
circumstances, such as their expression levels, affinity 
to the binding sites, and localization in the cell, which 
can be controlled by various physiological conditions. 
Moreover, the functional and/or physical interactions of 
the factors binding to 3’UTR can change the character 
of their actions. These interactions vary during the cell 
cycle and in response to changing physiological condi-
tions. Abnormal functioning of the factors can lead to 
disease. In this review we will discuss how alterations 
of these factors or their interaction can affect cancer 
development and promote or enhance the malignant 
phenotype of cancer cells. Understanding these altera-
tions and their impact on 3’UTR-directed posttran-
scriptional gene regulation will uncover promising new 
targets for therapeutic intervention and diagnostics. 
We will also discuss emerging new tools in cancer di-
agnostics and therapy based on 3’UTR binding factors 
and approaches to improve them.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.

Key words: Translational control; 3’-untranslated re-
gion; MicroRNAs; RNA binding proteins; Cancer
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UTR) plays an important role in regulation of gene ex-
pression on the posttranscriptional level. 3’UTR controls 
gene expression via  orchestrated interaction between 
structural components mRNAs (cis-element) and specif-
ic trans-acting factors (RNA binding proteins and non-
coding RNAs). Alteration of any of these components 
can lead to various pathologies. In this review we will 
discuss how alteration of these factors or a change in 
the crosstalk between them can affect cancer develop-
ment and promote or enhance the malignant phenotype 
of cancer cells. Understanding these regulatory mecha-
nisms and their impact on 3’UTR-directed posttran-
scriptional gene regulation may uncover promising new 
targets for therapeutic intervention and diagnostics.
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Abstract
The messenger RNA 3’-untranslated region (3’UTR) 
plays an important role in regulation of gene expres-
sion on the posttranscriptional level. The 3’UTR con-
trols gene expression via  orchestrated interaction 
between the structural components of mRNAs (cis-ele-
ment) and the specific trans-acting factors (RNA bind-
ing proteins and non-coding RNAs). The crosstalk of 
these factors is based on the binding sequences and/
or direct protein-protein interaction, or just functional 
interaction. Much new evidence that has accumulated 
supports the idea that several RNA binding factors can 
bind to common mRNA targets: to the non-overlapping 
binding sites or to common sites in a competitive fash-
ion. Various factors capable of binding to the same 
RNA can cooperate or be antagonistic in their actions. 
The outcome of the collective function of all factors 
bound to the same mRNA 3’UTR depends on many 
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INTRODUCTION
During tumor growth, characteristic alterations in gene 
expression result in modification of  the quantity of  the 
corresponding proteins. The alterations have been ex-
tensively documented at the mRNA transcription and 
protein degradation levels; both have a strong impact on 
the accumulation of  critical proteins involved in tumori-
genesis. While translational control is a key mechanism 
involved in the regulation of  the gene expression[1], the 
impact of  the misregulation of  gene expression during 
carcinogenesis at the translational level has long been 
widely underestimated.

Translation of  mRNA into proteins can be specifi-
cally regulated by a combination of  RNA-binding factors 
(proteins and antisense RNA) that act positively or nega-
tively on translation initiation and elongation, mRNA sta-
bility and mRNA localization. This regulation is mostly 
controlled by sequence elements in 3’-untranslated region 
(3’UTR) of  the transcripts, located downstream from 
the open reading frame. The importance of  the 3’UTR 
was not fully appreciated until the discovery of  small 
non-coding regulatory RNAs (microRNAs or miRNAs). 
MiRNAs interact with a protein complex called RNA-
induced silencing complex (RISC), which controls gene 
expression by binding to miRNA target sites in mRNA 
3’UTRs. MiRNAs have proven to be not only impor-
tant markers but also key players in the control of  gene 
expression during cancer development. Multiple 3’UTR 
regulatory elements are usually involved in the regulation 
of  translation. One of  the best characterized of  them is 
the cytoplasmic polyadenylation element (CPE) which, 
upon binding by the CPE-binding protein (CPEB), regu-
lates specific target mRNAs. CPEB1 directly controls the 
mammalian cell cycle, particularly during senescence, sug-
gesting a role in cancer and aging. According to the lit-
erature and to our unpublished data, members of  CPEB 
family are misregulated in many cancers and can play 
important role in carcinogenesis[2,3].

The insulin-like growth factor (IGF)-2 mRNA-bind-
ing proteins 1, 2 and 3 [IGF2BP1-3/Insulin-like growth 
factor 2 mRNA-binding protein 1 (IMP1-3)] belong to 
another well-known family of  proteins that bind to 3’
UTR and control the expression of  proteins important in 
the normal cell cycle and in cancerous transformation[4,5]. 
IGF2BP1-3 and IMPs are highly over-expressed in a 
number of  cancers[6].

The aim of  this review is to show that regulatory fac-
tors controlling gene expression via binding to 3’UTR do 
not act separately but in cooperation. Crosstalk of  these 

factors is based on the binding sequences and direct 
protein-protein interaction. The functional and physi-
cal interactions of  factors binding to 3’UTR can change 
the character of  their action, according to physiological 
conditions[7]. Disruption of  the coordinated action of  
these factors can have a big impact on the expression of  
proteins involved in cancer induction and development. 
A detailed understanding of  these mechanisms can help 
in development of  new tools for cancer diagnostics and 
treatment.

