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Abstract
Autophagy, the pathway whereby cell components 
are degraded by lysosomes, is involved in the cell re-
sponse to environmental stresses, such as nutrient 
deprivation, hypoxia or exposition to chemotherapeutic 
agents. Under these conditions, which are reminiscent 
of certain phases of tumor development, autophagy 
either promotes cell survival or induces cell death. 
This strengthens the possibility that autophagy could 
be an important target in cancer therapy, as has been 
proposed. Here, we describe the regulation of survival 
and death by autophagy and apoptosis, especially in 
cultured breast cancer cells. In particular, we discuss 
whether autophagy represents an apoptosis-indepen-
dent process and/or if they share common pathways. 
We believe that understanding in detail the molecular 
mechanisms that underlie the relationships between 
autophagy and apoptosis in breast cancer cells could 
improve the available treatments for this disease. 
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AUTOPHAGY
Autophagy is the process whereby organelles and other 
cell components are degraded by lysosomes. There are 
various types of  autophagy, including macroautophagy, 
microautophagy and chaperone-mediated autophagy[1]. 
Macroautophagy, hereafter called autophagy, is the most 
important form of  autophagy and involves the formation 
of  double-membrane vacuoles, named autophagosomes, 
containing cytosol and organelles. Autophagosomes then 
fuse with endosomes and lysosomes to form autolyso-
somes (Figure 1), which undergo a gradual acidification, by 
a proton pump, and degradation, by hydrolytic enzymes, 
of  their content[2]. Autophagosome formation is a com-
plex mechanism in which different autophagy-related (Atg) 
proteins participate, including Beclin 1 and LC3 (Atg6 and 
Atg8 in yeast, respectively), and which also requires the 
cell cytoskeleton[1,3,4]. Autophagy occurs at basal levels in 
almost all cells, and its main function is the degradation 
of  cell components, including long-lived proteins, protein 
aggregates and organelles produced in excess, aged, dam-
aged and potentially dangerous or no longer needed[5,6]. 
Under starvation conditions, autophagy provides the cells 
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with molecules (amino acids, fatty acids, monosaccharides 
and nucleotides) that can be used for biosynthetic pur-
poses. Some of  these molecules can also be utilized as en-
ergy sources and the ensuing biosyntheses require energy.   
Therefore, it appears logical that part of  them can be used 
to produce this energy, as has been postulated by many 
authors[7-10]. However, direct experimental proof  for a role 
of  autophagy in restoring the energy levels in the cell is 
still missing, probably because of  the difficulties derived 
from the fact that this energy would be immediately used 
by the cells recovering from stress. Autophagy has also 
an important role in normal development, differentiation, 
and tissue remodeling in multicellular organisms, as well as 
in their adaptation to several stresses[5,11]. 

Regarding cancer, which is the general subject of  this 
Topic Highlight, a tumor suppressor role for autophagy 
has been also proposed, removing injured mitochondria 
that could increase the production of  reactive oxygen spe-
cies (ROS) and the number of  mutations in cancer cells[11]. 

