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Abstract
Gliomas and melanomas are associated with dismal 
prognosis because of their marked intrinsic resistance 
to proapoptotic stimuli, such as conventional chemo-
therapy and radiotherapy, as well as their ability to 
escape immune cell attacks. In addition, gliomas and 
melanomas display pronounced neoangiogenesis. Ga-
lectin-1 is a hypoxia-sensitive protein, which is abun-
dantly secreted by glioma and melanoma cells, which 
displays marked proangiogenic effects. It also provides 
immune tolerogenic environments to melanoma and 
glioma cells through the killing of activated T cells that 
attack these tumor cells. Galectin-1 protects glioma 
and melanoma cells against cytotoxic insults (includ-
ing chemotherapy and radiotherapy) through a direct 
role in the unfolded protein response. Altogether, these 
facts clearly point to galectin-1 as an important target 
to be combated in gliomas and melanomas in order to: 
(1) weaken the defenses of these two types of cancers 
against radiotherapy, chemotherapy and immunother-
apy/vaccine therapy; and (2) reinforce antiangiogenic 

therapies. In the present article, we review the bio-
chemical and molecular biology-related pathways con-
trolled by galectin-1, which are actually beneficial for 
melanoma and glioma cells, and therefore detrimental 
for melanoma and glioma patients. 
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AN OVERVIEW OF THE BIOLOGICAL 

ROLES OF GALECTIN-1
Galectin-1 is a 14.5-kDa β-galactoside-binding protein 
that belongs to a 15-member protein family[1-4], which are 
all evolutionarily well conserved[5], expressed by many 
different cell types[1-4] with major roles exerted in the 
immune system[6-9] and involved in the progression of  
various cancer types[2,3,10], including melanomas[7,11-14] and 
gliomas[15-20].
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Galectin-1 belongs to the prototype galectins, which 
are characterized by one carbohydrate recognition do-
main (CRD) that can occur as a monomer or as a non-
covalent homodimer consisting of  subunits of  a single 
CRD (galectin-1, about 29 kDa)[1-4]. Galectin-1 is func-
tionally present intracellularly (cytosol, nuclei and intra-
cellular plasma membrane) and extracellularly (extracel-
lular cell membrane and extracellular matrix)[4]. Although 
galectins as a whole do not have the signal sequence 
required for protein secretion, galectin-1 is secreted by a 
yet unidentified export mechanism that bypasses the clas-
sical endoplasmic reticulum/Golgi apparatus-dependent 
secretory pathway that appears to balance tightly between 
intra- and extracellular galectin-1[21,22]. 

In addition to its carbohydrate-binding ability, galec-
tin-1 is able to perform protein–protein interactions[23,24]. 
As a result, it participates in a variety of  oncogenic 
processes including cell transformation[2,3,4,10], cell prolif-
eration vs cell death[25-28], cell migration[2,3,4,18,29-31], metas-
tasis[2,3,4,10] and angiogenesis[32-35]. As detailed below, ga-
lectin-1 also exerts subtle biochemical controls including 
modulations of  the unfolded protein response (UPR)[33,36], 
following cytotoxic insults contributed by chemothera-
py[11,36] and radiotherapy[37], as well as potential roles in 
mRNA splicing[38-40].

All these biological roles played by galectin-1 occur 
through the interactions with a myriad of  extracellular 
and intracellular ligands and/or receptors including, but 
not limited to, laminin, fibronectin, vitronectin, integrins, 
CA-125, H-ras, CD45 and gemin-4[1-4,18,19]. Galectin-1 also 
plays major roles in tumor immune escape processes and 
in tuning the immune response. This aspect of  galectin-
1-related functions has been extensively reviewed[8,41-43] 
and is not further discussed here. Figure 1 illustrates the 
overall picture of  galectin-1-related major roles in tumor 
cell biology. 