MIRNA AND CANCER
One of  the main breakthroughs in cellular and molecu-
lar biology in the last decade was the discovery of  gene 
expression regulation by non-coding RNAs. The num-
ber of  classes of  non-coding RNAs continues to grow 
rapidly. Major among them are miRNAs, piRNAs, endo-
siRNAs, exo-siRNAs, rasiRNAs, scnRNAs, tasiRNAs, 
natsiRNAs, 21U-RNA, lncRNAs and tRNA-derived 
RNA fragments[8]. We will focus this review on miRNAs, 
which is the most widely studied group of  non-coding 
regulatory RNAs. MiRNAs are small (21-23 nt) RNAs. 
MiRNAs originate from Pol Ⅱ-transcribed precursors 
(pri-miRNAs). Then the Drosha enzyme recognizes a 70 
nt stem-loop structure and produces pre-miRNA, which 
is transported from the nucleus by Еxportin 5. In the 
cytoplasm, Dicer enzyme forms a double-stranded 22 
nt RNA from pre-miRNA. One of  the RNA strands is 
degraded, whereas the other one inserts into the RISC 
complex, binds to the target sequence in 3’UTR, and 
carries out its regulatory function[9]. These tiny mol-
ecules are involved in the regulation of  almost all cellular 
processes[10-12]. Since single miRNA can potentially have 
hundreds of  targets, alteration of  its expression can 
easily influence cellular homeostasis, which in the most 
extreme case may result in cell death or in malignant 
transformation of  the cell. Indeed, the first evidence of  
involvement of  miRNAs in tumorigenesis was shown 
in 2002 by Calin et al[13]. These authors found that in 
68% of  chronic lymphocytic leukemia (CLL) cases, dele-
tions and down-regulation of  miRNA genes miR-15 and 
miR-16 at 13q14 locus were observed. Since then, thou-
sands of  publications have been devoted to miRNAs 
involvement in various types of  cancer.

Misregulation of miRNA expression in various cancers
Involvement of  miRNA in cancer has been proven 
by genome-wide expression studies using microarray 
technology and techniques based on quantitative poly-
merase chain reaction (qPCR), which have helped to 
establish the miRNA profiles of  normal and neoplastic 
tissues[14,15]. These studies revealed a global decrease in 
miRNA expression in many tumors. Various tumors 
also correlate with changes in specific miRNA expres-
sion. The above studies were supported by a number of  
investigations of  individual types of  neoplasms[16-29] (and 
many others). About 200 miRNAs have at least once 
been reported as being up- or down-regulated in tumors. 
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Overall, these studies prove that each neoplasm could 
exhibit a distinct miRNA expression profile that differs 
from one of  the other neoplasms and its normal tissue 
counterpart. However, a group of  miRNAs was shown 
to have a similar expression profile in multiple cancers, 
suggesting that their involvement in tumorigenesis is 
common for many cancer types. At the same time, there 
are many miRNAs that are differentially misregulated in 
different cancers[30]. The reason for this is not yet clear, 
but it is likely that the function of  a miRNA may vary 
because of  tissue-specific expression of  their targets. 
On the other hand, specific miRNAs can have differ-
ent cofactors and build different networking in different 
cancers. Thus, it becomes possible for a given miRNA to 
act either as an oncogene or as a tumor suppressor, ac-
cording to the context.

One of  the best examples for tissue-specific target 
regulation is the let-7 family of  miRNAs, which accord-
ing to many reports acts as tumor suppressors[31-34]. It has 
been shown that let-7 is frequently down-regulated in 
many cancers, leading to up-regulation of  the proto-on-
cogenes RAS[35], High Mobility Group A2 (HMGA2)[36-38], 
Myc[39], integrin beta 3[40], the oncofetal gene IMP-1[41] and 
the miRNAs maturation enzyme Dicer[42]. Let-7b was 
shown to down-regulate the expression of  cyclin D1, 
D3, A and cyclin-dependent kinase (Cdk 4) in melanoma 
cells[43].

A similar effect was observed for the miR-34 family, 
another potential tumor-suppressor in a variety of  can-
cers. Localized to chromosomes 1 (34a) and 11 (34c and 
b), this family is frequently deregulated in various cancers, 
including lung, ovarian, CLL and colorectal[44-47]. In addi-
tion, miR-34b/c polymorphism has been linked to risk 
of  developing hepatocellular carcinoma[48]. The miR-34 
family appears to be the direct transcriptional target of  
p53[49,50] and has few validated targets, SNAIL (zing finger 
protein SNAL1, epithelial-mesenchymal transition), Wnt, 
SIRT1 (silent mating type information regulation homo-
log), cyclin-dependent kinase 6 (CDK6) and others[51-54].

The miR-29 family (a, b and c) also has often been 
found to be decreased in tumors, such as CLL, hepato-
cellular carcinoma and breast cancer[55-57], and has been 
validated to target key components of  cellular survival 
as MCL-1 (induced myeloid leukemia cell differentiation 
protein), cell cycle CDK6 and dedifferentiation Krüppel-
like factor 4[26,55,58]. The most interesting observation con-
cerning miR-29 is that it can globally alter methylation 
status through targeting of  DNA methyltransferases 3A 
and B (DNA methyltransferases 3A and B) and lead to 
the derepression of  critical tumor suppressors[59].

The miR-17-92 cluster acts as a group of  oncogenes 
when over-expressed. This group includes 14 homolo-
gous miRNAs that are encoded by three gene clusters 
on chromosomes 7, 13 and X[25,60]. The cluster on chro-
mosome 13 is amplified in human B cell lymphomas[61], 
which leads to increased expression of  various miRNA 
members. Forced expression of  the miR17-92 cluster 
along with myc proto-oncogene (MYC) accelerates tumor 
development in mouse B cell lymphoma[62], thus acts as 

an oncogene. Up-regulation of  members of  this large 
miRNA group protects cells from apoptosis by inhibiting 
the expression of  E2F, p21 and Bim[63,64].