Role of autophagy in survival and death of tumor cells 
in response to environmental stress 
In the previous decade, several reports have suggested a 
role for autophagy in cell survival at different stages of  
tumor development and in the tumor cell response to 
anticancer therapy[4,11,12], and this role of  autophagy has 
become a major research topic. Under stress conditions, 
like deprivation of  growth factors or nutrients, hypoxia or 
exposition to chemotherapeutic agents, cells induce au-
tophagy to provide biosynthetic precursors and, perhaps 
also (but see above), energy, or to eliminate injured cell 
components, thus preventing cell death[7,13,14]. Therefore, 
autophagy may allow cancer cells to survive under nutri-
ent and oxygen-poor conditions, reminiscent of  certain 
microenvironments in poorly vascularized tumors[15]. Au-
tophagy can also contribute to cell survival by removing 
injured targets of  ROS and proteins carrying mutations 
that could lead to an irreversible stage conducive to cell 
death[16]. Under the aggressive stress conditions experi-
enced by tumor cells, their autophagy levels are higher 
than normal and, therefore, disruption of  this increased 
autophagy by therapeutic manipulations will make difficult 
the adaptation of  these cells to extreme environments, 
and contribute to cancer therapy. However, chemical in-
hibitors of  autophagy also prevent the death of  cancer 
cells induced by a variety of  agents[17]. This opposite role 
of  autophagy as an executioner of  cell death[18-20] and, 
thus, playing a role as a tumor suppressor[11], could prob-
ably be explained by a persistent degradation of  compo-
nents essential for cell survival[4,21]. Therefore, it appears 
that, in addition to its conventional role in cell survival, 
autophagy can be also a death-promoter, in particular 
when the stimulus is too intense, when autophagy is ex-
tensive, or under conditions of  inhibition of  apoptosis. 
The level of  autophagy that represents the point of  no 
return leading to cell death has not been clearly defined 
and should be determined experimentally in each specific 
system. However, some authors have considered that a 
situation in which the total area of  autophagic vacuoles 

is equal or greater than that of  the remaining cytoplasm 
would irreversibly lead to cell death[20,22]. 

In all these cases, the conventional inhibitors of  au-
tophagy and the concentrations used by most authors to 
block or promote survival of  cancer cells under in vitro 
conditions[13,14,18,23,24] were the following: 3-methyladenine 
(5-10 mmol/L), chloroquine (10 μmol/L) and bafilomy-
cin A1 (0.1 μmol/L). To the best of  our knowledge, these 
chemicals have not yet been used for clinical treatment 
of  cancer, except for chloroquine, which has been used 
in patients with glioblastoma multiforme. Thus, in these 
antitumoral clinical trials, chloroquine, or its lower toxicity 
analog hydroxychloroquine, have been used (150 mg/d, 
for 12 mo) as autophagy inhibitors in combination with 
proapoptotic drugs, increasing, in this way, twofold the 
median survival of  these patients[25-28]. 

In summary, autophagy may either promote or inhibit 
survival in tumor cells, and the threshold to decide be-
tween both opposite processes will depend on the extent 
of  the cell degradation produced[29], as well as on many 
other factors, such as the genetic context of  the cell and 
the nature and intensity of  the stimulus needed to reduce 
cell survival[30]. 

Autophagy in the context of cell death 
In recent decades, studies in the field of  cell death have 
focused on understanding the molecular mechanisms of  
apoptosis (often called programmed cell death, and now 
also referred to as cell death type Ⅰ). Apoptosis is the 
form of  cell death in which a group of  cysteinyl aspartate-
specific proteases, called caspases, become activated to 
cleave different proteins (and the caspases themselves) that 
ultimately produce loss of  cell function, and cell death. In 
apoptosis, initiator caspases (2, 8, 9 and 10) activate ex-
ecutioner caspases (3, 6 and 7, of  which, caspase-3 is the 
major and most widespread effector of  the process)[31,32]. 
The essential feature of  apoptosis, which makes it differ-
ent from classical necrosis, is that it is a self-directed cell 
destruction process through caspase activation. Hundreds 
of  caspase substrates have been described[33] and different 
biochemical and morphological changes in the nucleus and 
cytoplasm (e.g. cell contraction, membrane blebbing, exter-
nalization of  phosphatidylserine, chromatin condensation 
into one or more masses, DNA fragmentation, limited 
proteolysis of  certain substrates, and heterophagic elimina-
tion of  apoptotic bodies by neighboring cells) have been 
used to identify apoptotic cells[17,34,35]. Two well-established 
molecular pathways (extrinsic and intrinsic) activate cas-
pases and trigger apoptosis. The first is the death-receptor-
mediated pathway, which is activated by ligands that bind 
to specific receptors on the plasma membrane, such as the 
tumor necrosis factor receptor 1 and Fas. The other is the 
mitochondrial pathway, which takes place through permea-
bilization of  these organelles, followed by the release of  
apoptotic molecules such as cytochrome c (which triggers 
the formation of  larger complexes called apoptosomes), 
apoptosis-inducing factor (AIF), or endonuclease G[17,31-33]. 

