein kinase A (PKA) as well 
as protein kinase C (PKC)[200]. Phosphorylation of the R domain enhances the 
association of adenosine triphosphate (ATP) to the NBDs, allowing a conformational 
change that results in the opening of the CFTR channel pore[201]. Subsequent hydrolysis 
of the ATP leads to channel closing[202]. Maturation of CFTR protein requires proper 
domain folding, glycosylation, and trafficking from the endoplasmic reticulum (ER) to 
the Golgi apparatus and eventually the plasma membrane. Dysregulation of any point 
in this complex multiple-step process can create a non-functional protein[203]. The most 
common mutation occurring in CF patients is the deletion of phenylalanine at position 
508 (termed ΔF508 or F508del)[204].

In the CF lung, numerous studies have suggested the thickened mucus that is the 
hallmark of CF is accompanied by increased inflammation. The accumulation of 
neutrophils may increase inflammation and damage bronchial walls[205], while 
increased levels of pro-inflammatory cytokines and chemokines such as IL8 and TNF-
α may also contribute to the destruction of lung tissue[206,207]. However, loss of CFTR 
may also confer hyper-inflammatory cellular properties, suggesting intrinsic cellular 
signaling defects caused by loss of CFTR function beyond the inflammation secondary 
to defective mucociliary clearance and bacterial infection[192,205,208-213]. CFTR itself has 
been linked to TLR4[214] and Akt[215,216] signaling via its proposed role as a signaling 
scaffold[217]. Thus, defective CFTR function may likely result in dysregulation of innate 
immunity beyond just loss of MCC[218]. All of these mechanisms may contribute to 
airflow obstruction, increased risk for bacterial infection, and damage to the 
microenvironment of the lung. It is not yet fully clear how small molecule CFTR 
corrector and potentiator therapies may suppress hyper-inflammation phenotypes in 
CF lungs[219].

Exhaled air from CF patients also contains less NO compared to non-CF 
individuals, possibly via decreased production of NO, increased metabolism of NO, 
downregulation of NOS enzymes, or polymorphisms in NOS genes[220-223]. Small 
molecule CFTR modulators have been shown to restore airway NO production, and 
the fraction of exhaled NO (FeNO) has been proposed to be a biomarker of 
pharmacological restoration of CFTR[224,225]. Moreover, boosting NO signaling may also 
increase the effect of corrector/potentiator modulator therapies[226], suggesting 
multiple levels of feedback may exist between CFTR and the NO signaling pathway.

As described above, eNOS is one target of Akt. Totani and colleagues showed that 
inhibition of CFTR in pulmonary endothelial cells reduced NO levels via reducing 
levels of activated phosphorylated Akt and activated phosphorylated eNOS[216]. This 
was associated with an increase in IL8 levels. In mice, CFTR knockout macrophages 
had a significant reduction of Akt phosphorylation at S473 compared with control 
mice; this same study showed Celecoxib, an FDA-approved COX-2 inhibitor for 
osteoarthritis, activated the PI3K/Akt pathway and reduced inflammation in this 
mouse model[227]. Thus, directly targeting Akt using small molecule activators or 
activating upstream PI3K may enhance NO production in CF lungs and alleviate 
inflammation. It may also have anti-bacterial effects similar to the activation of T2R 
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bitter taste receptors, which drive eNOS-mediated NO production via Ca2+ rather than 
Akt. Of note, P. aeruginosa, the most common pathogen in CF lungs, is more 
susceptible to NO-induced killing than some other airway bacteria like Staphylococcus 
aureus[118]. A lack of efficient NO production in CF cells, possibly due to intrinsic 
defects in Akt signaling, may partly contribute to why these bacteria are so prevalent 
in CF lungs while almost never causing infection in non-CF patients unless non-CF 
patients are otherwise immunocompromised[228].