Among oncogenic miRNAs families, the most thera-
peutic and diagnostic potential is the miR-21 family, lo-
cated on chromosome 17. It is over-expressed in several 
cancers, including breast, colorectal and lung[65-67], and 
has few validated targets: TPMI (tropomyosin), PDCD4 
(program cell death protein 4) and PTEN (phosphatase 
and tensin homolog)[68-70].

These and other observations found in the literature 
prove that miRNAs play very important roles in cancer, 
although their mode of  action can differ according to the 
composition of  the targets and a combination of  other 
factors. Knowledge of  the mechanisms of  miRNA action 
in particular cancers, especially understanding of  their 
collaborators or inhibitors, will help to develop proper 
tools for miRNA-based therapy and diagnostics.

Cancer processes associated with misbalance of miRNA 
expression
Epithelial-mesenchymal transition: To date, it is 
believed that one of  the causes of  failure in the treat-
ment of  cancer is the existence of  cancer stem cells[71]. 
In cancer, epithelial-mesenchymal transition (EMT) is a 
process by which epithelial cells are reprogrammed to 
lose their differentiation and become undifferentiated 
stem cells with mesenchymal properties. Despite the fact 
that genes responsible for EMT are well known[72], data 
devoted to the involvement of  miRNAs in this process 
are still accumulating. Thus, Nairismägi et al[73] showed 
that miR-580 and CPEB1/2 down-regulate TWIST1 
expression, one of  the main inductors of  EMT in a co-
operative way. Another miRNA that suppresses EMT 
belongs to the miR-200 family. These miRNAs increase 
E-cadherin expression by targeting the mRNA of  the 
E-cadherin transcriptional repressors zinc finger E-box-
binding homeobox 1 (ZEB1) and ZEB2[74,75]. It was 
later shown that the miR-200 family is downregulated 
in the initial stages of  stromal invasion, but restored at 
metastatic sites[76]. In cases of  hepatocellular carcinoma, 
miR-612 was found to have an inhibitory effect on EMT 
targeting of  the AKT (also known as protein kinase B) 
signal cascade[77]. On the other hand, a set of  miRNAs is 
correlated with EMT progression. MiR-21 is thus over-
expressed during EMT, whereas blockage of  miR-21 
inhibits metastasis development[78,79]. During EMT, 
the Twist transcription factor induces expression of  
miR-10b. In turn, over-expression of  miR-10b in non-
metastatic breast tumors initiates intense invasion and 
metastasis[80]. Furthermore, in hepatocellular carcinoma, 
miR-106b promotes cell migration and metastasis by ac-
tivating the EMT process[81].

Angiogenesis and proliferation: The tumor growth 
rate is one of  the most critical characteristics that define 
the level of  cell malignancy. However, while growing, a 
tumor must supply itself  with nutrients, which are pro-
vided by active angiogenesis. Deregulation of  miRNA 
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expression is also involved in these processes. For 
instance, upregulation of  the miR-17-92 cluster in ad-
enocarcinoma leads to downregulation of  its predicted 
targets: anti-angiogenic thrombospondin-1 and connec-
tive tissue growth factor, resulting in enhanced neovas-
cularization[82]. Lee et al[83] showed that miR-378 increases 
cell survival, tumor growth and angiogenesis. Detailed 
analyses revealed that the main targets of  the miR-378 
were SuFu (inhibitor of  Hedgehog signal cascade) and 
tumor suppressor Fus-1. Regulation of  proliferation is 
mainly carried out by forced entry and progression of  
the cell cycle. Cyclins and their CDKs regulators are key 
players in the above-mentioned process. Thus, miRNAs 
can potentially inhibit key components, resulting in the 
inhibition of  proliferation or in decreased expression of  
cyclin inhibitors. Indeed, Linsley et al[84] showed that the 
miR-16 family regulates cell cycle progression. Further-
more, the miR-497-195 cluster has been shown to target 
multiple cell cycle regulators, including CDKs, but it is 
transcriptionally silenced in hepatocellular carcinoma[85]. 
In the case of  breast cancer, the same miRNA was able 
to decrease the cyclin E1 level[86]. Wee-1, a well-known 
cell cycle regulator, is also a target of  miR-497[87]. There 
are other cases in which miRNAs inhibit cell cycle inhib-
itors. Thus, analyses of  miRnome from a broad set of  
different cancer samples demonstrated that a number of  
miRNAs were over-expressed in all cases. Interestingly, 
one of  the main targets of  these miRNAs was RB1, a 
well-known negative regulator of  the cell cycle[15].

