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Abstract
The Ikaros  gene encodes a zinc finger, DNA-binding 
protein that regulates gene transcription and chromatin 
remodeling. Ikaros is a master regulator of hemato-
poiesis and an established tumor suppressor. Moderate 
alteration of Ikaros activity (e.g. haploinsufficiency) 
appears to be sufficient to promote malignant trans-
formation in human hematopoietic cells. This raises 
questions about the mechanisms that normally regulate 
Ikaros function and the potential of these mechanisms 

to contribute to the development of leukemia. The fo-
cus of this review is the regulation of Ikaros function by 
phosphorylation/dephosphorylation. Site-specific phos-
phorylation of Ikaros by casein kinase 2 (CK2) controls 
Ikaros DNA-binding ability and subcellular localization. 
As a consequence, the ability of Ikaros to regulate cell 
cycle progression, chromatin remodeling, target gene 
expression, and thymocyte differentiation are controlled 
by CK2. In addition, hyperphosphorylation of Ikaros by 
CK2 leads to decreased Ikaros levels due to ubiquitin-
mediated degradation. Dephosphorylation of Ikaros 
by protein phosphatase 1 (PP1) acts in opposition to 
CK2 to increase Ikaros stability and restore Ikaros DNA 
binding ability and pericentromeric localization. Thus, 
the CK2 and PP1 pathways act in concert to regulate 
Ikaros activity in hematopoiesis and as a tumor sup-
pressor. This highlights the importance of these signal 
transduction pathways as potential mediators of leuke-
mogenesis via  their role in regulating the activities of 
Ikaros.

© 2011 Baishideng. All rights reserved.

Key words: Ikaros; Leukemia; Zinc finger; Transcription 
factor; Casein kinase 2; Protein phosphatase 1; Phos-
phorylation 

Peer reviewers: Ugo Moens, PhD, Professor, Institute of Medi-
cal Biology, Faculty of Health Sciences, University of Tromsø, 
N-9037 Tromsø, Norway; Joaquin Arino, Professor, Institut de 
Biotecnologia i Biomedicina, Department Bioquimica i Biology 
Molecular, Universitat Autónoma Barcelona, 08193, Cerdanyola 
del Valles, Barcelona, Spain

Song C, Li Z, Erbe AK, Savic A, Dovat S. Regulation of Ikaros 
function by casein kinase 2 and protein phosphatase 1. World J 
Biol Chem 2011; 2(6): 126-131  Available from: URL: http://
www.wjgnet.com/1949-8454/full/v2/i6/126.htm  DOI: http://
dx.doi.org/10.4331/wjbc.v2.i6.126

TOPIC HIGHLIGHT

World J Biol Chem 2011 June 26; 2(6): 126-131
 ISSN 1949-8454 (online)

© 2011 Baishideng. All rights reserved.

Online Submissions: http://www.wjgnet.com/1949-8454office
wjbc@wjgnet.com
doi:10.4331/wjbc.v2.i6.126

