
World Journal of
Biological Chemistry

ISSN 1949-8454 (online)

World J Biol Chem  2020 November 27; 11(3): 76-118

Published by Baishideng Publishing Group Inc



WJBC https://www.wjgnet.com I November 27, 2020 Volume 11 Issue 3

World Journal of 

Biological ChemistryW J B C
Contents Irregular Volume 11 Number 3 November 27, 2020

REVIEW

Current understanding of glucose transporter 4 expression and functional mechanisms76

Wang T, Wang J, Hu X, Huang XJ, Chen GX

MINIREVIEWS

Deciphering the modifiers for phenotypic variability of X-linked adrenoleukodystrophy99

Palakuzhiyil SV, Christopher R, Chandra SR

ORIGINAL ARTICLE

Observational Study

Prevalence, serotyping and drug susceptibility patterns of Escherichia coli isolates from kidney transplanted 
patients with urinary tract infections

112

Najafi Khah A, Hakemi-Vala M, Samavat S, Nasiri MJ



WJBC https://www.wjgnet.com II November 27, 2020 Volume 11 Issue 3

World Journal of Biological Chemistry
Contents

Irregular Volume 11 Number 3 November 27, 2020

ABOUT COVER

Editorial board member of World Journal of Biological Chemistry, Dr. Jian-Xun Ding is a Professor at Changchun 
Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS). Dr. Ding received his Bachelor of 
Science degree from the University of Science and Technology of China in 2007 and obtained his PhD degree from 
CIAC, CAS in 2013. His research focuses on the synthesis of functional biodegradable polymers, the development 
of smart polymer platforms for controlled drug delivery, and the exploitation of polymer-based adjuvants for 
immunotherapy. Heretofore, he has published more than 100 articles, which have amassed over 7000 citations. 
Moreover, he has applied for over 70 patents in China and has won more than 10 awards for his career 
accomplishments. He was selected for the Young Talents Promotion Project of Jilin Province and joined the CAS 
Young Innovation Promotion Association in 2019. (L-Editor: Filipodia)

AIMS AND SCOPE

The primary aim of the World Journal of Biological Chemistry(WJBC, World J Biol Chem) is to provide scholars and 
readers from various fields of biological chemistry a platform to publish high-quality basic and clinical research 
articles and communicate their research findings online. 
      WJBC mainly publishes articles reporting research results and findings obtained in the field of biological 
chemistry and covering a wide range of topics including bioenergetics, cell biology, chromosomes, developmental 
biology, DNA, enzymology, extracellular matrices, gene regulation, genomics, glycobiology, immunology, lipids, 
membrane biology, metabolism, molecular bases of disease, molecular biophysics, neurobiology, plant biology, 
protein structure and folding, protein synthesis and degradation, proteomics, and signal transduction.

INDEXING/ABSTRACTING

The WJBC is now abstracted and indexed in PubMed, PubMed Central, China National Knowledge Infrastructure 
(CNKI), China Science and Technology Journal Database (CSTJ), and Superstar Journals Database. 

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yu-Jie Ma; Production Department Director: Yun-Xiaojian Wu; Editorial Office Director: Jia-Ping Yan.

NAME OF JOURNAL INSTRUCTIONS TO AUTHORS

World Journal of Biological Chemistry https://www.wjgnet.com/bpg/gerinfo/204

ISSN GUIDELINES FOR ETHICS DOCUMENTS

ISSN 1949-8454 (online) https://www.wjgnet.com/bpg/GerInfo/287

LAUNCH DATE GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

July 26, 2010 https://www.wjgnet.com/bpg/gerinfo/240

FREQUENCY PUBLICATION ETHICS

Irregular https://www.wjgnet.com/bpg/GerInfo/288

EDITORS-IN-CHIEF PUBLICATION MISCONDUCT

Vsevolod Gurevich, Chun-Peng Wan https://www.wjgnet.com/bpg/gerinfo/208

EDITORIAL BOARD MEMBERS ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/1949-8454/editorialboard.htm https://www.wjgnet.com/bpg/gerinfo/242

PUBLICATION DATE STEPS FOR SUBMITTING MANUSCRIPTS

November 27, 2020 https://www.wjgnet.com/bpg/GerInfo/239

COPYRIGHT ONLINE SUBMISSION

© 2020 Baishideng Publishing Group Inc https://www.f6publishing.com

© 2020 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: bpgoffice@wjgnet.com  https://www.wjgnet.com

https://www.wjgnet.com/bpg/gerinfo/204
https://www.wjgnet.com/bpg/GerInfo/287
https://www.wjgnet.com/bpg/gerinfo/240
https://www.wjgnet.com/bpg/GerInfo/288
https://www.wjgnet.com/bpg/gerinfo/208
https://www.wjgnet.com/1949-8454/editorialboard.htm
https://www.wjgnet.com/bpg/gerinfo/242
https://www.wjgnet.com/bpg/GerInfo/239
https://www.f6publishing.com
mailto:bpgoffice@wjgnet.com
https://www.wjgnet.com


WJBC https://www.wjgnet.com 76 November 27, 2020 Volume 11 Issue 3

World Journal of 

Biological ChemistryW J B C
Submit a Manuscript: https://www.f6publishing.com World J Biol Chem 2020 November 27; 11(3): 76-98

DOI: 10.4331/wjbc.v11.i3.76 ISSN 1949-8454 (online)

REVIEW

Current understanding of glucose transporter 4 expression and 
functional mechanisms

Tiannan Wang, Jing Wang, Xinge Hu, Xian-Ju Huang, Guo-Xun Chen

ORCID number: Tiannan Wang 0000-
0001-5584-3628; Jing Wang 0000-
0003-3663-8332; Xinge Hu 0000-
0002-3253-7537; Xian-Ju Huang 
0000-0001-8130-1961; Guo-Xun Chen 
0000-0001-6226-4050.

Author contributions: Wang T, 
Wang J and Hu X conducted the 
PubMed Search; Wang T, Wang J, 
Hu X, Huang XJ and Chen GX 
outlined and wrote the manuscript.

Conflict-of-interest statement: All 
authors declare that there is no 
conflict of interest to report.

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
p://creativecommons.org/License
s/by-nc/4.0/

Manuscript source: Invited 
manuscript

Specialty type: Biochemistry and 
molecular biology

Tiannan Wang, Xinge Hu, Guo-Xun Chen, Department of Nutrition, The University of Tennessee, 
Knoxville, TN 37996, United States

Jing Wang, Xian-Ju Huang, College of Pharmacy, South-Central University for Nationalities, 
Wuhan 430074, Hubei Province, China

Corresponding author: Guo-Xun Chen, PhD, Associate Professor, Department of Nutrition, The 
University of Tennessee, Room 229 Jessie Harris Building, 1215 West Cumberland Avenue 
Knoxville, TN 37996, United States. gchen6@utk.edu

Abstract
Glucose is used aerobically and anaerobically to generate energy for cells. Glucose 
transporters (GLUTs) are transmembrane proteins that transport glucose across 
the cell membrane. Insulin promotes glucose utilization in part through 
promoting glucose entry into the skeletal and adipose tissues. This has been 
thought to be achieved through insulin-induced GLUT4 translocation from 
intracellular compartments to the cell membrane, which increases the overall rate 
of glucose flux into a cell. The insulin-induced GLUT4 translocation has been 
investigated extensively. Recently, significant progress has been made in our 
understanding of GLUT4 expression and translocation. Here, we summarized the 
methods and reagents used to determine the expression levels of Slc2a4 mRNA 
and GLUT4 protein, and GLUT4 translocation in the skeletal muscle, adipose 
tissues, heart and brain. Overall, a variety of methods such real-time polymerase 
chain reaction, immunohistochemistry, fluorescence microscopy, fusion proteins, 
stable cell line and transgenic animals have been used to answer particular 
questions related to GLUT4 system and insulin action. It seems that insulin-
induced GLUT4 translocation can be observed in the heart and brain in addition 
to the skeletal muscle and adipocytes. Hormones other than insulin can induce 
GLUT4 translocation. Clearly, more studies of GLUT4 are warranted in the future 
to advance of our understanding of glucose homeostasis.

Key Words: Glucose transporter 4; Insulin; Skeletal muscle; Adipocytes; Brain; Heart; 
Antibodies
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Core Tip: Glucose transporter 4 (GLUT4) can be detected not only in the skeletal 
muscle and adipocytes, but also in the brain and heart. In addition to the translocation 
from vesicles in the cytosol to the cell membrane by insulin, the expression levels of 
Slc2a4 mRNA and GLUT4 proteins are also regulated by many factors. A variety of 
methods and antibodies from various sources have been used to evaluate GLUT4 
expression and translocation.
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INTRODUCTION
Currently, diabetes is a problem of public health[1]. Based on the American Diabetes 
Association definition, diabetes is a serious chronic health condition of your body that 
causes blood glucose levels to rise higher than normal, which will lead to multiple 
complications if hyperglycemia is left untreated or mismanaged[2]. Diabetes occurs 
when your body cannot make insulin or cannot effectively respond to insulin to 
regulate blood glucose level. There are two type of diabetes, insulin-dependent type 1 
diabetes mellitus (T1DM) and -independent type 2 diabetes mellitus (T2DM). T2DM 
accounts for about 90% to 95% of all diagnosed cases of diabetes, and is due to the lack 
of responses to insulin in the body[3]. Insulin resistance is a characteristic of T2DM. For 
a person with diabetes, a major challenge is to control or manage blood glucose level. 
Glucose is a common molecule used for production of energy or other metabolites in 
cells. As a quick energy source, glucose can be metabolized aerobically or 
anaerobically depending on the availability of oxygen or cell characteristics[4]. Glucose 
is a hydrophilic molecule, and cannot diffuse into or out of a cell freely. It needs 
transporters to cross the cell membrane. Glucose transporters (GLUTs) are proteins 
that serve this purpose.