GALECTIN-1 AND MELANOMAS
Although melanomas account for only 4% of  all der-
matological cancers, they are responsible for 80% of  
deaths from skin cancer[44,45]. In fact, the incidence of  
melanoma is increasing worldwide, and the prognosis for 
patients with high-risk or advanced metastatic melanoma 
remains poor despite advances in the field[44]. Patients 
who progress to stage Ⅳ metastatic melanoma have a 
median survival of  < 1 year[44]. Only 14% of  patients 
with metastatic melanoma survive for 5 years[46]. Mela-
nomas display both intrinsic and acquired resistance to 
proapoptotic stimuli[47], while most chemotherapeutic 
agents still used to combat melanoma are proapoptotic 
agents[48,49]. 

Great hope has been placed in vaccines, but only 
limited successes have been observed to date[44]. In-
deed, clinical trials of  melanoma vaccines have yielded 
inconclusive data on whether a positive melanoma-
specific immune response predicts treatment benefit[45]. 

In fact, melanoma cells are able to escape natural, en-
dogenous or therapeutically induced immune attacks[50]. 
The Rabinovich group[7,8] has elegantly demonstrated 
that melanoma-secreted galectin-1 induces apoptosis 
of  activated T cells through recognition of  glycosyl-
ated CD3, CD7 and CD45, thereby constituting an 
important mechanism of  tumor escape in experimental 
melanomas. The blockade of  this inhibitory signal can 
allow for and potentiate effective immune responses 
against melanoma cells with profound implications for 
cancer immunotherapy. Decreasing galectin-1 expres-
sion in melanoma could be achieved through the use of  
anti-galectin-1 siRNA, which we have developed[51] and 
aim to use for vaccine therapy in glioma patients[19] as 
detailed below. 

Melanomas are associated with marked angiogen-
esis[52], and hypoxia favors melanoma progression[53]. Ga-
lectin-1 is a hypoxia-inducible protein[54,55] with marked 
proangiogenic effects[32-35] that have been demonstrated 
in experimental melanomas[11]. Great hope has also been 
placed in antiangiogenic therapies to combat melano-
mas[56,57], and decreasing galectin-1 expression in melano-
mas would be one strategy to accomplish this.

The PubMed database already includes about 2800 
publications on galectins as of  September 2011 with 
920 of  them related to galectin-1, but only 17 publica-
tions cross-reference melanoma and galectin-1, and they 
often do so indirectly. In other words, little information 
is available about the exact roles of  galectin-1 in mela-
noma biology. The first report was published in 1995 by 
van den Brûle et al[58], who have shown that galectin-1 
modulates human melanoma cell adhesion to laminin. 
Subsequently, galectin-1 has been demonstrated to par-
ticipate in the aggregation of  human melanoma cells 
through binding to the 90K/MAC-2BP glycoprotein[59]. 
As mentioned above, Rabinovich and his group have 
demonstrated the roles of  galectin-1 in immune tumor 
escape processes using an experimental melanoma 
model[7]. We have used the same model to demonstrate 
the protective roles of  galectin-1 against chemotherapy-
induced cytotoxic insults in melanoma cells[11]. Although 
Rondepierre et al[14] have demonstrated a direct role for 
galectin-1 in the biological aggressiveness of  experimen-
tal melanomas, Bolander et al[12] have failed to observe 
any correlation between the levels of  galectin-1 expres-
sion in melanoma and patient survival. Nevertheless, our 
recent clinical data have indicated that galectin-1 is par-
ticularly highly expressed in advanced melanoma lesions, 
notably in comparison to galectin-3 and -9 (submitted 
manuscript).

Altogether, these data that are already available in 
the literature strongly suggest that galectin-1 could be 
implicated in various biological processes linked to mela-
noma progression, such as tumor immune escape, tumor 
angiogenesis and chemoresistance. However, most of  
these data are from experimental models, and clinical 
confirmation of  these findings is warranted.