Mechanisms of alterations of miRNA-mediated control 
of gene expression in cancer
Genetic mechanisms: It is well known that genome 
instability characterizes malignant cells. The discov-
ery of  DNA alteration involvement in trespassing of  
miRNA gene expression came from the observation 
that 30%-50% of  miRNA genes are located in fragile 
sites[88,89]. Fragile DNA sites are regions that possess high 
levels of  instability and are susceptible to such processes 
as genomic rearrangement, which include multiplication 
and deletion of  loci, translocation, high rates of  muta-
tion etc[90]. Such a process is deletion of  oncosuppressive 
miR-15a/miR-16a miRNAs that target the anti-apoptotic 
B-cell lymphoma 2 (BCL-2) protein[91], which was found 
in the majority of  CLL cases[13]. Another rearrangement, 
translocation, was shown to alter the 17-92 cluster that 
contains a set of  miRNAs among which is leukemogenic 
miR-19[92]. Translocation can also alter miRNA targets, 
which results in the disruption of  miRNA-mediated 
proto-oncogenes repression. For instance, Mayr showed 
that translocation of  High Mobility Group A2 (HMGA2) 
3’UTR disrupts its repression by let-7 miRNA[37]. Dur-
ing amplification, the number of  pro-oncogenic miRNA 
genes is often increased. Thus, miR-26a, a direct regula-
tor of  PTEN, is frequently amplified at the DNA level 
in human glioma[93]. Amplification of  growth-promoting 
miR-23a is widely observed in gastric cancer[94]. While 
there is little data concerning the role of  mutations in 
miRNA-mediated control in cancer, the number of  

publications dedicated to the role of  single-nucleotide 
polymorphism (SNP) on miRNA action is growing fast. 
SNPs are single-nucleotide variations that naturally occur 
in the genome. They can potentially alter miRNA seed 
sequence, which results in alterations in miRNA target 
sites and deprivation of  proto-oncogene expression 
control. It may also influence miRNA secondary struc-
ture and cause disruption of  pri-miRNA recognition by 
miRNA processing enzymes. So far, numerous genomic 
studies have shown that SNPs in the miRNA seed se-
quence or target site may be associated with the risk for 
different types of  cancer and in the prognosis of  cancer 
treatment[95-99].

Transcriptional mechanisms: MiRNAs can be pro-
cessed from RNA intron (mirtron) or transcribed as in-
dependent transcripts. In the latter case, an miRNA gene has 
its own promoter and is transcribed by Pol Ⅱ[9]. Since tissue 
transcription factors in cancer are often misregulated, 
it is logical to assume that this also influences miRNA 
expression. Indeed, regulation of  miRNA expression 
by such well-known cancer-related transcription factors 
such as E2F, RAS, MYC and P53 has been shown[100,101]. 
Moreover, miRNAs and their transcription factors often 
work in feedback loops. Thus, E2F is responsible for 
up-regulation of  the above-mentioned 17-92 cluster of  
miRNA in gliomas. E2F1 acts as a transcriptional acti-
vator of  the miR-17-92 cluster and binds directly to the 
miR-17-92 promoter[102]. However, the set of  miRNAs 
produced from this cluster directly inhibits E2F1. This 
is an example of  a negative feedback loop[102,103]. Since 
E2F1 activates its own transcription by a positive feed-
back loop, miRNAs in this case act as a fuse for E2F1 
over-saturation. MiRNAs miR-449a and miR-449b are 
other targets of  E2F1. In this case, both miRNAs form 
a negative feedback loop indirectly by targeting the pRb-
E2F1 pathway through cell cycle arrest[104]. High expres-
sion of  miR-375 and estrogen receptor α (ERα) in 
breast cancer cells is an example of  a positive feedback 
circuit. MiR-375 targets dexamethasone-induced ras-re-
lated protein 1 mRNA, an ERα inhibitor, whereas ERα 
increases miR-375 expression[105].

Epigenetic mechanisms: Methylation of  DNA, espe-
cially gene promoter regions of  the genes, causes altera-
tion in gene expression[106]. During cancer progression, 
two cases could potentially be realized: hypermethylation 
of  oncosuppressors and hypomethylation of  oncogenes. 
The fact that most miRNAs are associated with CpG is-
lands[107] allows us to assume that miRNA genes are po-
tential targets of  DNA methylation machinery. Indeed, 
treatment of  cells with inhibitors of  DNA methylation 
(5-aza-2’deoxycytidine) led to upregulation of  the subset 
of  oncosuppressor miRNAs in human cancer cells[108]. 
Another example is the oncosuppressor miR-663 gene, 
which targets well-known proto-oncogenes such as 
EEF1A2, TGFβ , JunB and JunD[109-111]. It was found 
to be downregulated via methylation in samples of  hu-
man acute myeloid leukemia, hepatocellular carcinoma 
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and breast cancer, as well as in the K-562 leukemia cell 
line[112-115]. Similar processes occur with miR-129-2, a tu-
mor-suppressive miRNA that is frequently methylated in 
lymphoid but not myeloid malignancies[116]. The process 
of  hypomethylation can also be influenced in cancer-re-
lated alterations of  miRNA expression. Thus, Li et al[117] 
observed hypomethylation of  miR-200a/200b promot-
ers with subsequent overexpression of  these miRNAs. 
MiR-200a and miR-200b target SIP1, a protein product 
that suppresses E-cadherin expression and contributes 
to epithelial mesenchymal transition[74,117]. In renal cell 
carcinoma, the promoter of  the well-known oncogene 
miR-21 was found to be hypomethylated, which corre-
lates with upregulated miRNA expression level[118].