World Journal of
Biological ChemistryW J B C

126 June 26, 2011|Volume 2|Issue 6|WJBC|www.wjgnet.com

Sinisa Dovat, MD, DSc, Series Editor



Song C et al . Regulation of Ikaros by phosphorylation

IKAROS AS A TUMOR SUPPRESSOR 
AND REGULATOR OF HEMATOPOIESIS
The Ikaros gene encodes a zinc finger, DNA-binding 
protein that acts as regulator of  gene transcription and 
chromatin remodeling[1]. Studies of  Ikaros mutant mice 
have established Ikaros as a master regulator of  hemato-
poiesis[1]. Partial arrest or defects in normal hematopoi-
esis often lead to aberrant cellular proliferation and leuke-
mia/lymphoma, therefore, it is not surprising that Ikaros 
knockout mice that lack one copy of  Ikaros develop T 
cell leukemia[2]. The remarkable observation is that these 
mice developed T cell leukemia with 100% penetrance, 
and in each case, the leukemic clones arose from cells that 
had lost the single wild-type Ikaros allele[2]. This suggests 
an essential role for Ikaros as a tumor suppressor in T cell 
differentiation. In humans, defects in the Ikaros gene (90% 
of  observed defects involved deletions of  one allele, 
while the remainder involved nonsense or functionally 
inactivating mutations of  a single allele) can result in the 
production of  dominant negative (DN) Ikaros isoforms 
that act to suppress the function of  full-length Ikaros. 
Ikaros defects have been associated with the develop-
ment of  a variety of  hematopoietic malignancies. These 
include childhood acute lymphoblastic leukemia (ALL)[3,4] 
infant T-cell ALL[5], adult B cell ALL[6], myelodysplastic 
syndrome[7], acute myeloid leukemia[8], and adult and ju-
venile chronic myeloid leukemia[9]. Ikaros defects leading 
to a loss of  Ikaros activity have been detected in 30% of  
pediatric B-cell ALL, in > 80% of  BCR-ABL1 ALL, and 
approximately 5% of  T-cell ALL[10,11]. In addition, defec-
tive Ikaros has been identified as a poor prognostic mark-
er for childhood ALL[4,12-14]. A noteworthy observation is 
that, in almost all primary human leukemia cells in which 
an Ikaros defect is observed, one wild-type Ikaros copy is 
retained. These data not only show a strong association 
between the loss of  Ikaros function and the development 
of  human leukemia, but also suggest that even a moder-
ate alteration of  Ikaros function (e.g. haploinsufficiency) 
is sufficient to promote malignant transformation. The 
aberrant expression of  small DN Ikaros isoforms has 
also been associated with the development of  human 
pituitary adenoma[15]. The current hypothesis is that small 
Ikaros isoforms act as DN mutants in human cells and 
their overexpression promotes malignant transformation, 
while the full-length Ikaros acts as a tumor suppressor. 

Several crucial questions remain unanswered. (1) Is 
the loss of  Ikaros activity an essential step in the malig-
nant transformation of  hematopoietic cells? (2) How is 
the function of  Ikaros regulated in normal and leukemia 
cells? (3) Can alterations in the regulation of  Ikaros func-
tion contribute to the development of  leukemia?

A partial answer to the first question came when the 
T leukemia cells derived from Ikaros-deficient mice were 
transduced with retrovirus to express wild-type Ikaros. 
The introduction of  wild-type Ikaros at physiological 
levels led to cessation of  growth, induction of  T-cell dif-
ferentiation, and cell cycle arrest in Ikaros-deficient T-leu-

kemia cells[16]. These results suggest that the presence of  
functional wild-type Ikaros, at physiological levels, is suf-
ficient to arrest the aberrant proliferation of  malignant 
cells. This experiment involved a single leukemia cell line 
that completely lacked Ikaros expression, therefore, this 
does not fully answer the question of  whether the loss 
of  Ikaros function is an essential step in leukemogenesis, 
although it does underscore the importance of  functional 
Ikaros in tumor suppression. To address these issues re-
garding the importance of  the regulation of  Ikaros activ-
ity in the development of  leukemia, the first step will be 
to identify the mechanisms that regulate Ikaros activity in 
normal and malignant hematopoiesis, and to dissect their 
role in regulating the function of  Ikaros. 

IKAROS IS PHOSPHORYLATED AT 
MULTIPLE SITES 
The function of  many proteins is regulated by their phos-
phorylation status. Protein phosphorylation is a revers-
ible, dynamic process. The balance between phosphoryla-
tion states of  a protein regulates its overall function. The 
in vivo phosphopeptide mapping of  Ikaros provided the 
first evidence that Ikaros is phosphorylated at multiple 
sites[17]. The observation that phosphorylated amino acids 
within Ikaros are evolutionarily conserved suggests that 
phosphorylation is an important mechanism regulat-
ing Ikaros function. Further phosphopeptide mapping 
demonstrated that Ikaros phosphorylation sites are very 
similar in primary thymocytes, in leukemia cells, and in 
the HEK 293T embryonic kidney carcinoma cell line fol-
lowing transduction or transfection to express Ikaros[17,18]. 
This suggests that phosphorylation of  Ikaros occurs by 
kinases that are present in multiple tissues and that phos-
phorylation is an integral feature of  Ikaros regulation 
(Figure 1). 