GLUTs are members of the major facilitator superfamily (MFS) transporters, which 
are responsible for the transfer of a large array of small molecules such as nutrients, 
metabolites and toxins across the cell membrane[5]. Multiple members have been 
identified in each family of MFS transporters, and changes of their functions have been 
associated with a number of diseases[5]. Members of MFS transporters have 12 
transmembrane helices, and transport their substrates as uniporters, symporters or 
antiporters[5]. Upon binding of the substrates on side of the membrane, a conformation 
change occurs, which is achieved through coordinative interactions of those helices 
through a “clamp-and-switch” mechanism. Structural studies have shown that the 
substrate specificity is achieved through the conserved amino acid residues within 
each family[5]. Thus, it is important to understand GLUT functions, expressions and 
regulations for the control of blood glucose homeostasis.

Insulin and GLUTs
Dietary starch is first digested into glucose before being absorbed into the body and 
utilized[4]. The first transporter identified is GLUT1, which is expressed universally in 
all cells, and responsible for basal glucose transport[6]. Insulin stimulates glucose 
utilization in the body. This is in part through the insulin-induced glucose uptake in 
the muscle and adipose tissues. In addition to insulin stimulation, physical activity can 
also increase glucose entering into the skeletal muscle cells[7]. The observation that 
insulin promotes the redistribution of GLUTs from intracellular locations to the 
plasma membrane in adipocytes began in the 1980s[8-10]. Few years later, the insulin-
induced glucose transport was also found in muscle cells[11,12]. To understand the 
underlying mechanism of insulin-stimulated glucose uptake, antibodies against 
membrane glucose transport proteins were created[13]. Subcellular fractionation, 
cytokinin B (glucose-sensitive ligand), and glucose absorption into isolated vesicles 
were used to study the phenomenon. It was proposed that these GLUTs are moved 
from intracellular components to the plasma membrane of adipocytes and muscle cells 
upon insulin stimulation[6]. In 1988, a specific antibody against a GLUT sample 
preparation was created, which eventually led to the identification of a molecular 
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clone that encodes an insulin-induced GLUT from mouse adipocytes[6]. It was named 
GLUT4. Since the 1990s, fluorescent-labeled fusion proteins, GLUT4-specific 
antibodies, photoaffinity labeling reagents, immunofluorescence microscopy, and 
high-resolution electron microscope have been used to confirm the insulin-induced 
translocation and underlying mechanisms[6]

It has been widely accepted that insulin mainly stimulates transfer of GLUT4 from 
intracellular storage vesicles to the plasma membrane. Insulin stimulation accelerates 
the movement rate of GLUT4 containing vesicles to the cell membrane[14]. When more 
GLUT4 is on the plasma membrane, more glucose enters the cells without any change 
of the GLUT4 specific activity. During insulin stimulation, GLUT4 is not statically 
maintained in the plasma membrane but continuously recycled[6]. After insulin is 
removed, the amount of GLUT4 on the plasma membrane drops and the rate of 
movement returns to basal level.

Since identification and cloning of GLUT1, 13 additional GLUTs have been cloned 
using recombinant DNA techniques[15]. Based on their phylogeny or genetic and 
structural similarities, GLUTs are classified into three classes. Class I includes GLUTs 
1-4, and GLUT14 which are responsible for glucose transfer. Class II consists of GLTUs 
5, 7, 9 and GLUT 11 which are considered as fructose transporters. Class III contains 
GLTUs 6, 8, 10, 12 and GLUT 13[16]. All GLUTs have nearly 500 amino acid residues 
that form 12 transmembrane helices[15].

Each GLUT has its own unique affinity and specificity for its substrate, tissue 
distribution, intracellular location, regulatory mechanisms and physiological 
functions[17]. The most well studied and known members are GLUTs 1-6. GLUT1 is 
found evenly distributed in the fetal tissues. In human adults, GLUT1 Level is high in 
erythrocytes and endothelial cells. It is responsible for basal glucose uptake[18]. GLUT2 
is expressed in the liver and pancreas, and contributes to glucose sensing and 
homeostasis[17]. In enterocytes, GLUT2 is responsible to transport the absorbed glucose, 
fructose and galactose out of the basolateral membrane to enter into the blood 
circulation through the portal vein[19]. GLUT3 just like GLUT1 is expressed in almost 
all mammalian cells and is responsible for the basal uptake of glucose. GLUT3 is 
considered as the main GLUT isoform expressed in neurons and the placenta, but has 
also been detected in the testis, placenta, and skeletal muscle[20-22]. GLUT5 is specific for 
uptake of fructose in a passive diffusion manner, and is expressed in the small 
intestine, testes and kidney[17]. GLUT6 is expressed in the spleen, brain, and leukocytes 
as well as in muscle and adipose tissue[15,23]. GLUT6 has been shown to move from the 
intracellular locations and plasma membrane of rat adipocytes in a dynamin-
dependent manner[23]. Table 1[24-57] summarizes names, numbers of amino acids, Kms, 
expression profiles and potential functions of those GLUTs.

GLUT4 gene, its tissue distribution, and physiological functions
Human GLUT4 has 509 amino acid residues and is encoded by SLC2A4 gene in the 
human genome. It is mainly expressed in adipocytes and skeletal muscle. The unique 
N-terminal and COOH terminal sequences are responsible for GLUT4's response to 
insulin signaling and membrane transport[58]. The Km of GLUT4 is about 5 mmol/L. In 
response to insulin stimulation, intracellular vesicles containing GLUT4 are moved 
from cytosol to the cell membrane. As shown in Figure 1, insulin receptor is a tetramer 
with two alpha-subunits and two beta-subunits linked by disulfide bonds[59]. When 
insulin binds to its receptor on the cell membrane, insulin receptor beta subunits that 
contain tyrosine kinase domain autophosphorylate each other. The phosphorylated β-
subunits recruit insulin receptor substrates (IRS) and phosphorylate them. Then 
phosphorylated IRSs bind to and activate phosphatidylinositol 3-kinase (PI3K) which 
is recruited to the plasma membrane and converts PIP2 to PIP3. On the plasma 
membrane, PI3K activates PIP3 dependent protein kinase, which phosphorylates and 
activates AKT (also referred to as protein kinase B, PKB). Akt activation triggers 
vesicle fusion, which results in the translocation of GLUT4 containing vesicles from 
intracellular compartments to the plasma membrane. The elevation of GLUT4 on the 
membrane leads to increase of glucose entry into the cell.

Upon refeeding, elevated glucose levels in the blood stimulates insulin secretion 
from pancreatic beta cells. Insulin stimulates GLUT4 translocation to the cell 
membrane, which increases glucose uptake in cells, and achieves glucose 
homeostasis[60,61]. After the insulin stimulation disappears, GLUT4 is transferred back 
into the cytosol from the plasma membrane. More than 90% of GLUT4 is located in the 
intracellular body, trans-Golgi network, and heterogeneous tube-like vesicle structure, 
etc., which constitute the GLUT4 storage vesicle (GSV). In an unstimulated state, most 
GLUT4 is in the intracellular vesicles of muscle and adipocytes[62].

The amount of GLUT4 on the cell membrane is determined by the rate of the 
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Table 1 Summary of glucose transporter family members

Protein 
(gene) Amino acids Km 

(mm) Expression sites Function/substrates Ref.