In addition to canonical apoptosis and necrosis, di-
verse experimental evidence has shown that cells can die 
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through alternative pathways[36]. Thus, there is a form of  
cell death, whose main feature is the appearance of  abun-
dant autophagic vacuoles in the cytoplasm of  dying cells, 
known as autophagic or type Ⅱ cell death, and several 
of  its characteristics, based mainly on morphological cri-
teria, have been described in recent years[20]. Type Ⅱ cell 
death would occur because of  persistent autophagy with 
excessive degradation of  cell components essential for 
survival[4,21], and it is usually accompanied by inhibition 
of  the phosphatidylinositol 3-kinase/protein kinase B/
mammalian target of  rapamycin (PI3kinase/Akt/mTOR) 
signaling pathway[37,38], which is the main regulator of  
autophagy, and by increased levels of  LC3-Ⅱ[1], a protein 
that is recruited to autophagosomes and that, under cer-
tain conditions, can be used as a reliable marker for au-
tophagy[39,40]. However, different studies have found that 
some of  the apoptotic cell death features cited above are 
also associated with an increased autophagy[18,29]. There-
fore, the question is raised as to whether or not apoptosis 
and autophagy represent two independent processes. 

In this regard, different reports indicate that au-
tophagy can act independently of  the apoptotic signaling 
pathways. Thus, because preservation of  most cytoplas-
mic organelles is among the classic hallmarks of  apopto-
sis, autophagic cell death, which comprises an extensive 
sequestration and degradation of  mitochondria, endo-
plasmic reticulum (ER) and other cell components, has 
been considered by some authors as a different category 
of  cell death on its own[41,42]. In addition, other evidence 
supports that extensive autophagy may be a caspase-
independent form of  cell death. For example, blockage 
of  caspase activity prevents Bax-induced poly (ADP 
ribose) polymerase and DNA cleavage, but not cytosolic 
vacuolation and non-apoptotic cell death[43]. In the same 
lines of  evidence, it has been shown that death-associated 
protein kinase proteins positively regulate membrane 
blebbing and autophagy, but apparently not nuclear 
fragmentation, and that these events occur in a caspase-
independent manner[44]. 

However, it is also quite clear that autophagy can 
also coexist and crosstalk with apoptosis. Indeed, several 
molecules that regulate apoptosis are among the dif-
ferent targets of  the PI3-kinase/Akt/mTOR signaling 
pathway[45,46] and proteins, such as Beclin 1, phosphatase 
and tensin homolog, apoptosis-specific protein, and the 
product of  the steroid-inducible gene E93 can establish 
interconnections between autophagy and apoptosis[29,42]. 
Therefore, different evidence appears to indicate that 
apoptosis and extensive autophagy represent two forms 
of  cell death with independent, but also with common 
pathways (Figure 2). However, the molecular details of  
these latter relationships remain poorly known. 

MOLECULAR MECHANISMS OF 
AUTOPHAGY AND APOPTOSIS IN 
BREAST CANCER CELLS 
As mentioned above, autophagy can promote or inhibit 

tumor survival depending on many factors, such as the 
specific cell type with the set of  mutations that it car-
ries, the stage of  tumor development, and the stimulus 
that induces autophagy plus the extent of  the resulting 
autophagy. Therefore, being aware of  the heterogeneity 
in the survival/death response, which makes it difficult 
to generalize the different observations, and to limit the 
problem, we update the data on this topic in breast cancer 
cells. We have chosen these cells because of  the growing 
number of  recent studies on the role of  autophagy in sur-
vival and death, compared to other experimental models. 