CELL-CYCLE-SPECIFIC 
PHOSPHORYLATION OF IKAROS 
The first study to examine the role of  phosphorylation 
in regulating Ikaros function focused on the cell-cycle-
specific phosphorylation of  Ikaros. In vivo phosphopep-
tide mapping of  Ikaros at different stages of  the cell 
cycle has revealed that during mitosis, Ikaros undergoes 
hyperphosphorylation[17]. Point mutation analysis has 
demonstrated that the cell-cycle-specific phosphorylation 
of  Ikaros occurs at an evolutionarily conserved linker 
sequence that connects DNA-binding zinc finger motifs. 
Mutational analysis of  phosphomimetic and phospho-
resistant Ikaros mutants has shown that the cell-cycle-
specific phosphorylation of  Ikaros regulates its DNA-
binding ability and nuclear localization during mitosis[17]. 
The linker sequence that connects the zinc finger motifs 
is preserved in all Kruppel-like zinc finger proteins[19], 
therefore, this mitosis-specific phosphorylation is not 
unique to Ikaros, but rather it appears to serve as a global 
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control mechanism of  cell cycle progression during mito-
sis. The kinase that is responsible for the mitosis-specific 
phosphorylation of  Ikaros has not been identified and is 
considered to be a different kinase from the one respon-
sible for Ikaros phosphorylation during G1 and S phases.

PHOSPHORYLATION OF IKAROS BY 
CASEIN KINASE 2 AND CELL CYCLE 
PROGRESSION
The studies described above have established that phos-
phorylation can control the function of  Ikaros in a cell-
cycle-specific manner, but have not identified the signal 
transduction pathway that regulates the function of  
Ikaros during G1 and S phases of  the cell cycle. Studies 
by Georgopoulos and colleagues have identified several 
amino acids in Ikaros that are phosphorylated by ca-
sein kinase 2 (CK2) (Figure 1). Substitution analysis has 
revealed that phosphorylation of  Ikaros by CK2 at its 
C-terminal region regulates its ability to control G1/S cell 
cycle progression[20]. These results have identified CK2 
as the enzyme that directly controls Ikaros function, and 
have demonstrated that CK2-mediated phosphorylation 
can regulate cell cycle progression. 

CK2-MEDIATED PHOSPHORYLATION 
REGULATES IKAROS FUNCTION IN 
TRANSCRIPTIONAL REGULATION AND 
DIFFERENTIATION
A subsequent study has identified four novel evolution-
arily conserved CK2 phosphorylation sites located at the 
N-terminal end of  Ikaros (Figure 1)[18]. Functional analy-
sis of  Ikaros phosphomimetic mutants (where phospho-
sites are mutated to aspartate to mimic phosphorylation) 
and phosphoresistant mutants (where phospho-sites are 
mutated to alanine to mimic the dephosphorylated state) 
has revealed that phosphorylation by CK2 affects Ikaros 
function at many different levels. Phosphorylation of  
amino acids 13 and 294 results in decreased Ikaros DNA 
binding affinity for probes that are derived from pericen-
tromeric heterochromatin (PC-HC). In vivo, phosphory-

lation of  the same amino acids causes Ikaros to lose its 
ability to localize into PC-HC, resulting in diffuse nuclear 
distribution of  Ikaros. These results have provided the 
first evidence that CK2-mediated phosphorylation regu-
lates not only the ability of  Ikaros to bind DNA, but 
also its subcellular localization and function in chromatin 
remodeling[18]. We want to emphasize that the cell-cycle-
specific phosphorylation of  Ikaros that occurs during mi-
tosis is not due to the activity of  CK2 because: (1) CK2 
is active during G1 and S phases of  the cell cycle while 
this phosphorylation is mitosis-specific; and (2) the CK2 
consensus site is well established, and the mitosis-specific 
phosphorylation of  Ikaros occurs at a consensus linker 
sequence that shows no resemblance to the consensus 
recognition motif  of  CK2.

This study also examined the role of  CK2-mediated 
phosphorylation in regulating the ability of  Ikaros to 
bind the upstream regulatory element of  the Ikaros target 
gene, TdT (dntt). Results have shown that phosphore-
sistant Ikaros mutants have much higher DNA-binding 
affinity toward the TdT regulatory elements when com-
pared to wild-type Ikaros in thymocytes or in HEK 293T 
cells. Further analysis has revealed that phosphorylation 
of  Ikaros changes during T-cell differentiation. Following 
the induction of  thymocyte differentiation with phorbol 
myristate acetate, Ikaros undergoes dephosphorylation at 
amino acids 13 and 294. This results in increased Ikaros 
binding to the TdT regulatory element and repression of  
TdT transcription[18]. These data demonstrate that CK2-
mediated phosphorylation of  Ikaros regulates expression 
of  a key gene in T-cell development - TdT. Thus, CK2-
mediated phosphorylation of  Ikaros is one of  the regula-
tory mechanisms that govern Ikaros function in normal 
hematopoiesis. 