The stoichiometry of  miRNAs and their targets: 
Each miRNA potentially targets hundreds of  transcripts. 
Depending on the strength of  the miRNA binding site, 
the target can be more or less inhibited. Thus, constant 
levels of  miRNAs and mRNAs expression are in equi-
librium, which provides cell homeostasis. However, 
several mechanisms that might decrease the miRNA 
level by using “miRNA sponges” have been discovered. 
The most well-known example is regulation of  PTEN 
oncosuppressor expression by its pseudogene PTENP1, 
which harbors the same conserved miRNA binding 
site as PTEN mRNA[119]. In samples of  colon cancer, a 
decrease in the PTENP1 pseudogene copy number was 
found, which potentially increases the miRNA pool that 
targets PTEN. A pseudogene sequestering the miRNA 
pool was also shown in the case of  KRAS1P pseudo-
gene that possess binding sites for miR-143 and let-7 
family[120]. Another example of  a “miRNA sponge” is 
circular RNAs (circRNAs). These non-coding RNAs are 
processed from introns during splicing and carry multi-
ple miRNA binding sites. Hansen et al[121] has shown that 
ciRS-7 (circular RNA sponge for miR-7) contains more 
than 70 selectively conserved miRNA target sites and 
strongly inhibits miR-7 oncosuppressor activity[122,123].

3’UTR BINDING PROTEINS AND CANCER
Modulation of  the protein expression on the posttran-
scriptional level during oncogenic transformation often 
depends on 3’UTR and takes place by changing cis-ele-
ments or trans-binding factors that dictate stability and 
translation efficiency of  cancer-related protein mRNAs.

There are few well-characterized cis-elements present 
in the 3’UTR region. One of  them is the CPE, which has 
a consensus sequence of  U4-8A1-2U and is located in 
relatively close proximity to the ubiquitous nuclear poly-
adenylation hexanucleotide AAUAAA[124-126].

CPE binds CPEB, one member of  a family of  four 
conserved sequence-specific RNA-binding proteins that 
contain a zinc finger and two RNA recognition motifs[127]. 
During Xenopus oocyte maturation, CPEB controls 
meiosis progression from prophase Ⅰ to metaphase 
Ⅱ[127]. Translational control by CPEBs was later also 
shown to be involved in learning and memory[128,129] and 

in the regulation of  the mammalian cell cycle[130]. CPEB 
is also implicated in senescence in mammals[131,132] and 
in controlling the translation of  proteins involved in cell 
cycle checkpoints[133]. Xenopus studies have shown that 
CPEB can both promote and inhibit RNA translation by 
respectively elongating and shortening the poly(A) tail. 
The balance between the two CPEB-associated activities 
is altered during progression of  the cell cycle, depending 
on post-transcriptional modifications as well as on the 
number and location of  CPEs to which CPEB binds and 
recruits associated adenylating and de-adenylating protein 
complexes.  The CPEB-containing complex in Xenopus 
include: symplekin, which may be a platform protein 
upon which multi-component complexes are assembled, 
poly(A) ribonuclease, a de-adenylating enzyme and germ-
line-development factor 2 (Gld2), an atypical poly(A) 
polymerase[134,135]. The induction of  cytoplasmic polyade-
nylation is mediated by activation of  the serine/threonine 
kinase Aurora A/Eg2, possibly through repression of  
glycogen synthase kinase 3[136,137]. When phosphorylated 
on S174 or T171 (species-dependent), CPEB promotes 
polyadenylation by stimulating the activity of  Gld-2[138]. 
The newly elongated tail bound by the poly(A)-binding 
protein promotes translation by augmenting the assembly 
of  the eIF4F initiation complex[139].

CPEB family members were found to be misregulated 
in various cancers[3]. One of  them, CPEB4, was recently 
shown to be not only over-expressed in pancreatic cancer 
and glioblastoma in comparison with healthy pancreatic 
and brain tissues, but also plays a role as a key regula-
tor of  cancer transformation and controls translation 
of  hundreds of  mRNAs. SiRNA down-regulation of  
CPEB4 expression in RWP-1 (human pancreatic cancer 
lines) and Capan pancreatic cancer cells reduce their abil-
ity to form tumors after injection into nude mice[2]. This 
group found that one of  the most enriched CPEB4-
associated mRNAs, tissue type plasminogen activators 
(tPA), which is known to be over-expressed in pancreatic 
tumors, has a short poly(A) tail in normal tissue, whereas 
in ductal tumors and pancreatic ductal adenocarcinoma 
cell lines, the tPA poly(A) tail is elongated. This observa-
tion supports the idea that misregulation of  protein ex-
pression during cancer transformation can be controlled 
by the length of  the poly(A) tail, which depends on the 
presence of  CPEB proteins[2].

Insulin-like growth factor-2 mRNA-binding proteins 
(IGF2BPs or IMPs) are oncofetal proteins that were first 
discovered in human embryonic Rhabdomyosarcoma and 
are highly expressed in a number of  human cancers[6]. 
IMPs belong to a conserved family of  RNA-binding 
proteins implicated in the post-transcriptional regulation 
of  multiple mRNAs, IGF2, MYC, CD44, PTEN, G1/
S-specific cyclin-D1 (CCND1), CCND3, G1/S-specific 
cyclin-G1 (CCNG1) and others[4,5,140,141]. All these IMP 
targets are implicated in the proliferation and invasion of  
human cancer cells. Moreover, several studies have shown 
that IMPs participate in essential cell functions alienated 
during cancer transformation, such as cell polarization, 
migration, morphology, metabolism, proliferation and 
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differentiation[142].
IMPs are mainly expressed in the embryo and are im-

portant during development. However, because of  their 
abnormal re-expression in several types of  cancer, IMPs 
are considered as oncofetal proteins. Typically, IMP1 
and IMP3 have been implicated in colon, liver, kidney, 
pancreas and female reproductive tissue cancers. IMP3 is 
reported in over 50 publications as being over-expressed 
in multiple cancer types. IMP3 expression actually corre-
lates with tumor aggressiveness. Concerning IMP2, a few 
studies have linked its expression to liposarcoma, liver 
cancer and endometrial adenocarcinomas[142].