194 September 26, 2011|Volume 2|Issue 9|WJBC|www.wjgnet.com



GALECTIN-1 AND GLIOMAS
There are 19 publications available in the PubMed data-
base with cross references about galectin-1 and gliomas 
and 17 with cross references about galectin-1 and mela-
nomas (as of  July 2011). However, much more informa-
tion is available about how galectin-1 controls glioma cell 
biology than melanoma cell biology.

Gliomas are the most common primary brain tumors, 
among which glioblastoma (GBM) is the most malignant 
form. Malignant gliomas, especially GBMs, are character-
ized by the diffuse invasion of  distant brain tissue by a 
myriad of  single migrating cells with reduced levels of  
apoptosis and consequent resistance to the cytotoxic in-
sults of  proapoptotic drugs[60-62]. In contrast, GBM cells 
are less resistant to cell death induced by sustained proau-
tophagic processes[62]. Current clinical recommendations 
for treating malignant glioma patients, and more specifi-
cally GBM patients, include maximum surgical resection 
followed by concurrent radiation and chemotherapy with 
temozolomide[62-64]. This clinical protocol is now the stan-
dard of  care for treating GBM patients, and the overall 
survival rates have increased from 11% to 27% at 2 years, 
from 4% to 16% at 3 years, from 3% to 12% at 4 years, 
and from 2% to 10% at 5 years, compared to surgery and 
radiotherapy alone[63,64].

As detailed below, galectin-1 significantly affects glio-

ma progression. Experimental data have already been val-
idated, at least partly, by clinical data. By using computer-
assisted microscopy, we have quantitatively characterized 
the levels of  expression of  galectins-1, 3 and 8 in 116 
human astrocytic tumors of  grades Ⅰ-Ⅳ by immunohis-
tochemistry. The data have indicated that the levels of  
galectin-1 and 3 expression significantly changes during 
the progression of  malignancy in human astrocytic tu-
mors, whereas galectin-8 remains unchanged[16]. We have 
extended our analyses to include a quantitative immuno-
histochemical determination of  galectin-1 expression in 
220 gliomas, including 151 astrocytic, 38 oligodendroglial 
and 31 ependymal tumors obtained from surgical resec-
tions[65]. We have also xenografted three human glio-
blastoma cell lines (H4, U87 and U373 models) into the 
brains of  nude mice to characterize the in vivo galectin-1 
expression pattern following subsequent invasion into the 
normal brain parenchyma[65]. In addition, we have char-
acterized in vitro the role of  galectin-1 in U373 tumor as-
trocyte migration and kinetics. Our data have revealed ex-
pression of  galectin-1 in all human glioma types, with no 
striking differences between astrocytic, oligodendroglial 
and ependymal tumors[65]. The level of  galectin-1 expres-
sion is correlated only with grade of  astrocytic tumors[65]. 
Furthermore, immunopositivity of  high-grade astrocytic 
tumors from patients with short-term survival periods 
is stronger than tumors from patients with long-term 
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survival[65]. In human glioblastoma xenografts, galectin-1 
is preferentially expressed in the more invasive parts of  
the xenografts[65]. In vitro experiments have revealed that 
galectin-1 stimulates the migration of  U373 astrocytes[65]. 
Most of  these data that we have produced[16,65] along with 
Yamaoka et al[15], have been validated by Jung et al[17].

We recently have reviewed the general roles of  galec-
tins, in particular galectin-1, in gliomas[18]. We therefore 
focus our attention below on the biochemical pathways 
in which galectin-1 is implicated when controlling various 
processes related to glioma progression and to a lesser 
extent, melanoma progression.