GLUT1 
(SLC2A1)

492 3-7 Ubiquitous distribution in tissues and 
culture cells

Basal glucose uptake; glucose, galactose, glucosamine, 
mannose

[24-30]

GLUT2 
(SLC2A2)

524 17 Liver, pancreas, brain, kidney, small 
intestine

High-capacity low-affinity transport; glucose, galactose, 
fructose, glucosamine, mannose

[25-27,29-34]

GLUT3 
(SLC2A3)

496 1.4 Brain and nerves cells Neuronal transport; glucose, galactose, mannose
[25-27,29,30,
33-35]

GLUT4 
(SLC2A4)

509 5 Muscle, fat, heart, hippocampal 
neurons

Insulin-regulated transport in muscle and fat; glucose, 
glucosamine

[25-27,29,31,
36,37]

GLUT5 
(SLC2A5)

501 6 Intestine, kidney, testis, brain Fructose
[25-27,29,30,
34,38-42]

GLUT6 
(SLC2A6)

507 5 Spleen, leukocytes, brain Glucose
[25-27,29,30,
43]

GLUT7 
(SLC2A7)

524 0.3 Small intestine, colon, testis, liver Fructose and glucose
[25-27,29,30,
38]

GLUT8  
(SLC2A8)

477 2 Testis, blastocyst, brain, muscle, 
adipocytes

Insulin-responsive transport in blastocyst; glucose, 
fructose, galactose

[25-27,29,30,
44,45]

GLUT9 
(SLC2A9)

Major 540, 
Minor 512

0.9 Liver, kidney Glucose, fructose
[25-27,29,30, 
46-48]

GLUT10 
(SLC2A10)

541 0.3 Heart, lung, brain, skeletal muscle, 
placenta, liver, pancreas 

Glucose and galactose
[25-27,29,30,
48,49]

GLUT11 
(SLC2A11)

496 0.2 Heart, muscle, adipose tissue, 
pancreas

Muscle-specific; fructose and glucose transporter
[25-27,29,30,
50-54]

GLUT12 
(SLC2A12)

617 4-5 Heart, prostate, skeletal muscle, fat, 
mammary gland

Glucose
[25-27,29,30,
53,55]

GLUT13 
(SLC2A13)

Rat 618, 
human 629

0.1 Brain (neurons intracellular vesicles) H+-myo-inositol transporter
[25-27,29,30,
56]

GLUT14 
(SLC2A14)

Short 497, 
Long 520

unknown Testis Glucose transport
[25-27,29,30,
57]

movement from intracellular GSV to the cell membrane. In adipocytes and skeletal 
muscle cells, insulin increases the rate of GLUT4 translocation from GSVs to 
membrane and decreases the rate of GLUT4 movement from membrane back to the 
vesicles, which lead to elevation of GLUT4 content on the cell membrane by 2-3 
times[63]. Moreover, in adipocytes, insulin increases the GLUT4 recirculation to 
maintain a stable and releasable vesicle[64].

So far, insulin-induced GLUT4 translocation has been studied extensively. 
However, questions still remain. Methods and reagents used to determine the 
expression levels of GLUT4 and its translocation mechanism deserve to be 
summarized and analyzed. Therefore, we searched the relevant articles in PubMed 
and investigated the methods and reagents used in the studies. “Glucose transporter 
4” and “GLUT4” as the protein and “SLC2A4” as the gene name were used as 
keywords in the search. In order to have a more clearly overview, we further divided 
and focused on the search into three parts, GLUT4 in the skeletal muscle, GLUT4 in 
adipose tissues, and GLUT4 in heart and brain.

GLUT4 IN THE SKELETAL MUSCLE
The term "muscle" covers a variety of cell types. Mammals have four main types of 
muscle cells: skeletal, heart, smooth, and myoepithelial cells. They are different in 
function, structure and development[65]. The skeletal muscle mass accounts for 40% of 
the total body mass, and the regulation of skeletal muscle glucose metabolism will 
significantly affect the body's glucose homeostasis[66,67]. Skeletal muscle is composed of 
many muscle fibers connected by collagen and reticular fibers. Each skeletal muscle 
fiber is a syncytium that derives from the fusion of many myoblasts. Myoblasts 
proliferate in large quantities, but once fused, they no longer divide. The fusion 
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Figure 1 Schematic of insulin-induced translocation of glucose transporter 4 from cytosol to the cell membrane. The binding of insulin to its 
receptors initiates a signal transduction cascade, which results in the activation of Akt. Akt acts on the glucose transporter 4 (GLUT4) containing vesicles in the 
cytosol to facilitate their fusion with the cell membrane. When more GLUT4 molecules are present in the membrane, the rate of glucose uptake is elevated. GLUT4: 
Glucose transporter 4.

usually follows the onset of myoblast differentiation[65]. Different fiber types have 
distinct contractile and metabolic properties[68]. The skeletal muscle maintains skeletal 
structure and essential daily activities[69]. Also, it is a source of proteins that can be 
broken down into amino acids for the body to use.

Insulin stimulates glucose uptake and utilization in the skeletal muscle. GLUT4 
plays a key role in the uptake process. Glucose can be stored as glycogen, which is 
used as a quick source of energy in physical activity[70]. In the skeletal muscle, exercise 
helps increase insulin sensitivity and stimulates SLC2A4 gene transcription[60]. 
Physiological factors such as the type of muscle fibers can also affect the GLUT4 Level. 
An increase in physical activity will induce the GLUT4 Levels, whereas a decrease in 
activity level will reduce GLUT4[68]. The skeletal muscle not only maintains the 
activities, but also regulates the glucose homeostasis in the body, which plays a key 
role in the development of metabolic diseases[69]. Obesity and T2DM have a negative 
impact on skeletal muscle glucose metabolism[71].

To review the methods and reagents of GLUT4 studies in skeletal muscle, "GLUT4, 
skeletal muscle" and "SLC2A4, skeletal muscle" as keywords were used to search the 
PubMed database to retrieve relevant articles. The skeletal muscle is a highly 
specialized tissue made of well-organized muscle fibers. The unique structural 
characteristic of muscle inherits difficulties to be lysed for biochemical studies. 
Therefore, we want to focus on the sample preparation of skeletal muscle in GLUT4 
studies. The retrieved articles were screened mainly according to the research methods 
and reagents used for skeletal muscle preparation, experimental groups included, 
Slc2a4 mRNA and GLUT4 protein measurements and the source of GLUT4 antibodies 
obtained. In the end, 10 representative articles were selected for analysis and summary 
as shown in Table 2[72-81].

Overall, the current research methods of GLUT 4 studies in skeletal muscle are 
listed below: (1) Samples were homogenized to prepare membrane fractions for 
analysis of GLUT 4 in western blot using monoclonal or polyclonal antibodies; (2) 
Real-time polymerase chain reaction (PCR) was used to determine the mRNA 
abundance of Slc2a4; (3) Immunocytochemical staining was used to detect GLUT4 in 
situ. The fibers were labeled for GLUT4 by a preembedding technique and observed as 
whole mounts by immunofluorescence microscopy or after sectioning, by 
immunogold electron microscopy. Preembedding is a technique to label GLUT4 
immediately after tissues or cells are collected, which allows that the antibody interacts 
with the antigen before denaturation; (4) Muscle cell lines stably expressing tagged 
GLUT4 were established to study the translocation; and (5) Radiolabeled 2-
deoxyglucose was used to determine the glucose uptake in muscle tissue slices.

The antibodies used in these articles were from Santa Cruz, Millipore, East Acres, 
Biogenesis and other sources not specified. Only two of the publications have a 
positive control group of GLUT4 expression using overexpression of a fusion protein 
and tissue preparation as a standard for determination. Positive controls are important 
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Table 2 Recent studies of glucose transporter 4 expression and translocation in the skeletal muscle

Methods Materials Comparisons Observations/conclusions Ref.

Western blot. Cell fractions of rat L6 myotubes, 3T3-L1, 
and mouse muscle and adipose tissues. 
Anti-GLUT4 from Santa Cruz 
Biotechnology (1:1000).

Cell: Total cell lysate vs membrane 
fractions. Mouse tissues: Control vs 
high-fat diets.

Insulin treatments increases GLUT4 levels in membrane fractions without any change in 
the total cell lysate. GLUT4 levels in adipose tissue and muscle of mice fed a high-fat diet 
are lower in all fractions than that fed the control diet.

[72]

Western blot. Whole cell and cell fractions from rat L6 
and mouse C2C12 muscle cells, and 
soleus muscle of hind limb from mice. 
Anti-GLUT4 from Santa Cruz. 
Biotechnology (1:1000).

Whole cell lysate vs membrane 
fractions. Treatments without or with 
insulin or AICAR.

GLUT4 translocation occurs in L6 myotubes and 3T3-L1 adipocytes stimulated by insulin 
and AICAR. GLUT4 translocation occurs in muscle at 15 to 30 minutes and in adipose 
tissue at 15 minutes after glucose treatment.

[73]

Western blot. Giant sarcolemmal vesicles from soleus 
muscles of Sprague-Dawley rats.  Anti-
GLUT4 from Millipore (1:4000).

Tissue samples without or with insulin 
released in the presence of glucose as a 
stimulant and lipid as a control. 

A glucose-dependent insulinotropic polypeptide increases glucose transport and plasma 
membrane GLUT4 protein content. 

[74]

Real-time PCR for Slc2a4 mRNA levels. Total RNA of the skeletal muscle from 
male C57BL/6J and ICR mice fed 
different diets.

mRNA levels in muscle samples from 
mice fed the control or CLA 
supplement diet

Dietary CLA does not affect Slc2a4 mRNA levels in the mouse skeletal muscle [75]

Western blot. Preparations of sarcolemmal membrane 
fractions and crude lysates from male 
Muscovy ducklings.  Anti-GLUT4 from 
East Acres (1:500).

GLUT4 from a unique crude 
membrane fraction of rat skeletal 
muscle was used as an arbitrary unit 
and from erythrocyte ghost as a 
negative control

Polyclonal antibodies detect a protein of similar size (approximately 45 kDa) of GLUT4 in 
the crude membrane preparations from rat (positive control) and duckling skeletal 
muscle. No signal was obtained for rat erythrocyte ghost membrane preparation. 