IMPs are generally observed in the cytoplasm, where 
they associate with target mRNAs in cytoplasmic ribo-
nucleoprotein complexes (mRNPs). Actually, in complex 
with a wide range of  other RNA binding proteins (RBPs), 
IMPs are able to control mRNA turnover, transport, lo-
calization and translation.

Other studies provide evidence suggesting an impor-
tant role for IMPs in cell migration. For instance, IMP2 
binds and controls the expression of  PINCH-2 (par-
ticularly interesting new cysteine-histidine-rich protein) 
and MURF-3 (muscle specific RING finger protein2)  
mRNAs to modulate cell motility[143].

Despite controversial observations regarding a po-
tential nuclear role of  IMPs, increasing evidence suggests 
that IMPs can recruit their target mRNAs in the nucleus 
during their transcription[144-146]. Moreover, a recent study 
actually shows that in contrast with IMP1 and IMP2, 
IMP3 has nuclear localization in a large number of  hu-
man cancer cell lines. For example, IMP3 is almost 100% 
nuclear in hepatocellular carcinoma, breast and ovarian 
cancer cells[4].

Among other well known proteins that bind mostly 
to the AU-rich sequences in 3’UTR and are involved in 
cancer transformations are Hu/elav proteins, known 
to bind AU-rich sequences in the 3’UTR and enhance 
mRNA translation or increase its stability[147,148]. HuR is 
ubiquitously expressed and HuB, -C and -D are primarily 
neuronal. HuR is also known as embryonic lethal, abnor-
mal vision, Drosophila-like 1. A link between HuR and 
malignant transformation has been suggested in cancers 
such as breast, colon, lung and ovary[149]. Their targets 
are involved in several processes, such as cell growth and 
survival, proliferation, stress response, senescence and 
cancer[150,151].

AU-binding factor 1 (AUF1), also known as hetero-
geneous nuclear ribonucleoprotein D, belongs to a big 
family of  hnRNPs that includes hnRNNP A, B, C, D, E, 
F, H, I, K, L, M, Q and R. AUF1 binds to the AU-rich 
sequence in the 3’UTR of  target mRNAs and promotes 
degradation of  the target transcript, most probably by 
recruiting them to exosomes for degradation[152,153]. How-
ever, AUF1 was found to enhance stability and transla-
tion of  some mRNAs[154,155]. AUF1 was also shown to be 
involved in several processes: cell cycle, stress response, 
apoptosis and carcinogenesis.

T-cell intracellular antigen 1 (TIA-1) TIA-1-related 
(TIAR) binds to AU/U-rich sequences in the 3’UTR 

of  the target transcript and suppresses mRNA trans-
lation[156]. Under stress conditions, these proteins are 
thought to halt mRNA-to-protein aggregations known as 
stress granules[157].

Nuclear factors 90 interacts with AU rich sequences 
and suppresses translation of  mRNAs involved in the cell 
cycle[158].

Tristetraprolin (TTP), zinc finger protein, binds AU-
rich sequences in mRNAs to promote their decay. It is 
involved in the cell cycle, inflammation and carcinogen-
esis[159,160].

KH-type splices regulatory protein (KSRP). RBP 
binds to AU-rich sequences of  target transcripts, pro-
moting mRNA decay. Its targets encoded cytokines, tran-
scription factors, proto-oncogenes and cell cycle regula-
tors[161].

Nucleolin interacts with mRNAs bearing AU-rich 
or G-rich sequences and regulates mRNA stability and 
translation. Its targets are involved in the cell cycle, cell 
morphology, development, cell proliferation and cancer 
genesis[148].

Obviously, two or more RBP may functionally inter-
play among themselves and with microRNAs through 
binding to the same mRNA 3’UTR.

INTERACTION BETWEEN 3’UTR BINDING 
FACTORS AND THEIR FUNCTION IN 
NEOPLASTIC TRANSFORMATION
RNA binding proteins interaction
Significant evidence has accumulated to support the 
idea that several RNA binding proteins can bind the 
same mRNA target on either the non-overlapping bind-
ing sites or on common sites in a competitive fashion. 
Different RBPs that are capable of  binding to the same 
RNA can cooperate or compete in their actions (Figure 
1). The outcome of  the combined action of  all factors 
bound to the same mRNA 3’UTR depends on many cir-
cumstances, such as expression of  different RBPs, their 
affinity for the binding sites, and their localization in the 
cells. This can be controlled by different physiological 
conditions.

For instance, interleukin (IL)-8 plays an integral role 
in promoting a malignant phenotype in breast cancer 
and its production is directly influenced by inflammatory 
cytokines in the tumor microenvironment. Subsequently, 
activation of  the IL-1 receptor on malignant breast can-
cer cells strongly induces IL-8 mRNA expression. HuR, 
KSRP and TIAR were found to bind one or more loca-
tions within the IL-8 3’UTR, although affinity of  the 
stabilizing factor HuR was 20-fold stronger than that of  
the KSRP destabilizing factor[162]. HuR, AUF1 and nu-
cleolin bind to BCL-2 mRNAs. HuR and nucleolin both 
stabilized the BCL-2 transcript, while AUF1 enhanced 
degradation[163-166]. Thus HuR and nucleolin can have a 
cooperative effect that is antagonized by AUF1. Another 
example is related to regulation of  GADD45A mRNA 
stability and translation efficiency. Nucleolin stabilized 
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GADD45A mRNA and was antagonized by AUF1, 
which promotes decay of  this mRNA, and by TIAR, 
which suppresses translation[167].