As mentioned earlier, we do not review in detail the 
marked roles exerted by galectin-1 when tuning the im-
mune system response, and those associated with the 
tumor immune escape phenomenon, because all these 
aspects have been reviewed in depth by others[8,41-43]. 
Nevertheless, we highlight galectin-1 as a major target to 
combat gliomas when vaccine therapy is proposed for 
gliomas[66] and melanomas. Active specific immunother-
apy based on dendritic cell vaccination is indeed consid-
ered to be a new promising concept aimed at generating 
an antitumoral immune response in malignant gliomas 
and melanomas that still have dismal prognosis despite 
multimodal treatments[19,66]. However, it is now widely 
accepted that the success of  immunotherapeutic strate-
gies to promote tumor regression will rely not only on 
enhancing the effector arm of  the immune response, but 
also on the downregulation of  the counteracting tolero-
genic signals[19,66]. We recently reviewed why galectin-1 
should be actively targeted to lower glioma-mediated im-
mune escape during vaccine therapy[19].

GALECTIN-1 CONTROLS GLIOMA CELL 
MIGRATION
Although cell migration is the net result of  adhesion, 
motility and invasion[60], galectin-1 modifies each of  these 
three cell-migration-related processes in glioma cells. 

Immunohistochemical analysis of  galectin-1 expres-
sion in human U87 and U373 glioblastoma xenografts 
from the brains of  immunodeficient mice has revealed 
a higher level of  galectin-1 expression in invasive ar-
eas compared with non-invasive areas of  the xeno-
grafts[16,65,67]. Immunodeficient mice intracranially grafted 
with U87 or U373 cells that constitutively express low 
levels of  galectin-1 (by stable transfection of  an expres-
sion vector containing the antisense mRNA of  galec-
tin-1) have longer survival periods than those grafted 
with U87 or U373 cells that express normal levels of  
galectin-1,[67], and galectin-1 added to the culture medium 
markedly increases the motility of  human neoplastic as-
trocytes[16,65,67]. We have demonstrated that these effects 
are at least partly related to marked modifications in the 
organization of  the actin cytoskeleton and increases in 
small GTPase RhoA expression[67]. We have also inves-
tigated stable knockdown of  galectin-1 in human U87 

glioblastoma cells, and observed major alterations in gene 
expression when we used cDNA microarray analysis. 
Among the 631 genes tested that are potentially involved 
in cancer, the expression of  86 genes was increased at 
least twofold[68], including ADAM-15 (disintegrin and 
metalloproteinase domain-containing protein 15) and 
microtubule-associated protein (MAP) 2, and expression 
of  these proteins was confirmed by immunocytochemis-
try[68]. The major differences in the patterns of  the actin 
stress fiber organization have also been observed[68], as 
previously reported for other glioma models[67], and U87 
glioma cells that are stably deficient for galectin-1 expres-
sion are significantly less motile than control cells[68], as 
previously observed[67].

Genes whose patterns of  expression markedly change 
during galectin-1 knockdown include α-7/β-1 and α-9/
β-1 integrins[68]. These data must be analyzed in parallel 
with those we report above with respect to galectin-1-
mediated modifications in ADAM-15 expression because 
the ADAM family of  membrane-anchorage glycoproteins 
encompass a catalytically active matrix metalloproteinase 
domain and a disintegrin domain, and may also be in-
volved in the proteolytic cleavage of  cell-surface proteins 
and in integrin-mediated cell adhesion (including α-9/β-1 
integrin/ADAM-15 interactions) via RGD-dependent 
and -independent binding[68]. Using immunofluorescence 
approaches, we observed that the depletion of  galectin-1 
through both stable knockdown and transient-targeted 
siRNA treatments induced an intracellular accumulation 
of  β-1 integrin, along with a decrease in the expression 
of  this integrin at points of  adhesion on the cell mem-
brane[69]. Galectin-1 depletion does not alter the gene 
expression level of  β-1 integrin[69]. Transient galectin-1 
depletion induces perinuclear accumulation of  protein ki-
nase C (PKC)ε and intermediate filament vimentin, both 
of  which have been shown to mediate integrin recycling 
in motile cells. These data emphasize the involvement 
of  galectin-1 in the PKCε/vimentin-controlled traffick-
ing of  β-1 integrin in glioma cells. Figure 2 illustrates the 
gross picture of  galectin-1-related major roles in glioma 
cell migration. 