Role of autophagy in survival and death of breast cancer 
cells in response to environmental stress 
Studies on autophagy in breast cancer cells, mainly in 
MCF-7 cells, indicate that, in chemotherapeutic treat-
ments, induction of  autophagy plays a protective role in 
the resistance to apoptosis induced by anticancer drugs, 
such as the inhibitor of  DNA topoisomerase I camptoth-
ecin[29], epirubicin[47], which intercalates DNA strands, dif-
ferent ligands that stimulate the antiestrogen binding site 
(AEBS), including tamoxifen[48,49], or 4-hydroxytamoxifen, 
an active metabolite of  tamoxifen that binds to the es-
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Figure 1  Morphology of autophagic vacuoles. Typical autophagic vacuoles 
from 3T3 mouse fibroblasts incubated in a nutrient-poor medium containing 
cytoplasmic material at early (Avi) and late (Avd) degradation stages. Mit: Mito-
chondria; N: Nucleus.
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Figure 2  Main forms of cell death. Autophagy is located in the proper context 
in relation to classical necrosis and apoptosis. Crossing arrows indicate the ex-
istence of common links for apoptosis and autophagy. The entire process of cell 
death has been divided into three phases: stimulation, regulation and degrada-
tion. Note the absence of a regulation phase in necrosis. 
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trogen receptor α[50,51]. Consistent with this idea, treat-
ment of  estrogen-receptor-positive breast cancer cells 
with the antiestrogen tamoxifen, combined with histone 
deacetylase inhibition, maintains a subpopulation of  cells 
with an elevated autophagy and a remarkable resistance 
to apoptosis. These apoptosis-resistant cells only become 
apoptotic after inhibition of  autophagy[52]. Also, and in 
the same line of  evidence, the anticancer properties of  
lucanthone have been recently related to its ability to 
induce apoptosis and inhibit autophagy in breast cancer 
cell lines[53]. Further indications for a promoting effect on 
breast malignant cell development by autophagy are pro-
vided by recent reports showing that the tumor suppres-
sor BRCA1 (breast cancer type 1 susceptibility) negatively 
regulates autophagy in MDA-MB-231[54] and in MCF-7[55] 
breast cancer cells. Thus, it could be that mutations in the 
BRCA1 gene or reduced expression of  the encoded pro-
tein facilitate tumor development by preventing apoptosis 
through autophagy activation. Nevertheless, a death-pro-
moting effect has also been reported for autophagy; for 
example, in MCF-7 cells subjected to oxidative damage 
by photodynamic therapy[56] or in MCF-7 cells overex-
pressing Bcl-2 in the presence of  the antineoplastic fac-
tor brevinin-2R[57]. Table 1 shows the specific anticancer 
effects on apoptosis and/or autophagy of  various agents 
tested under in vitro conditions in breast cancer cells. 

In conclusion, in breast cancer cell lines, autophagy 
mainly facilitates their survival and adaptation to adverse 
environments, whereas apoptosis has the opposite effect, 
and the final outcome, in terms of  survival or death of  
the cells, will depend on many factors. Therefore, it ap-
pears that, at least in breast cancer cells, both apoptosis 
induction and autophagy inhibition have positive thera-
peutic implications depending on context. 

Functional links of autophagy and apoptosis in cultured 
breast cancer cells 
In breast cancer MCF-7 cells, camptothecin induces both 
apoptosis, demonstrated by deficient (sub-G1) DNA 
content and by chromatin condensation, and autophagy, 
demonstrated by increased levels of  Beclin 1 and autopha

gosomes[58]. Also, in various breast cancer cells, sterol 
accumulation promoted by binding of  various ligands, 
such as tamoxifen, to microsomal AEBS, induces both 
apoptosis and autophagy[48,49]. However, other treatments 
have opposite effects in both processes (Table 1). For ex-
ample, in MDA-MB-231 breast cancer cells, lucanthone 
induces apoptosis and inhibits autophagy[25]. This experi-
mental evidence suggests the existence of  common links 
between apoptosis and autophagy in breast cancer cells. 
However, the door to the molecular mechanisms that link 
apoptosis and autophagy in breast cancer cells has only 
recently begun to open, and current knowledge is dis-
cussed below. 