In addition, HuR and AUF1 formed a stable ribo-
nucleoprotein complex in the nucleus, whereas in the 
cytoplasm, HuR and AUF1 bound to target mRNAs indi-
vidually. HuR colocalizes with the translational apparatus 
and AUF1 with exosomes[168].

The nuclear localization of  IMP3 depends on its pro-
tein partner, HNRNPM. Nuclear IMP3 is important for 
the efficient synthesis of  CCND1, D3 and G1 proteins 
and for the proliferation of  human cancer cells. Curi-
ously, IMP3 can be differentially localized  in normal 
versus cancerous adult cells, which in turn will determine 
the efficiency of  protein synthesis of  CCND1, D3 and 
G1 in these cells and have an impact on their prolifera-
tion[4]. These studies suggested that IMPs are controlling 
the transcript destiny of  targeted mRNAs in the nucleus 
and subsequently influence their stability and translation 
in the cytoplasm. IMP is also found in complex with 
other RNA-binding proteins, such as HNRNP A2/B1, 
HNRNP A1, HNRNP A3, Polypyrimidine tract-binding 

protein 1, interleukin enhancer-binding factor 3, an RNA 
helicase DHX9 and a mRNA-stabilizing protein HuR[4]. 
Some of  these IMP3 partners, such as HuR, are already 
known to positively regulate CCND1 mRNA stability 
and translation[168].

Members of  the CPEB and PUF (drosophila pumilio 
(Pum) protein is a founder member of  a novel family of  
RNA-binding proteins, known as the PUF family.) (Po-
melia/Fem-3 mRNA-binding factor 1) families collabo-
rate to regulate mRNA expression throughout eukary-
otes. PUF was shown to directly interact with CPEB in C. 
elegans and humans (CPEB3) and to inhibit translation 
of  common targets[169].

3’UTR binding factors can control translation effi-
ciency via interaction with translation, initiation and elon-
gation factors. An example of  the interaction with initia-
tion factors has been described for CPEB1 in a previous 
chapter. Recently, the eukaryotic translation elongation 
factor 1A1 (eEF1A1) was shown to be involved in EMT 
regulation. The main function of  eEF1A1 is delivery of  
aminoacyl tRNA to the A-site of  the ribosome[170-172]. 
However, Hussey et al[173] discovered a new mechanism 
of  EMT control when eEF1A1 in complex with hnRNP 
E1 binds to the BAT element in the 3’UTR of  the EMT, 
inducing Dab2 and ILEI transcripts. This results in the 
inhibition of  eEF1A1 release from the ribosomal A site, 
which causes a stall in translational elongation of  the 
above-mentioned transcripts[173].

Moreover, PUF and Ago can interact with eEF1A 
proteins to repress translation elongation in both C. el-
egans and mammalians. This repression occurred after 
translation initiation and led to ribosome accumulation 
within the open reading frame, roughly at the site where 
the nascent polypeptide emerged from the ribosomal 
exit tunnel. Together, these data suggest that a conserved 
PUF-Ago-eEF1A complex attenuates translation elonga-
tion[174].

RNA binding protein and microRNA interaction
Proteins that bind to the same mRNAs 3’UTR can 
modulate the function of  miRNAs. They either enhance 
the inhibitory function of  miRNA or prevent it. On the 
other hand, miRNA also can assist the function of  RNA 
binding protein or inhibit it. This can happen simply 
through binding site competition or collaboration (via 
RNA remodeling), direct protein-protein interaction of  
3’UTR-binding complexes, or just functional interplay 
when a few factors act separately but their actions aug-
ment or negate each other (Figure 2).

Interestingly there are few cases described in the 
literature in which miRNA in collaboration with RNA 
binding proteins can change their mode of  action during 
the cell cycle or under physiological conditions such as 
oxidative stress and others.

It has been shown that upon cell cycle arrest, the 
ARE (AU-rich element) in tumor necrosis factor-a 
mRNA acts as a translation activation signal, recruiting 
AGO (argonaute RISC catalytic component) and fragile 
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Figure 1  Models of RNA binding proteins interplay in regulation of the 
same target. A, B: Two RBPs compete for the same binding site in 3’UTR; A: 
RBP1 binds to the site, repels RBP2, and stimulates translation; B: RBP2 binds 
to the site, repels RBP1, and inhibits translation; C, D, E: Two RBPs bind to the 
different sites and cooperate (C, E) or compete (D) in their actions; C: Coopera-
tive action of two RBPs stimulating expression; D: Two RBPs antagonized their 
effects; E: Cooperative action of two RBPs inhibiting expression. RBPs: RNA 
binding proteins; 3’UTR: 3’-untranslated region; ORF: Open reading frame. 
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X mental retardation-related protein 1 factors associated 
with miRNPs. Human miRNA mir-369-3 directs the as-
sociation of  these proteins with the AREs, leading to the 
activation of  translation[7]. Moreover, two well-studied 
miRNAs, let-7 and the synthetic miRNA miRcxcr4, also 
induce translational up-regulation of  target mRNA upon 
cell cycle arrest. However, they repress translation in 
proliferating cells. It has been proposed that translation 
regulation by miRNPs oscillates between repression and 
activation during the cell cycle[7].