[76]

ATB-BMPA-labelling of glucose transporters, 
Immunoprecipitation, liquid-scintillation counting, 
Western blot.

Tissue samples of isolated and perfused 
EDL or soleus muscle from GLUT1 
transgenic C57BL’KsJ-Leprdbj and 
control mice.  Anti-GLUT4 (R1184; C-
terminal) from an unknown source.

Non-transgenic mice vs transgenic 
mice.

Basal levels of cell-surface GLUT4 in isolated or perfused EDL are similar in transgenic 
and non- transgenic mice. Insulin induces cell-surface GLUT4 by 2-fold in isolated EDL 
and by 6-fold in perfused EDL of both transgenic and non-transgenic mice. Western blot 
results were not shown. 

[77]

Preembedding technique (immune reaction occurs 
prior to resin embedding to label GLUT4), and 
observations of whole mounts by 
immunofluorescence microscopy, or after sectioning 
by immunogold electron microscopy.

Muscle samples from male Wistar rats. 
Anti-GLUT4 (C-terminal, 1:1000), and 
anti-GLUT4 (13 N-terminal, 1:500) from 
unknown species.

Rats were divided in four groups: 
Control, contraction received saline, 
insulin and insulin plus contraction 
groups. They received glucose 
followed by insulin injection. 

Two populations of intracellular GLUT4 vesicles are differentially recruited by insulin and 
muscle contractions. The increase in glucose transport by insulin and contractions in the 
skeletal muscle is due to an additive translocation to both the plasma membrane and T 
tubules. Unmasking of GLUT4 COOH-terminal epitopes and changes in T tubule 
diameters does not contribute to the increase in glucose transport.

[78]

Immunoprecipitation, and Western blot. Membrane fractions from skeletal muscle 
of male Wistar rats treated without or 
with insulin. Anti-GLUT-4 from 
Genzyme, Anti-GLUT-4 from Santa Cruz 
Biotechnology.

Crude membrane preparations and 
cytosolic fractions in samples of rats 
treated without or with insulin.

In vitro activation of PLD in crude membranes results in movement of GLUT4 to 
vesicles/microsomes. This GLUT4 translocation is blocked by the PLD inhibitor, 
neomycin, which also reduces insulin-stimulated glucose transport in rat soleus muscle. 

[79]

Western blot for GLUT4 protein in homogenates of 
epitrochlearis muscles. Tissue slices labeled with 2-
[1,2-3H]-deoxy-d-glucose and counted in a gamma 
counter.

Muscle homogenate and slices from male 
Sprague-Dawley rats.  Anti- GLUT4 from 
Dr. Osamu Ezaki.

Sedentary control vs a 5-day 
swimming training group.

The change of insulin responsiveness after detraining is directly related to muscle GLUT-4 
protein content.  The greater the increase in GLUT-4 protein content induced by training, 
the longer an effect on insulin responsiveness lasts after training.

[80]

Immunofluorescence for membrane preparations, 
and 2-Deoxyglucose uptake in isolated skeletal 

Membrane preparations from L6 cells 
over-expressing GLUT4myc. Isolated 

L6 cells over-expressing GLUT4myc 
treated without or with Indinavir.

HIV-1 protease inhibitor indinavir at 100 µmol/l inhibits 80% of basal and insulin-
stimulated 2-deoxyglucose uptake in L6 myotubes with stable expression of GLUT4myc. 

[81]
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muscles. skeletal muscle samples from mice. Anti-
GLUT4 from Biogenesis.

AICAR: 5-aminoimidazole-4- carboxamide ribonucleotide; CLA: Conjugated linoleic acid; EDL: Extensor digitorum longus; HIV: Human immunodeficiency virus; ICR: Institute of Cancer Research; PLD: Phospholipase D; GLUT4: Glucose 
transporter 4.

when Western blot and fusion protein immunofluorescence methods are used to 
determine the GLUT4 protein levels.

According to studies summarized in Table 2, the following key points can be 
obtained. Insulin and muscle contraction increase glucose uptake in the skeletal 
muscle, which is associated with increases of GLUT4 content and its translocation. 
Neomycin, a phospholipase D inhibitor, blocks GLUT4 translocation. In the skeletal 
muscle isolated from GLUT1 transgenic mice, insulin-induced GLUT4 translocation 
response is lost, which is not due to down-regulation of GLUT4 expression. 
Conjugated linoleic acid in the diet does not affect the Slc2a4 mRNA expression in the 
skeletal muscle. Indinavir, an HIV-1 protease inhibitor, can block the glucose uptake 
mediated by GLUT4 in normal skeletal muscle and adipocytes without or with insulin 
stimulation. More studies are anticipated to elucidate how insulin resistance and 
T2DM affect the functions of GLUT4 system and whether overnutrition plays a role in 
it.

GLUT4 IN ADIPOSE TISSUES
The ability for an organism to store excessive amount of energy in the form of fat is 
helpful for it to navigate a condition of an uncertain supply of food[82]. Adipocytes, the 
main type of cells in adipose tissue, are not only a place for fat storage, but also 
endocrine cells to secrete cytokines for the regulation of whole body energy 
homeostasis[82]. Based on the mitochondrial content and physiological functions, 
adipocytes are divided into white, beige and brown fat cells. Structurally, 90% of the 
cell volume of a white adipocyte is occupied by lipid droplets. In normal-weight 
adults, white adipose tissue accounts for 15% to 20% of body weight[83,84]. Excessive 
accumulation of body fat results in the development of obesity, which can lead to the 
development of T2DM if not managed[85,86]. In addition, adipose tissues secrete 
cytokines such as leptin and adiponectin with abilities to regulate food intake and 
insulin sensitivity[87]. GLUT4 is expressed in adipocytes, where insulin stimulates its 
translocation from intracellular locations to the cell membrane, which leads to increase 
of glucose uptake[88]. High expression levels of GLUT4 in adipose tissue can enhance 
insulin sensitivity and glucose tolerance[89].

Insulin-induced GLUT4 translocation in adipose tissue and skeletal muscle has been 
studied extensively. Overall, in recent years, great progress has been made in the 
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understanding of GLUT4 vesicles movement, the fusion of the vesicles with the cell 
membrane, and the translocation mechanism in response to insulin. As shown in 
Figure 2, in adipocytes of an adipose depot, GLUT4 vesicles move from the specialized 
intracellular compartment to the cell periphery (near cell membrane), which is 
followed by tethering and docking. Tethering is the interaction between GLUT4 
vesicles and the plasma membrane. Docking is the assembly of the soluble N-
ethylmaleimide-sensitive factor-attachment protein (SNAP) receptor (SNARE) 
complex. Fusion occurs when the lipid bilayers of the vesicles with GLUT4 and the cell 
membrane merge[90]. The actin cytoskeleton system plays an important role in retaining 
GLUT4 vesicles in adipocytes. After insulin stimulation, remodeling of cortical actin 
causes the release GLUT4 vesicles to the plasma membrane[90-92]. β-catenin plays an 
important role in regulating the transport of synaptic vesicles. The amount of GLUT4 
within the insulin sensitive pool is determined by the β-catenin levels in adipocytes, 
which allows GLUT4 translocate to the cell membrane in response to insulin 
stimulation[93,94].

To summarize the current methods and reagents used for GLUT4 analysis in 
adipose tissues and adipocytes, “GLUT4, 3T3-L1”, and “GLUT4, adipocytes” were 
used to search the literature published in the past 15 years. We ignored those studies 
that only measured Slc4a2 mRNA, lacked the focus on adipocytes, and did not have 
full text versions. The resulted 30 articles were analyzed and summarized in Tables 
3[95-112] and 4[113-124]. Table 3 contains 18 articles and summarizes the effects of drugs or 
bioactive compounds on Slc2a4 mRNA and GLUT4 protein expressions, and GLUT4 
translocation. Table 4 contains 12 articles and summarizes studies of the regulatory 
mechanisms of GLUT4 system.

There are 11 and 2 articles respectively using real-time PCR and Northern blot to 
evaluate Slc2a4 mRNA levels. Western blot and ELISA are used in 24 articles to detect 
GLUT4 protein content. The antibodies were from Santa Cruz (6), Millipore (3), Cell 
Signaling Technology (4), Chemicon (4), Abcam (3), Pierce (1), Oxford (1) and 
Signalway (1). Two articles did not indicate the antibody sources. One article used 
antibodies from two companies. Nine articles indicated the dilutions of antibodies, and 
only 3 articles included the production catalog number. Immunofluorescence was 
used to detect the content and translocation of GLUT4 protein in 9 articles. Three 
articles used flow cytometry to detect GLUT4 protein. Twenty four of these 30 articles 
directly assessed levels of Slc2a4 mRNA or GLUT4 protein. The remaining 6 of the 30 
articles measured GLUT4 protein using fusion proteins. No article has a positive 
control group that uses overexpression of GLUT4 via a recombinant construct or 
purified recombinant GLUT4 protein.