Thus, different proteins that belong to the mito-
chondrial pathway of  apoptosis have also been shown to 
crosstalk with Atg proteins and to regulate autophagy in 
cultured breast cancer cells. For example, in MCF-7 cells, 
which lack caspase-3, expression of  an ectopic caspase-3 
reduces the enhanced autophagy produced by tunica-
mycin (an inductor of  ER stress) or/and by radiation[59]. 
This effect is accompanied by a decrease in the levels of  
phosphorylated eukaryotic initiation factor 2α, which 
at the same time increases protein synthesis[59]. There-
fore, caspase-3 may be a switch between type Ⅰ and Ⅱ 
cell death[17,60]. In these same cells, activation of  another 
apoptosis promoter, protein Bid, also affects apoptosis 
and autophagy in opposite directions, because it not only 
stimulates apoptosis but also reduces autophagy by inhi-
bition of  Beclin 1[58]. In contrast, and also in MCF-7 cells, 
the antiapoptotic protein Bcl-2 regulates both processes 
in the same direction, because it negatively regulates the 
levels of  three Atg proteins (Beclin 1, Atg5 and LC3-Ⅱ), 
thus inhibiting autophagy[61]. Recently, a gene network 
signaling model has also indicated a central role for Bcl-2 
and Beclin 1 in the apoptotic and autophagic responses to 
endocrine therapies in breast cancer cells, and has identi-
fied nuclear factor κB, interferon regulatory factor-1, and 
the X-box binding protein-1 as new key proteins that 
regulate Bcl-2 and Beclin 1 in these responses[62]. 

Unlike the apoptotic regulation of  autophagy in breast 
cancer cells, a possible control of  apoptosis by autophagy 
remains to be investigated in detail. However, it is known 
in other cell types that the PI3-kinase/Akt/mTOR signal-
ing pathway, which has an inhibitory effect on autophagy, 
can interact with proteins that regulate apoptosis[45,46]. 
Moreover, it has been speculated that the selective remov-
al of  damaged mitochondria generating ROS by autoph-
agy (mitophagy) could inhibit the mitochondrial pathway 
of  apoptosis[6,63,64]. Furthermore, lysosomal cathepsins 
can establish a link between apoptosis and autophagy, 
because they are released from lysosomes into the cyto-
sol in response to death stimuli, and induce apoptosis[65]. 
More specifically, it has been described in other cell lines 
that cathepsin D activates the proapoptotic protein Bax, 
which triggers the release of  AIF from mitochondria[66], 
and that papain-like lysosomal cathepsins are able to 
cleave the proapoptotic protein Bid[67]. Also in MCF-7 
breast cancer cells, papain-like cysteine cathepsins, proba-
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Table 1  Agents inducing anticancer mechanisms in cultured 
breast cancer cells

Agent Model Anticancer 
mechanism

Citation

Camptothecin MCF-7 Apoptosis↑ [29]

Epirubicin MCF-7 Apoptosis↑ [47]

Tamoxifen MCF-7 Apoptosis↑ [48,49]

4-hydroxytamoxifen MCF-7, T-47D Apoptosis↑ [50,51]

Lucanthone MDA-MB-231 Apoptosis↑, 
autophagy↓

[25,53]

Chloroquine Breast cancer 
carcinoma1

Apoptosis↑, 
autophagy↓

[69]

Photodynamic therapy MCF-7 Autophagy↑ [56]

Tunicamycin MCF-7 Autophagy↑ [59]

1Ex vivo model.
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bly including cathepsin B[58], activate Bid, which promotes 
apoptosis and reduces autophagy. A further example of  
a lysosomal cathepsin regulating apoptosis is provided by 
MDA-MB-231 breast cancer cells, in which lucanthone 
inhibits autophagy, probably by affecting lysosomal acidi-
fication, and induces a cathepsin-D-mediated apoptosis. 
This apoptosis probably occurs by lysosomal membrane 
permeabilization, subsequently releasing cathepsin D into 
the cytosol, which cleaves caspases[25,53]. 