GALECTIN-1 CONTROLS 
NEOANGIOGENESIS IN GLIOMAS AND 
MELANOMAS
As mentioned earlier, galectin-1 is a hypoxia-regulated 
protein[54,55] that has been shown to have major roles in 
angiogenesis[32,35] of  gliomas[33] and melanomas[11]. We first 
highlighted that galectin-1 depleted melanoma tumors 
in vivo display lower angiogenesis levels in close associa-
tion with marked necrotic processes[11]. We have recently 
begun to decipher the molecular and biochemical path-
ways through which galectin-1 controls angiogenesis. In 
gliomas, we have demonstrated that galectin-1 signals 
through the IRE-1α (endoplasmic reticulum transmem-
brane kinase/ribonuclease inositol-requiring 1α), which 
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regulates the expression of  oxygen-regulated protein 
150 (ORP150) that in turn controls vascular endothelial 
growth factor (VEGF) maturation[33]. Thus, galectin-1 
controls glioma angiogenesis through ORP150-mediated 
VEGF maturation[33]. Similarly, galectin-1 depletion is 
associated with decreased ORP150 expression level in 
melanoma cells (unpublished data). Galectin-1 also mod-
ulates the expression of  several other hypoxia-related 
genes (e.g. CTGF, ATF3, PPP1R15A, HSPA5, TRA1 and 
CYR61) in the Hs683 glioma model, which are known 
to display various roles in angiogenesis, which we have 
demonstrated in galectin-1-dependent angiogenesis in 
glioma[33]. 

We have observed a marked decrease in the expres-
sion of  the brain-expressed X-linked gene, BEX2, with 
decreased galectin-1 expression in glioma cells through 
targeted anti-galectin-1 siRNA[34]. We have thus focused 
on BEX2, and observed that decreasing BEX2 expres-
sion in human Hs683 glioma cells increased the survival 
of  Hs683 orthotopic xenograft-bearing immunodeficient 
mice, whose tumors displayed decreased angiogenic lev-
els[34]. Furthermore, this decrease in BEX2 expression 
impaired vasculogenic mimicry channel formation in vitro, 
as observed when depleting galectin-1 in both glioma 

and melanoma cells. Thus, BEX2 is a second target, in 
addition to ORP150, through which galectin-1 controls 
angiogenesis in gliomas.

BEX2 also modulates glioma cell migration at both 
adhesion and invasion levels through the modification of  
several genes previously reported to play a role in cancer 
cell migration, including MAP2, plexin C1, SWAP70, and 
β-6 integrin[34]. 

Galectin-1 controls key angiogenic factors/ pathways 
in tumoral cells. In addition, galectin-1 has been shown to 
regulate directly the biological properties of  endothelial 
cells, such as proliferation, activation and in vitro tubular 
network formation[32,35]. We have observed earlier that ga-
lectin-3 also participates in glioma angiogenesis[70].

GALECTIN-1 AND ITS MODULATING 
ROLES IN CHEMOTHERAPY AND 
RADIOTHERAPY IN THE SPECIFIC 
CONTEXT OF MELANOMAS AND 
GLIOMAS
Intratumoral hypoxia causes genetic changes in cancers 