As shown in Table 3, GLUT4 translocation, and Slc2a4 mRNA and GLUT4 
expression levels in 3T3-L1 cells can be regulated by bioactive compounds, crude 
extract of herbs, agonists of nuclear receptors, proteins and chemical drugs. Sl2a4 
mRNA or/and GLUT4 expressions in 3T3-L1 cells or adipose tissues can be increased 
by kaempferitrin, GW9662, inhibitor of p38 kinase, estradiol, crude extract of stevia 
leaf, fargesin, phillyrin, selenium-enriched exopolysaccharide, aspalathin-enriched 
green rooibos extract, bone morphogenetic proteins 2 and 6, and glucose pulse. On the 
other hand, Slc2a4 mRNA and GLUT4 protein levels can be reduced by luteolin, and 
shilianhua extract in 3T3-L1 cells. GLUT4 translocation can be enhanced by 
kaempferitrin, curculigoside and ethyl acetate fractions, gallic acid, 6-hydroxydaidzein 
and ginsenoside Re, and reduced by green tea epigallocatechin gallate.

As shown in Table 4, a variety of methods have been used to study the regulatory 
mechanisms of GLUT4 system. 3T3-L1 cells have been the major model in those 
studies. In addition to the insulin, pathways involved in the Slc2a4 gene expression, 
GLUT4 protein expression and its translocation include cannabinoid receptor 1 (CB1), 
ADP-ribosylation factor-related protein 1, MiR-29 family, proteasome system, estrogen 
pathway, oxidative stress via CCAAT/enhancer-binding protein alpha (C/EBPα), 
obesity development, differentially expressed in normal and neoplastic cells domain-
containing protein 4C, nuclear factor-κB, Akt and Akt substrate of 160 kDa, 
phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1, 
secreted protein acidic and rich in cysteine (SPARC), sterol regulatory element-binding 
protein 1 (SREBP-1), and AMP-activated protein kinase (AMPK) pathway. CB1 
receptor antagonists increase Slc2a4 mRNA and GLUT4 protein expressions through 
NF-kB and SREBP-1 pathways. Akt pathway regulates the rate of vesicle 
tethering/fusion by controlling the concentration of primed, and fusion-competent 
GSVs with the plasma membrane. Inhibition of the SPARC expression reduces Slc2a4 
mRNA and GLUT4 expressions. The expressions of C/EBPα and δ alter the C/EBP-
dimer formation at the Slc2a4 gene promoter, which regulates its transcription. 
Inhibition of differentially expressed in normal and neoplastic cells domain-containing 
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Table 3 Recent studies of effects of bioactive compounds and chemical drugs on glucose transporter 4 expression and translocation in adipocytes

Methods Materials Comparisons Conclusions Ref.

Immunoprecipitation, dual fluorescence 
immunostaining, Western blot.

3T3-L1, anti-GLUT4 from Santa Cruz Biotechnology (1:200). Treatments without or with 
kaempferitrin.

Kaempferitrin treatment upregulates total GLUT4 expression and its translocation 
in 3T3-L1 cells.

[95]

Subcellular fractionations, Western blot. 3T3-L1, anti-GLUT4 from Cell Signaling Technology (1:1000). Treatments without or with 
epigallocatechin gallate.

Green tea epigallocatechin gallate suppresses insulin-like growth factor-induced-
glucose uptake via inhibition of GLUT4 translocation in 3T3-L1 cells.

[96]

Western blot. 3T3-L1, anti-GLUT4 from Santa Cruz Biotechnology. Treatments without or with 
GW9662.

GW9662 increases the expression of GLUT4 protein in 3T3-L1 cells. [97]

Immunoprecipitation, Western blot. 3T3-L1, anti-GLUT4 from Chemicon. Treatments without or with 
p38 inhibition.

Inhibition of p38 enhances glucose uptake through the regulation of GLUT4 
expressions in 3T3-L1 cells.

[98]

Western blots, Real-time PCR, Electrophoretic 
mobility shift assay, Immunofluorescence. 

Adipose tissues of Esr1 deletion and wild type female mice, 3T3-
L1, anti-GLUT4 from Merck/Millipore for Western blot (1:4000), 
and for immunofluorescence (1:100). 

Tissue and cells without or 
with gene deletion.

Estradiol stimulates adipocyte differentiation and Slc2a4 mRNA and GLUT4 
protein expressions in an ESR1/CEBPA mediated manner in vitro and in vivo. 

[99]

Real-time PCR, Solid-phase ELISA. 3T3-L1, anti-GLUT4 antibody from Pierce (1:1000). Treatments without or with 
the extract.

The crude extract of stevia leaf can enhance Slc2a4 mRNA and GLUT4 protein 
levels in 3T3-L1 cells.

[100]

GeXP multiplex for mRNA, Western blot. 3T3-L1, anti-GLUT4 from Millipore (1:20). Treatments without or with 
indicated reagents.

Curculigoside and ethyl acetate fractions increase glucose transport activity of 3T3-
L1 adipocytes via GLUT4 translocation. 

[101]

Real-time PCR, Western blot. 3T3-L1, anti-GLUT4 from Cell Signaling Technology. Treatments without or with 
luteolin

Luteolin treatment decreases Slc2a4 mRNA and GLUT4 protein levels in 3T3-L1 
cells.

[102]

Western blot. 3T3-L1, anti-GLUT4 from Abcam (ab654-250). Treatments without or with 
extract.

Shilianhua extract treatment decreases GLUT4 protein level in 3T3-L1 cells. [103]

Western blot. 3T3-L1, and male C57BL/6J mice fed a normal-fat or high-fat diet, 
anti-mouse GLUT4 from AbD SeroTec (1:1000).

Treatments without or with 
fargesin. 

Fargesin treatment increases GLUT4 protein expression in 3T3-L1 cells and adipose 
tissues of mice.

[104]

Western blot. 3T3-L1, antibody no mentioned. Treatments without or with 
phillyrin.

Phillyrin treatment increases the expression levels of GLUT4 protein in 3T3-L1 
cells.

[105]

Real-time PCR, Western blot. 3T3-L1, anti-GLUT4 from Santa Cruz Biotechnology. Treatments without or with 
6Hydroxydaidzein. 

6Hydroxydaidzein facilitates GLUT4 protein translocation, but did not affect Slc2a4 
mRNA level in 3T3-L1 cells. 

[106]

Western blot. 3T3-L1, and C57BL/6J mice with SirT1 and Ampkα1 knockdown, 
anti-GLUT4 from Signalway Antibody. 

Treatments without or with 
indicated reagents.

Seleniumenriched exopolysaccharides produced by Enterobacter cloacae Z0206 
increase the expression of GLUT4 protein in mice, but not in 3T3-L1 cells.

[107]

Western blot. 3T3-L1, anti-GLUT4 from Cell Signaling Technology Treatments without or with 
extract.

Aspalathin-enriched green rooibos extract increases GLUT4 protein expression in 
3T3-L1 cells.

[108]

Transient expression of myc-GLUT4-GFP and 
fluorescence microscopy. 

3T3-L1, fusion protein only. Treatments without or with 
indicated reagents.

Gallic acid can increase GLUT4 translocation and glucose uptake in 3T3-L1 cells. [109]

Real-time PCR, Western blot. 3T3-L1, anti GLUT4 from Santa Cruz Biotechnology (1: 1000). Treatments without or with 
Ginsenoside Re.

Ginsenoside Re promotes the translocation of GLUT4 by activating PPAR-γ2. 
Slc2a4 mRNA is not affected in 3T3-L1 cells.

[110]

Real-time PCR, GLUT4-myc7-GFP from Cells without or with Bone morphogenetic proteins 2 and 6 inhibit PPARγ expression, which increases 3T3-L1 with knockdown of PPARγ, fusion protein. [111]
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retroviral vector, flow cytometry, 
fluorescence microscopy.

knockdown. total GLUT4 levels, but not GLUT4 translocation3T3-L1 cells.

Western blot, real-time PCR. 3T3-L1, anti-GLUT4 antibody from Santa Cruz Biotechnology (sc-
1608). 

Treatments without or with 
pulse or manipulations.

Glucose pulse (25 mM) increases GLUT4 expression. GLUT4 level is partially 
restored by increasing intracellular NAD/P levels. A liver X receptor element on 
Slc2a4 promoter is responsible for glucose-dependent transcription.

[112]

GLUT4: Glucose transporter 4; AMPK: AMP-activated protein kinase; CEBPA and C/EBP: CCAAT/enhancer-binding protein alpha; ESR1: Estrogen receptor 1.

protein 4C can block GLUT4 translocation. Rac exchange factor 1 activation seems to 
promote GLUT4 translocation via arrangement of actin cytoskeleton. The mechanism 
of AMPK-mediated GLUT4 translocation in 3T3-L1 adipocytes seems to be distinct 
from that of insulin-induced one. Future studies are needed to integrate the roles of all 
these players in the regulation of GLUT4 system in adipocytes.