NO itself has been suggested to activate CFTR via PKG in some studies[229-231], while 
NO has also been reported in other studies to have no effect on CFTR[232], inhibit CFTR 
trafficking and/or activation[233,234], or activate non-CFTR Cl- currents[235]. Part of the 
discrepancy may be that most studies use different NO donor compounds at different 
concentrations, as well as occasionally more physiological ways to induce NO 
production (e.g., receptor activation). While no one has thoroughly examined the 
activation of CFTR downstream of specific Akt activation in the airway, targeting Akt 
would increase NO production to a more physiological level than NO donor 
compounds. Akt activation would stimulate endogenous eNOS, the major NOS 
isotype in uninflamed airway cells[114].

As indicated earlier, Nrf-2 is also a downstream target of Akt that plays a 
cytoprotective role against oxidative stress. Nrf-2 may convey resistance to pyocyanin, 
a bacterial product from P. aeruginosa that causes oxidative stress. The PI3K/Akt 
pathway is activated in lung epithelial cells during pyocyanin exposure, and the 
increased transcription of antioxidants may protect these cells from death[236]. It has 
been suggested that defective Nrf-2 in CF cells causes enhanced oxidative stress that 
increases inflammatory cytokine production[237], and Nrf-2 function is restored when 
mutant CFTR function is enhanced by small molecule therapeutics[238]. Alterations of 
Nrf-2 signaling in CF may also be tied to alterations in cAMP signaling and the CREB 
binding protein[239]. Boosting Nrf-2 function by targeting the PI3K/Akt pathway may 
have beneficial effects in CF lungs.

Furthermore, Nrf-2 may also regulate expression of CFTR itself[240]. We hypothesize 
that a direct Nrf-2 activator such as curcumin[241], dimethyl fumarate[242] or 
andrographolide[165] and/or activating Nrf-2 via Akt may be useful in combination 
with small molecule CFTR correctors and potentiators[189]. Such a strategy may further 
increase the number of functional CFTR channels at the plasma membrane by boosting 
CFTR gene transcription. This may be useful in patients where specific CFTR 
mutations reduce the efficiency of small molecule correction or potentiation.

CONCLUSION
The respiratory epithelia are in constant contact with bacteria, viruses, and pathogens 
during every breath. Airway innate immunity is the first line of host defense against 
these challenges[243]. Some of the strategies of the innate immune system of the airways 
include mucociliary-clearance, antimicrobial peptide secretion, NO production, 
cytokine secretion, and antioxidant gene production (Figure 3)[244]. PI3K/Akt signaling 
is one of the major signaling pathways regulating multiple components of these 
processes. Akt signaling maybe altered in airway diseases like CF. Together, the above 
studies discussed in this review suggest that therapeutic strategies to enhance the 
PI3K/Akt pathway and increase NO production, boost antioxidant transcription via 
Nrf-2, or activate other anti-inflammatory pathways might be particularly beneficial in 
CF patients. These strategies may also benefit patients with other inflammatory airway 
diseases like CRS, asthma, and/or COPD. Because pharmacological tools to inhibit 
PI3K[245,246], inhibit Akt[247-249], or even directly activate Akt[77] are available, exploring the 
effects of Akt signaling in airway cells may yield druggable targets that can be 
translated to human therapeutics.
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Figure 3  Summarization of non-specific immune strategies in lung innate immunity. Toll-like receptors are activated to recognize pathogen-
associated microbial patterns/damage-associated molecular pattern (PAMPs/DAMPs) and activate nuclear factor-kB to produce cytokines; nod-like receptors are 
cytosolic receptors that can recognize intracellular PAMPs/DAMPs and can form inflammasome to either produce cytokines such as interferons or induce pyroptosis 
(inflammation associated apoptosis); Stimulation of bitter receptors, expressed in ciliated cells in the airways, elevates Ca2+ that produces NO which activates protein 
kinase G and increase ciliary beat frequency; NO can directly kill bacteria; Goblet cells produce mucus that traps pathogens and bacteria which are then eliminated 
out of the upper airway system through MCC; Activation of bitter receptors in solitary chemosensory cells can increase intracellular Ca2+ that can produce 
antimicrobial peptides.
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