PROTEIN PHOSPHATASE 1 
DEPHOSPHORYLATES IKAROS AND 
REGULATES ITS ACTIVITY
The studies described above were limited in that they ex-
amined only the phosphorylation of  Ikaros amino acids 
that are detected in vivo. Phosphopeptide mapping sug-
gests the presence of  more phosphorylated amino acids 
on Ikaros and thus the potential for additional phosphor-
ylation-regulated functions of  Ikaros. The discovery that 
Ikaros is dephosphorylated in vivo by protein phosphatase 
1 (PP1), and identification of  the PP1-Ikaros interac-
tion site, has provided an opportunity for further stud-
ies of  the role of  phosphorylation in regulating Ikaros 
function[21]. Ikaros with a mutated PP1 interaction site 
cannot be dephosphorylated by this enzyme. When this 
mutant is transfected into HEK 293T cells, its protein 
binds DNA very poorly compared to wild-type Ikaros. 
This indicates that a very large percentage of  Ikaros un-
dergoes phosphorylation in vivo and that dephosphoryla-
tion of  Ikaros is essential for its activity. In addition, this 
mutant is unable to localize to PC-HC, which confirms 
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Figure 1  Location of casein kinase 2 phosphorylation sites on Ikaros. The 
phosphorylated amino acids are indicated by numbers at the top. The location 
of zinc fingers is indicated by yellow (F1-F4) and red bands (F5-F6). Exons (Ex) 
are indicated at the bottom. Exon 1 (untranslated) is not shown.  
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that phosphorylation controls the subcellular localiza-
tion of  Ikaros. When phosphoresistant mutations of  the 
CK2 phosphorylation sites are introduced into the PP1-
nonbinding Ikaros mutant, DNA-binding ability and PC-
HC localization is restored to a level similar to that ob-
served for wild-type Ikaros. These data have established 
that CK2-mediated phosphorylation is the major regula-
tor of  Ikaros function as a DNA-binding protein and in 
chromatin remodeling/PC-HC localization[21]. They also 
suggest that PP1 has the opposite effect on Ikaros func-
tion, and that these two signaling pathways are the major 
regulators of  Ikaros activity.

One striking feature of  the PP1-nonbinding Ikaros 
mutant is its low level of  expression, as compared to 
wild-type Ikaros, when transfected into HEK 293T cells. 
That difference is prominent at the protein level, whereas 
the mRNA level of  both constructs is similar. A pos-
sible explanation is that Ikaros that is unable to interact 
with PP1 undergoes increased degradation compared to 
wild-type Ikaros. This hypothesis is supported by the ob-
servation that Ikaros contains two very strong PEST se-
quences. The presence of  PEST sequences is associated 
with increased degradation of  protein following phos-
phorylation at amino acids [proline (P), glutamic acid (E), 
serine (S), and threonine (T)] that are located within the 
PEST sequence. Analysis of  the known CK2 phosphory-
lation sites that have been identified by us and by the 
Georgopoulos group has revealed that PEST sequences 
contain multiple phospho-sites that are phosphorylated 
in vivo by CK2. This suggests that CK2-mediated phos-
phorylation might promote degradation of  Ikaros. In vivo 
degradation assays have demonstrated that the Ikaros 
mutant that does not interact with PP1 has a severely 
decreased half-life compared to wild-type Ikaros. The in-
troduction of  phosphoresistant mutations at the known 
CK2-mediated phosphorylation sites prolongs the half-
life of  the PP1-nonbinding mutant[21]. These results have 
identified another important role of  CK2: to regulate the 
protein stability and turnover of  Ikaros. These results 
have demonstrated that the hyperphosphorylation of  
Ikaros leads not only to the loss of  its function, but also 
to a reduction in Ikaros levels due to increased degrada-
tion. Subsequent experiments have demonstrated that 
Ikaros is polyubiquitinated, which has provided evidence 
that Ikaros degradation occurs via the ubiquitin pathway. 
Overall, the studies of  CK2-mediated phosphorylation 
and PP1-mediated dephosphorylation of  Ikaros illustrate 
the importance of  these signal transduction pathways and 
the role of  phosphorylation in regulating Ikaros activity 
in cells.