GLUT4 IN THE HEART 
The heart works constantly to support the blood circulation throughout the lifespan. 
Cardiomyocytes constantly contract to pump blood, oxygen, metabolic substrates, and 
hormones to other parts of the body. This requires continuous ATP production for 
energy supply. The primary fuel for the heart is fatty acids, whereas glucose and 
lactate contribute to 30% of energy for ATP production[125]. In addition, glucose plays 
an important role in circumstances like ischemia, increased workload, and pressure 
overload hypertrophy.

Glucose is transported into cardiac myocytes through GLUTs. GLUT4 represents 
around 70% of the total glucose transport activities[15]. GLUT4 protein expression can 
be found as early as 21 days of gestation in rats[126]. The expression level of GLUT4 in 
the heart may increase or decrease depending on the different models. For example, 
GLUT4 protein content decreases along with aging in male Fischer rats, but increases 
4-5 times in C57 Bl6 mice[127,128]. In basal state, GLUT4 is found mainly in intracellular 
membrane compartments, and can be stimulated by insulin and ischemia to 
translocate to the cell membrane[129]. The binding of myocyte enhancer factor-2 (MEF2) 
and thyroid hormone receptor alpha 1 is needed for transcription of Slc2a4 gene in 
cardiac and skeletal muscle in rats[130]. In addition, Slc2a4 gene expression can also be 
regulated by other transcription factors. For example, overexpression of peroxisome 
proliferator-activated receptor gamma coactivator 1 works with MEF2-C to induce 
Slc2a4 mRNA expression in L6 muscle cells[131]. Moreover, GLUT4 expression level can 
be affected by cardiovascular diseases, and myocardial sarcolemma, which reduce the 
expression and translocation of GLUT4[132]. The development of T1DM decreases 
GLUT4 expression level and its translocation in the heart of mice[132]. T2DM 
development also reduces GLUT4 content and translocation due to insulin resistance 
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Table 4 Recent studies of mechanisms of glucose transporter 4 expression and translocation in adipocytes

Methods Materials Comparisons Observations/conclusions Ref.

Western blot, real-time PCR, Electrophoretic 
mobility shift assay.

3T3-L1 pre and differentiated adipocytes. Anti-GLUT4 
antibody from Chemicon (1:4,000).

Treatment groups without or with 
the antagonist.

CB1 receptor antagonist markedly increases Slc2a4 mRNA and GLUT4 protein 
levels in 3T3-L1 cells via NF-kB and SREBP-1 pathways.

[113]

Immunohistochemistry, Western blot, real-
time PCR. 

Brown adipose tissue of Arfrp1 flox/flox and Arfrp1 ad-/-
mouse embryos (ED 18.5) and 3T3-L1 cells with 
knockdown of Arfrp1. Anti-GLUT4 without specifying 
the vendor (1:1000).

Mice without or with deletion, and 
3T3-L1 cells without or with 
knockdown. 

In Arfrp1 ad-/- adipocytes, GLUT4 protein accumulates on the cell membrane rather 
than staying intracellularly without any change of Slc2a4 mRNA. siRNA-mediated 
knockdown of Arfrp1 in 3T3-L1 adipocytes has a similar result and increases basal 
glucose uptake. 

[114]

Real-time PCR, Western blot. 3T3-L1 transfected with Mmu-miR-29a/b/c.  Anti-
GLUT4 from Santa Cruz Biotechnology (SC-7938). 

Cells with or without transfection. Transfection of miR-29 family members inhibits Slc2a4 mRNA and GLUT4 protein 
levels in 3T3-L1 cells by inhibiting SPARC expression.

[115]

Northern blot, Western blot, Nuclear run-on 
assay for the rate of GLUT4 gene 
transcription.

3T3-L1 pre and differentiated adipocytes.  Rabbit 
polyclonal GLUT4 antibody form Chemicon.

Treatment groups without or with 
inhibitors.

Inhibitions of proteasome using Lactacystin and MG132 reduce Slc2a4 mRNA and 
GLUT4 protein levels in 3T3-L1 cells.

[116]

AFFX miRNA expression chips for mRNA, 
Western blot. 

Human Omental adipose tissue, 3T3-L1 pre and 
differentiated adipocytes with miR-222 silenced by 
antisense oligonucleotides. Anti-GLUT4 from Abcam.

Groups without or with transfection. High levels of estrogen reduce the expression and translocation of GLUT4 protein. 
miR -222 silencing dramatically increases the GLUT4 expression and the insulin-
stimulated translocation of GLUT4 in 3T3-L1 adipocytes.

[117]

Northern blot for mRNA, Western blot. 3T3-L1 pre and differentiated adipocytes.  Anti-GLUT4 
from Chemicon.

Treatment groups without or with 
oxidative stress.

Oxidative stress mediated by hydrogen peroxide induces expressions of C/EBPα 
and δ, resulting in altered C/EBP-dimer composition on the GLUT4 promoter, 
which reduces GLUT4 mRNA and protein levels.

[118]

Real-time PCR, Western blot. Human Subcutaneous pre and differentiated adipocytes 
from control and obese subjects, 3T3-L1 pre and 
differentiated adipocytes transfected with miR-155. Anti-
GLUT4 from Abcam.

Primary pre and differentiated 
adipocytes from normal and obese 
subjects, and cells without or with 
transfection.

The level of SLC2A4 is reduced in obese people, and the expression of GLUT4 
protein is reduced in 3T3-L1 cells and differentiated human mesenchymal stem cells 
transfected with miR-155.

[119]

HA-GLUT4-GFP from transfected lentiviral 
plasmid and analyzed by flow cytometry, 
and fluorescence microscopy. 

3T3-L1 pre and differentiated adipocytes with 
knockdown of Dennd4C. Fusion protein.

Groups without or with knockdown. Knockdown of Dennd4C inhibits GLUT4 translocation, and over- expression of 
DENND4C slightly stimulates it. DENND4C is found in isolated GLUT4 vesicles. 

[120]

HA-Glut4-GFP from transfected plasmid, 
and analyzed by flow cytometry, 
fluorescence microscopy 

3T3-L1 pre and differentiated adipocytes with AS160 
knockdown.Fusion protein. 

Groups without or with knockdown. Akt regulates the rate of vesicle tethering/fusion by regulating the concentration of 
primed, and fusion-competent GSVs with the plasma membrane, but not changing 
the intrinsic rate constant for tethering/fusion.

[121]

HA-tagged GLUT4 by fluorescence 
microscopy, Western blots, Immune 
pulldown.

3T3-L1 pre and differentiated adipocytes without or with 
GST-ClipR-59 transfection. Rabbit anti-GLUTlut4 from 
Millipore; Mouse monoclonal anti-GLUT4 from Cell 
Signaling Technology.

Pull down antibodies. By interacting with AS160 and enhancing the association of AS160 with Akt, ClipR-
59 promotes phosphorylation of AS160 and GLUT4 membrane translocation.

[122]

Transfection of GFP-GLUT4 and indirect 
immunofluorescence.

3T3-L1 pre and differentiated adipocytes with siRNA 
knockdown of P-Rex1. Fusion protein.

Without or with knockdown. P-Rex1 activates Rac1 in adipocytes, which leads to actin rearrangement, GLUT4 
trafficking, increase of glucose uptake.

[123]

Transfection of GLUT4-eGFP plasmid and 
analyzed by fluorescence microscopy. 

3T3-L1 pre and differentiated adipocytes. Fusion protein. Treatment groups without or with 
activators.

AMPK-activated GLUT4 translocation in 3T3-L1 adipocytes is mediated through the 
insulin-signaling pathway distal to the site of activated phosphatidylinositol 3-
kinase or through a signaling system distinct from that activated by insulin.

[124]
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GLUT4: Glucose transporter 4; ARFRP1: ADP-ribosylation factor-related protein 1; AMPK: AMP-activated protein kinase; AS160: Akt substrate of 160 kDa; CB1: Cannabinoid receptor 1; CEBPA and C/EBP: CCAAT/enhancer-binding 
protein alpha; CLIPR-59: Cytoplasmic linker protein R-59; DENND4C: Differentially expressed in normal and neoplastic cells domain-containing protein 4C; GSV: GLUT4 storage vesicle; NF-Κb: Nuclear factor-κB; PREX1: 
Phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1; SPARC: Secreted protein acidic and rich in cysteine; SREBP-1: Sterol regulatory element-binding protein 1.

and impairments of insulin signaling pathway in human cardiomyocytes[133].
To investigate the methods and reagents used for GLUT4 studies in the heart, 

“GLUT4, heart”, and “cardiomyocytes, GLUT4 expression” were used as key words to 
search PubMed for articles published after 2000. We went through all papers with 
cardiomyocytes and GLUT4 in titles or short descriptions and selected 9 of them that 
are mainly focused on GLUT4 expression and translocation in the heart as shown in 
Table 5[134-142].

Rats are used in all 9 studies. Various methods and reagents are used to analyze 
Slc2a4 mRNA and GLUT4 protein levels in the heart and cardiomyocytes. Real-time 
PCR was used in 4 of them to determine Slc2a4 mRNA levels. Antibodies and Western 
blot were used to assess GLUT 4 protein in 8 of them. Immunohistochemistry was 
used in 1 of them. Two of them used immunofluorescence to track down GLUT4 
translocation.