197 September 26, 2011|Volume 2|Issue 9|WJBC|www.wjgnet.com

Figure 2  Processes and pathways mediated by galectin-1 in cancer cell migration. ADM: Adhesion molecules; ADAM-15: Disintegrin and metalloproteinase 
domain-containing protein 15; ECM: Extracellular matrix; MAP2: Microtubule-associated protein 2; P: Phosphorylation; PKCε: Protein kinase C ε; RhoA: Ras homolog 
protein, member A GTPase.
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that produce a microenvironment that selects for cells 
with a more aggressive phenotype[71]. Hypoxia can initiate 
cell demise by apoptosis/necrosis but can also prevent 
cell death by provoking adaptive responses that facilitate 
cell proliferation or angiogenesis, thus contributing to 
tumor malignant progression[71], and in particular, glio-
mas[72] and melanomas[53]. Hypoxia is also known to mod-
ulate the UPR, a coordinated program that promotes cell 
survival under conditions of  endoplasmic reticulum (ER) 
stress, which is known to contribute to tumor malignant 
progression and drug resistance of  solid tumors[73]. Con-
sidering that galectin-1 is a hypoxia-regulated protein[54,55], 
we have investigated whether it can interfere with ER 
stress responses and chemosensitivity. We have examined 
whether decreasing galectin-1 expression (by means of  
a siRNA approach) in human Hs683 GBM cells and 
B16F10 melanoma cells could increase their sensitivity to 
pro-autophagic or proapoptotic drugs. These data have 
revealed that temozolomide, the standard treatment for 
glioma patients, increases galectin-1 expression in Hs683 
cells both in vitro[36] and in vivo[33]. In contrast, reducing 
galectin-1 expression in these Hs683 glioma cells using 
siRNA increases the antitumor effects of  various che-
motherapeutic agents, in particular temozolomide, both 
in vitro and in vivo[33,36], which is a feature that we also have 

observed in experimental melanomas[11]. This decrease 
in galectin-1 expression in Hs683 glioma cells does not 
induce apoptotic or autophagic features, but is found to 
modulate p53 transcriptional activity and decrease p53-
targeted gene expression including DDIT3/GADD153/
CHOP, DUSP5, ATF3 and GADD45A[36]. Puchades 
et al[74] have demonstrated that galectin-1 expression is 
negatively regulated by transfection with TP53 in glioma 
cells. We have further observed that the decrease in 
galectin-1 expression in glioma cells also impairs the 
expression levels of  seven other genes implicated in 
chemoresistance: ORP150, HERP, GRP78/Bip, TRA1, 
BNIP3L, GADD45B and CYR61; some of  which are 
located in the ER and whose expression is also known 
to be modified by hypoxia[36]. In the case of  the B16F10 
mouse melanoma model, decreasing galectin-1 expres-
sion in vitro by means of  an anti-galectin-1 siRNA ap-
proach does not modify their sensitivity to apoptosis 
or autophagy[11]. However, it does induce heat-shock-
protein-70-mediated lysosomal membrane permeabiliza-
tion, a process associated with cathepsin B release into 
the cytosol, which in turn is believed to sensitize the cells 
to the pro-autophagic effects of  temozolomide when 
grafted in vivo[11].

Galectin-1 expression is also upregulated by ionizing 
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irradiation in glioma cell lines[37]. Therefore galectin-1 
appears to be induced in cases of  various cellular stress 
stimuli and could promote cell survival through the 
various mechanisms described above and illustrated in 
Figure 3.

CONCLUSION
Gliomas and melanomas are associated with dismal 
prognosis because of  their marked intrinsic resistance to 
proapoptotic stimuli such as conventional chemotherapy 
and radiotherapy, as well as their capability to escape im-
mune cell attacks. In addition, gliomas and melanomas 
display pronounced neoangiogenesis. Galectin-1 is a 
hypoxia-sensitive protein that is abundantly secreted by 
glioma and melanoma cells, displays marked proangio-
genic effects, and provides immunotolerogenic environ-
ments to melanoma and glioma cells through the killing 
of  activated T cells that attack these tumor cells. Galec-
tin-1 also protects glioma and melanoma cells against cy-
totoxic insults (chemotherapy and radiotherapy) through 
a direct role in the UPR. Altogether, these facts clearly 
point to galectin-1 as an important target in gliomas and 
melanomas, to weaken the defenses of  these two types 
of  cancers against radiotherapy, chemotherapy and im-

munotherapy/vaccine therapy, and to reinforce antian-
giogenic therapies Figure 4. 
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