ADDITIONAL IKAROS 
PHOSPHORYLATION SITES
An additional study to identify and analyze the phos-
phorylation of  Ikaros has been performed by the Smale 
group[22]. This has involved a comprehensive approach 
using LC-MS/MS analysis of  Ikaros phosphorylation in 

the murine VL3-3M2 T leukemia cell line. This analysis 
has identified several additional phosphorylation sites in 
Ikaros, including several threonine and serine residues, as 
well as two tyrosines. The functional significance of  one 
of  these novel phosphorylation sites (amino acid 441) 
has been studied using phosphomimetic and phospho-
resistant mutants, but no alteration of  Ikaros function 
has been observed in a transient transfection assay. The 
functional significance of  the additional phospho-sites 
identified in this study has not been elucidated. These 
data illustrate the potential for additional mechanisms of  
phosphorylation-mediated regulation of  Ikaros function. 

REGULATION OF CK2 AND PP1 ACTIVITY
CK2 and PP1 both have numerous substrates and their 
activity involves a complex network of  different metabo-
lites. The focus of  this review is the regulation of  Ikaros 
function by phosphorylation, therefore, we briefly men-
tion the major regulators of  CK2 and PP1 activity that 
are known to affect cellular proliferation. Phosphoryla-
tion of  PP1 by cdc2 kinase results in PP1 inactivation 
in a cycle-dependent manner[23]. Three known tumor 
suppressors directly bind and inhibit CK2 activity: (1) it 
has been demonstrated that the tumor suppressor p53 
inhibits CK2 by binding to its regulatory β subunit[24]; (2) 
similarly, another tumor suppressor p21WAF1 binds to 
the β regulatory subunit of  CK2 and inhibits its activ-
ity[25]; (3) adenomatous polyposis coli protein also inhibits 
CK2 by interacting with its CK2 α-subunit[26]. Activators 
of  CK2 include stimulators of  cellular proliferation such 
as: polyamines[27] and fibroblast growth factor-2[28]. These 
findings suggest that Ikaros acts as a part of  multiple sig-
nal transduction networks that regulate cellular prolifera-
tion and malignant transformation. 

CONCLUSION
Studies of  Ikaros phosphorylation have provided a par-
tial answer to the question concerning the regulation of  
Ikaros function in normal and leukemia cells, as well as 
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Figure 2  A model for the role of casein kinase 2 and protein phosphatase 
1 in regulating Ikaros activity in T-cell differentiation and tumor suppres-
sion. CK2: Casein kinase 2.
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how alteration in the regulation of  Ikaros might contrib-
ute to leukemia. The studies described above have estab-
lished phosphorylation/dephosphorylation as one of  the 
major mechanisms that controls Ikaros activity. These 
data strongly suggest that CK2 is the principal regula-
tor of  Ikaros function. CK2 is an extensively studied 
regulator of  cellular proliferation and a tumor-promoter 
protein[29]. Overexpression of  CK2 has been associ-
ated with the development of  various types of  tumors, 
including mammary gland, prostate, lung, and kidney 
cancers[30]. Forced expression of  the catalytic subunit of  
CK2 in transgenic mice leads to the development of  T-cell 
leukemia and lymphoma[31-34], similar to that observed 
in mice with impaired Ikaros function[2,16,35,36]. Thus, 
we hypothesize that Ikaros function is controlled by its 
phosphorylation status and that overexpression of  CK2 
leads to hyperphosphorylation of  Ikaros, which results in 
its loss of  tumor suppressor activity and the subsequent 
development of  leukemia (Figure 2). Additional studies 
utilizing Ikaros phosphomimetic and phosphoresistant 
mutants in mouse models and in primary human and 
murine cells are necessary to confirm and/or refine this 
hypothesis. The abundance of  Ikaros phosphorylation 
sites, as well as the lack of  a complete understanding of  
Ikaros function in chromatin remodeling and tumor sup-
pression, suggests that many additional signal transduc-
tion pathways that regulate Ikaros function remain to be 
discovered.
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