To determine the content of GLUT4 protein in the heart, Western blot and fusion 
protein immunofluorescence methods were used. As shown in Table 5, these studies 
do not include overexpressed GLUT4 or cell samples with Slc2a4 deletion as controls. 
Several of them did not mention sources of anti GLUT4 antibodies used in Western 
blots. Some used polyclonal antibodies, which may need a positive control to indicate 
the correct size and location of GLUT4 protein.

From the papers listed above, GLUT4 expression and translocation in the heart and 
cardiomyocytes can be affected through activations of ERK and Akt pathways. 
Proteins like growth hormone, catestatin or pigment epithelium-derived factor can 
stimulate GLUT4 translocation and glucose uptake. Chemicals like sitagliptin and 
ethanol can up- and down-regulate Slc2a4’s mRNA expression levels, respectively. 
However, the underlying mechanisms responsible for these regulations of GLUT4 
translocation and Slc2a4 mRNA expression remain to be revealed. In addition, the 
research results summarized here are from tissue and cells of rats. It will be interesting 
to see whether same results will be observed when tissues and cells from other animal 
models are used.

GLUT4 IN THE BRAIN
The brain is a complex organ in the body and controls a variety of functions from 
emotions to metabolism. It consists of cerebrum, the brainstem, and the cerebellum[143]. 
Brain cells utilize glucose constantly to produce energy in normal physiological 
conditions. The brain can consume about 120 g of glucose per day, which is about 420 
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Table 5 Recent studies of glucose transporter 4 expression and translocation in the heart

Methods Materials Comparisons Conclusions Ref. 

Western blot. Cytosol and membrane fractions of left ventricular, heart, 
and blood from male Sprague-Dawley rats. Anti-GLUT4 
from Santa Cruz Biotechnology (1:200).

Groups without or with the indicated treatments. Na+/K+-ATPase and 
β-actin were loading controls of the membrane and cytosol fractions, 
respectively. Losartan was used as a positive control.

Ginsenoside Rb1 treatment can increase GLUT4 expression 
via inhibition of the TGF-β1/Smad and ERK pathways, and 
activation of the Akt pathway. 

[134]

Real-time PCR,Western blot. Isolated ventricular cells from heart of male adult (aged 6-8 
wk) and neonatal (1-3 d old) Wistar rats.Anti GLUT4 from 
Abcam (unknown dilution).

Groups with or without the ethanol feeding. Gapdh and β-actin were 
included as loading controls for real-time PCR and Western blot, 
respectively. 

Long-term (22 wk) ethanol consumption increases AMPK 
and MEF2 expressions, and reduces GLUT4 mRNA and 
protein expression in rat myocardium 

[135]

Western Blot. Isolated ventricular cells from heart of adult male Wistar 
rats. Polyclonal rabbit anti-human GLUT4 from AbD 
Serotec (4670–1704 1:750)

Groups with or without the indicated treatments. Heart failure and MI reduce glucose uptake and utilization. 
GGF2 partially rescues GLUT4 translocation during MI.

[136]

Western blot, 
Immunofluorescence.

Isolated ventricular cells from heart of adult rats. 
Polyclonal anti-GLUT4 from Thermo Fisher Scientific 
(1:100).

Treatment groups were compared with that of 100 nM insulin. Catestatin can induce AKT phosphorylation, stimulate 
glucose uptake, and increase GLUT4 translocation. 

[137]

Western blot, Flow cytometric 
analysis.

Isolated ventricular cells from heart of adult male Wistar 
rats. Anti-GLUT4 (H-61) from unknow source (1:1000 for 
Western) and conjugated to Alexa Fluor 488.

Treatment groups with or without AMPK agonists. AMPK activation does not affect GLUT4 translocation and 
glucose uptake in isolated cardiomyocytes. 

[138]

Real-time PCRUsing TaqMan® 
Gene Expression assays. 

Blood, heart, frontal cortex cerebellum from male Wistar 
rats.

Tissues from control and diabetic rats. Slc2a4’s expression is downregulated in STZ-treated rat’s 
heart, but unaffected in tissue protected by blood-brain 
barrier like frontal cortex. 

[139]

Western blot, 
Immunohistochemistry.

Heart from male Sprague-Dawley rats, anti-GLUT4 from 
Cell Signaling Technology (2213, 1:1000), anti GLUT4 from 
Abcam (ab654, 1:200 for ICC/IF)

Treatment groups without or with the indicated treatments. PEDF can increase glucose uptake and GLUT4 
translocation in ischemic myocardium.

[140]

Real-time PCR,Western blot. Heart from male wild type rats and SHRs. Rabbit 
polyclonal antibody GLUT4 from Millipore 

Wild type rats and SHRs without or with the indicated treatments. Sitagliptin upregulates levels of GLUT4 protein and Slc2a4 
mRNA, and its translocation in cardiac muscles of SHRs. 

[141]

Real-time PCR,Western blot. Left ventricles muscle from male Wistar rats. Anti-GLUT4 
from Chemicon (1:1000)

Saline as untreated control and reagent treated groups. Growth hormone stimulates the translocation of GLUT4 to 
the cell membrane of cardiomyocytes in adult rats. 

[142]

GLUT4: Glucose transporter 4; AMPK: Adenosine monophosphate-activated protein kinase; ERK: Extracellular signal-regulated kinase; GGF2: Glial growth factor 2; GAPDH: Glyceraldehyde-3-Phosphate Dehydrogenase; MEF2: Myocyte 
enhancer factor-2; MI: Myocardial infarction; PEDF: Pigment epithelium-derived factor; SHR: Spontaneously hypertensive rats; STZ: Streptozotocin; TGF: Transforming growth factors.

kcal and accounts for 60% of glucose ingested in a human subject[125]. The glucose 
influx and metabolism in the brain can be affected by multiple factors such as aging, 
T2DM and Alzheimer’s disease[144]. Reduction of glucose metabolism in the brain can 
lead to cognitive deficits[145]. Due to the critical relationship between cognitive 
performance and glucose metabolism, it is important to understand the regulatory 
mechanism of glucose metabolism in the brain.

Studies have shown that insulin signaling can be impacted in both T2DM and 
Alzheimer’s disease[146,147]. Insulin is a key component for hippocampal memory 
process, and specifically involved in regulating hippocampal cognitive processes and 
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Figure 2 The movement of glucose transporter 4 in adipocytes. Adipose tissue is made of adipocytes. In adipocytes, glucose transporter 4 (GLUT4) can 
be found in the cell membrane and in the cytosol. The translocation of GLUT4 from cytosolic vesicles to the cell membrane leads to elevated glucose uptake, 
whereas endocytosis brings GLUT4 back to the cytosol. (1): In unstimulated cells, GLUT4 containing membrane portions are internalized in an endocytosis manner to 
generate vesicles containing GLUT4. GLUT4 vesicles are internalized into early (or sorted) endosomes. They can enter the recovery endoplasmic body, and follow 
the retrograde pathway to the trans-Golgi network and endoplasmic reticulum-Golgi intermediate compartment or other donor membrane compartments. (2): GLUT4 
vesicles derived from the donor membrane structures are secured by tether containing a UBX domain for GLUT4 (TUG) protein. (3): During insulin signal stimulation, 
GLUT4 vesicles are released and loaded onto the microtubule motor to be transferred to the plasma membrane. The continuous presence of insulin leads to the 
direct movement of these vesicles to the plasma membrane. (4): GLUT4 vesicles are tethered to motor protein kinesin and other proteins. A stable ternary SNARE 
complex forms when this occurs. (5): The stable ternary SNARE complex is docked on the target membrane. (6): The docked vesicles rely on SNARE to move to and 
fuse with the target membrane[60,90,94]. GLUT4: Glucose transporter 4.

metabolism[148]. Insulin-modulated glucose metabolism depends on regions in the 
brain. The cortex and hippocampus are the most sensitive areas in the brain[149]. 
Hippocampus located deeply in temporal lobe plays an important role in learning and 
memory, and relates to diseases like Alzheimer’s disease, short term memory loss and 
disorientation[150]. Hippocampal cognitive and metabolic impairments are relatively 
common in T2DM, which may be caused by diet-induced obesity and systemic insulin 
resistance[151]. On the other hand, insulin stimulation can enhance memory and 
cognitive function[152]. This enhancement may require the brain GLUT4 translocation as 
shown in rats[153]. It is very important to determine the expression profile of GLUT4 in 
the brain, and factors that impact GLUT4 expression and translocation.

To summarize methods and reagents used in brain GLUT4 studies, “brain, GLUT4 
expression” were used as key words to search PubMed for articles that have brain and 
GLUT4 in their titles or short descriptions. Ten research articles published after 2000 
were identified as representative ones, which are focused on GLUT4 translocations 
and content in the brain of rats and mice. We summarized the methods and reagents 
for GLUT4 analysis, and conclusions as shown in Table 6[154-163].