In addition to mitochondria and lysosomes, the ER 
has also been shown to be involved in the regulation of  
autophagy and apoptosis. Thus, in MCF-7 cells, the ER 
transmembrane protein kinase-like ER kinase (PERK) 
increases autophagy and reduces the fraction of  cells that 
survive radiation and/or a treatment with tunicamycin, 
and this PERK-controlled autophagy can be inhibited by 
caspase-3[59]. 

Thus, the above-mentioned examples support a mo-
lecular link between autophagy and apoptosis. In con-
trast, in breast adenocarcinoma MCF-7 cells overexpress-
ing Bcl-2, the antineoplastic factor brevinin-2R leads to 
mitochondrial dysfunction (demonstrated by a reduction 
in mitochondrial membrane potential and in cellular ATP 
levels, and by an increase of  ROS levels), autophagosome 
formation and cell death. These effects occur without 
involving apoptotic effectors (such as caspase activation 
and the mitochondrial release of  the AIF or of  endo-
nuclease G)[57]. Thus, it appears that autophagic cell death 
can also occur independently of  apoptosis. All these mo-
lecular mechanisms are summarized in Figure 3. 

Although this Topic Highlight is focused on breast 
cancer cells in vitro, and limited information is available in 
vivo, we briefly summarize the most relevant information 
available under these last conditions. In a breast tumor 

xenograft model, Bcl-2 reduces autophagy by inhibition 
of  Beclin 1, as it also occurs in vitro[68]. Moreover, samples 
from patients with breast ductal carcinoma and their cor-
responding mouse xenografts, show an increase in many 
autophagic markers, and this autophagy is necessary for 
the ex vivo survival of  all these samples, as shown with 
50 μmol/L chloroquine[69]. This observation is again 
in agreement with the survival function for autophagy 
observed in vitro. Interestingly, as we discussed above, 
the use of  chloroquine in clinical trials has increased the 
survival of  glioblastoma patients[25-28]. Therefore, all these 
data support that inhibition of  autophagy offers a poten-
tial therapy in breast cancer. 

In summary, several lines of  evidence under in vitro 
conditions indicate that, in breast cancer cells, although 
apoptosis and autophagy can coexist as independent 
pathways, they are also interconnected processes. Mo-
lecular links are represented by classic apoptosis-regulator 
proteins (caspase-3, Bid and Bcl-2), which inhibit autoph-
agy by acting on Atg proteins. Upstream of  these regula-
tors of  apoptosis are cytosol-released lysosomal cathep-
sins, which induce apoptosis by activating proapoptotic 
proteins. In addition, new candidates to interact with 
these proteins that link apoptosis and autophagy are now 
emerging, as illustrated by the above-mentioned studies 
with a gene network signaling model, and elucidation of  
their specific function could contribute to understand 
further this complex mechanism. 

CONCLUSION 
Autophagy is a physiological process of  lysosomal deg-
radation that, in response to environmental stresses, may 
either promote cell survival or death depending on many 
factors. In addition to canonical apoptosis (type Ⅰ cell 
death) and necrosis, extensive autophagy represents an 
alternative form of  cell death (type Ⅱ). In breast cancer 
cells, autophagy and apoptosis share some common pro-
teins from their signaling routes. Thus, classical regulators 
of  apoptosis, such as Bid, Bcl-2 and caspases, appear to 
crosstalk with Atg proteins and, in consequence, regu-
late autophagy. Moreover, lysosomal cathepsins provide 
an important link between both processes, by acting 
on target proteins of  the apoptotic signaling pathways. 
However, autophagy in breast cancer cells can also be an 
apoptosis-independent process. Therefore, the relation-
ships between autophagy and apoptosis are quite com-
plex, but we predict that a better understanding of  the 
underlying molecular mechanisms could contribute in the 
near future to anticancer therapy. 
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