In these 10 papers, two of them used real-time PCR to determine the Slc2a4 mRNA 
in the brain. Eight of them used anti-GLUT4 antibodies and Western blot to detect 
GLUT 4 protein. Five papers included β-actin as loading control in Western blot. Four 
used immunohistochemistry. One paper used electrophysiological technique, and one 
paper used fluorescent microscopy to identify GLUT 4 in neurons. One study used 
brain specific Slc2a4 knockout and wild type mice to study the functions of GLUT4 in 
the brain.

In conclusion, results of Western blot and real-time PCR demonstrate that GLUT4 
protein and Slc2a4 mRNA can be detected in rat’s brain and central nervous system. 
Deletion of Slc2a4 in the brain causes insulin resistance, glucose intolerance, and 
impaired glucose sensing in the ventromedial hypothalamus. GLUT4 mediates the 
effects of insulin, or insulin-like growth factor on regulations of cognition, memory, 
behavior, motor activity and seizures. GLUT4 positive neurons are responsible for 
glucose sensing. Physical activity improves GLUT4 translocation in neurons, a process 
that needs Rab10 phosphorylation. Interestingly, 27-OH cholesterol treatment seems to 
decrease GLUT4 expression in the brain. Studies of Slc2a4 mRNA and GLUT4 protein 
in the brain and central nervous system have begun to demonstrate the potential roles 
of GLUT4 expression and its translocation in the regulation of glucose metabolism in 
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Table 6 Recent studies of glucose transporter 4 expression and translocation in the brain

Methods Materials Comparisons Conclusions Ref.

Western blot. Brain, skeletal muscle, heart, and whiteadipose tissue from mice.  Anti-
GLUT4 from Chemicon (1:1000).

Samples from wild type and knockout mice. Deletion of Slc2a4 in the brain leads to insulin resistance, 
glucose intolerance, and impaired glucose sensing in the 
VMH.

[154]

Western blot,Real time-
PCR,Immunofluorescence.

Cortex, hypothalamus, cerebella samples from CD-1 mice. Monoclonal anti 
Glut4 (1F8) from Dr. Paul Pilch, Polyclonal anti Glut4 MC2A from Dr. 
Giulia Baldini, Polyclonal anti Glut4 αG4 from Dr. Samuel Cushman, 
Polyclonal anti Glut4 (C-20) from Santa Cruz Biotechnology.

Expression profile in the mouse and rat brain 
samples.

Slc2a4 mRNA is expressed in cultured neurons. GLUT4 
protein is highly expressed in the granular layer of the mouse 
cerebellum. GLUT4 translocation to the plasma membrane 
can be stimulated by physical activity.

[155]

Western blot. Brian tissue from STZ-induced diabetic male Sprague-Dawley rats.Anti-
GLUT4 from Millipore (1:1000).

Comparing treatment samples using β-actin and 
NA/K ATPase as loading controls in Western blot.

Chronic infusion of insulin into the VMH in poorly controlled 
diabetes is sufficient to normalize the sympathoadrenal 
response to hypoglycemia via restoration of GLUT4 
expression.

[156]

Immunocytochemistry. Cerebellum and hippocampus from male Sprague-Dawley rats.Rabbit anti-
GLUT4 antibody from Alomone Labs (AGT-024, RRID: AB_2631197).

Identifying expression profile and translocation. GLUT4 is expressed in neurons including nerve 
terminals.Exercising axons rely on translocation of GLUT4 to 
the cell membrane for metabolic homeostasis.

[157]

Real-time PCR, 
Immunocytochemistry.

Cerebral cortex, hippocampus, thalamus, cerebellum, medulla oblongata, 
cervical spinal cord, biceps muscles from male Wistar rats. Unknown source 
of antibody.

Identifying expression profile using β -actin as 
loading control in real-time PCR. 

Slc2a4 mRNA is detected in many neurons located in brain 
and spinal cord. GLUT4 protein is detected in different 
regions of the CNS including certain allocortical regions, 
temporal lobe, hippocampus, and substantia nigra.

[158]

Immunocytochemistry, Western 
blot.

Brain, spleen, kidney from Lrrk2 knockout mice.Anti GLUT4 Avivasysbio 
(ARP43785_P050, 1:100), andanti GLUT4 from R&D Systems (MAB1262, 
1:1000).

Samples from wild type and knockout mice, andanti-
β-Tubulin as loading control.

Phosphorylation of Rab10 by LRRK2 is necessary for GLUT4 
translocation.Lrrk2 deficiency increases GLUT4 expression on 
the cell surface in “aged” cells.

[159]

Western blot, 
Immunofluorescence, real-time 
PCR.

Brain from Cyp27Tg mice. Anti GLUT4 from Cell Signaling Technology 
(#2213,1:1000 dilution).

Mice with different treatments. A reduction of GLUT4 protein expression in brain occurs 
after 27-OH cholesterol treatment.

[160]

Immunohistochemistry. Brain, hypothalamus, and other tissues from Sprague–Dawley rats.Anti-
GLUT4 antibody from Santa Cruz Biochemicals (1:200), Anti GLUT4 from S. 
Cushman (1:1000).

Identifying the expression profiles. Soleus muscle as 
GLUT4 positive control. Antibodies after pre-
absorption with the corresponding synthetic peptide 
were used as negative control. for GLUT4 antibody.

GLUT4 is localized to the micro vessels comprising the blood 
brain barrier of the rat VMH.GLUT4 is co-expressed with 
both GLUT1 and zonula occludens-1 on the endothelial cells 
of these capillaries.

[161]

Electrophysiological analyses, 
fluorescent microscope.

Brain from GLUT4-EYFP transgenic mice. Fusion protein. Comparing samples from treatments. A scrambled 
RNA expressed by AAV acted as a negative control. 

GLUT4 neurons are responsible for glucose sensing. [162]

Western 
blot,Immunohistochemistry.

Brain samples from 7, 11, 15, 21 and 60 d old Balb/c mice. Rabbit anti-rat 
GLUT4 from an unknow source (1:2500 dilution for Western and 1:2000 for 
immunohistochemistry). 

Determine the expression profiles. Vinculin is used as 
the loading control in Western blot.

GLUT4 is expressed in neurons of the postnatal mouse brain. 
GLUT4 and GLUT8 may mediate the effects of insulin, or 
insulin-like growth factor on regulations of cognition, 
memory, behavior, motor activity and seizures.

[163]

AAV: Adeno-associated virus; CNS: Central nervous system; CRR: Counterregulatory response; EYFP: Enhanced Yellow Fluorescent Protein; LRRK2: Leucine-rich repeat kinase 2; STZ: Streptozotocin; VMH: Ventromedial hypothalamus.

the brain and central nervous system. More studies of GLUT4 expression and 
translocation in the control of functions and metabolism in various region in the brain 
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and central nervous system are expected in the future.

CONCLUSION
GLUT4 is generally thought to contribute to insulin-stimulated glucose uptake in 
adipocytes and skeletal muscle. Studies summarized here seem to show that GLUT4 is 
also expressed in the brain, neurons, and heart. GLUT4 is expressed concurrently with 
other GLUTs in multiple tissues in a temporal and spatial specific manner such as 
during brain development[163]. Hormones and cytokines other than insulin can also 
regulate the expression levels and translocation of GLUT4 in different tissues[141,142,163]. 
In adipocytes alone, many bioactive compounds or chemical reagents have shown to 
affect GLUT4 pathways as shown in Table 3. All these seem to indicate that the 
regulatory mechanism of the GLUT4 pathway is complicated than we originally 
proposed.

So far, various methods from gene knockout to immunohistochemistry have been 
used to study the mechanisms of Slc2a4 mRNA and GLUT4 expressions, and its 
translocation in different cells. Every technique has its pros and cons. Based on the 
studies summarized here, anti-GLUT4 antibodies from a variety of sources have been 
used to study GLUT4 expression and translocation. The conclusions of these studies 
are based on the experimental results derived from the use of those antibodies. A 
positive control derived from a cell or tissue with unique overexpression or silencing 
of GLUT4 is critical to confirm the antibody’s specificity to pick up a right signaling in 
the study system. This is especially true for Western blot. It appears that some of the 
studies did not include control groups like this. Another challenge facing biochemical 
study of GLUT4 translocation in the muscle may be the sample processing. This 
probably explains why fusion proteins and stable cell lines are developed to enhance 
signals and specificities for detection. Confirmation of the antibody specificity in a 
particular system probably should be done first.

As glucose homeostasis is a complicate process involved in many players. It is 
anticipated to see that many proteins seem to play a role in the regulation of GLUT4 
system. It will be interesting to see how GLUT4 in different regions of the brain 
contributes to the regulation of glucose metabolism, and what the roles of insulin-
induced GLUT4 translocation in those areas are. In addition, other GLUTs are also 
expressed in the same cells that GLUT4 are expressed. How GLUT4 works with other 
GLUTs to regulate metabolism also deserves to be investigated. Last, as glucose usage 
in the skeletal muscle is altered in insulin resistance and T2DM, how GLUT4 system 
contributes to progressions and interventions of these diseases still remains to be the 
focus in the future. Nevertheless, further understanding GLUT4 system will be very 
helpful for us to combat the development of T2DM.
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