Another example of  inactivation, storage and reacti-
vation is calcium transport protein (CAT)-1 mRNA tar-
geting by mir-122 under stress conditions. The derepres-
sion of  CAT-1 mRNA is accompanied by its release from 
cytoplasmic P-bodies and its recruitment to polysomes. 
Derepression requires binding of  HuR, an AU-rich-element-
binding protein, to the 3’UTR of  CAT-1 mRNA[175]. Thus, 
interaction with RNA binding proteins can change the 
miRNA mode of  action directed to the same target, ac-

cording to conditions.
Some difficulty in understanding the affiliation of  

certain RBPs for oncogenes or tumor suppressors came 
from the observation that the same RBP interacting 
with different miRNAs in the regulation of  different 
targets could lead to enhanced or suppressed cancer 
transformation, according to the nature of  the target. 
The stimulation effect of  Pomelia on miRNA function, 
most probably through mRNA remodeling, is directed 
towards the targets acting in opposite ways, as oncogene 
or tumor suppressor. It was shown by Kedde and co-
workers that Pomelia RBP pumilio RNA-binding family 
member 1 (PUM1) and PUM2 promote the regulation 
of  miR-221/222 on the p27kip1 check-point protein and 
tumor suppressor mRNAs by opening of  the secondary 
structure of  the p27 3’UTR and exposing the binding se-
quence to miR-221/222. This causes down-regulation of  
p27kip1 accumulation and stimulates cell proliferation and 
breast cancer development[176]. On the other hand, Po-
melia collaborates with some miRNAs to repress E2F3, 
transcription factor and strong oncogene. This prevents 
cell proliferation and down-regulates bladder cancer de-
velopment[177].

Another example of  miRNA and RBP collabora-
tion was shown by Nairismägi et al[73] who showed that 
miR-580 and CPEB1/2 down-regulate TWIST1 expres-
sion, one of  the main inductors of  EMT in a cooperative 
way. On the other hand, Dnd1 is an example of  RBP that 
prevents binding of  miRNA to their target sequences in 
a few genes, such as p27kip1 and LATS2, and suppresses 
formation of  germ cell tumor[178]. It also prevents miR-21 
function on its MutS protein homolog 2 target, which 
suppresses tumorigenesis in skin[179]. Thus by preventing 
miRNA down-regulation of  tumor suppressors, Dnd1 
inhibits the development of  certain tumors.

The same RNA binding protein can cooperate or 
antagonize miRNA functions, according to the mRNA-
target. One of  the most investigated examples is HuR[147], 
which was found to recruit let-7 to suppress c-MYC 
mRNA translation[8] but competes with miR-494 and 
miR-548-3p for the regulation of  nucleolin and TOP2A 
mRNA, respectively[180,181].

Some RBPs not working alone but in complex with 
other RNA binding proteins can prevent miRNA actions. 
IMP1 in complex with heterogeneous nuclear ribonu-
cleoprotein U, synaptotagmin binding, cytoplasmic RNA 
interacting protein, YXB1 (transcriptional regulator ) and 
DHX9 [DEAH (Asp-Glu-Ala-His) box helicase 9] is able 
to stabilize the mRNA of  MYC, possibly by inhibiting its 
translation-coupled degradation[182]. However, some stud-
ies showed that MYC is repressed by members of  the 
let-7 microRNA family, suggesting a possible function 
of  IMP1 in protecting MYC mRNAs from microRNA 
silencing. This was previously proposed as a mechanism 
for the stabilization of  the BTRC (beta-transducin re-
peat containing E3 ubiquitin protein ligase) mRNA by 
IMP1[183,184].

Not only RNA-binding protein can influence miRNA 
function, but reciprocal action has already also been 
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Figure 2  Models of RNA binding protein and miRNA interplay targeting the 
same mRNA. A, B: Competitive interaction. A: RBP stabilizes the secondary struc-
ture in 3’UTR, and prevents miRNA binding; B: RBP competes with miRNA for the 
same binding site; C, D: Cooperative interaction; C: RBP facilitates miRNA function 
by opening secondary structure in 3’UTR and liberating its binding site; D: RBP 
directly interacts with RISC (RNA-induced silencing complex) complex, stabilizing 
binding of the latter. RBPs: RNA binding proteins; 3’UTR: 3’-untranslated region.
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documented in the literature. Some miRNAs can affect 
the function of  RNA binding protein. For example, in-
teraction of  mir-16 (a member of  the mir-15/16 family 
of  miRNPs) and an ARE-binding protein TTP (tristet-
raprolin) has been shown to occur through association 
with AGO/eiF2C family members. Mir-16 assists TTP in 
targeting ARE, which appears to be an essential step in 
ARE-mediated mRNA degradation[185].

From all of  these examples, one can see that interac-
tion among factors binding to 3’UTR brings a new level 
of  complexity to the mechanisms of  action of  these fac-
tors and their influences on cancer transformation. It is 
becoming clear that to understand the true picture of  the 
post-transcriptional control of  certain genes via 3’UTR, 
especially that involved in cancer transformation, one 
needs to take into account all proteins and miRNAs bind-
ing to their 3’UTRs.

APPLICATION OF 3’UTR-BINDING 
FACTORS TO CANCER DIAGNOSIS AND 
TREATMENT
From the very early investigations that suggested 
miRNA involvement in cancer, scientists began to 
think about using it as a tool for cancer diagnosis and 
therapy. A number of  studies have been initiated utiliz-
ing miRNA expression profiling to determine markers 
for diseases. An early study comparing a limited number 
of  available miRNAs in cancer and normal tissues drove 
the conclusions that miRNAs expression signatures are 
able to classify tumors based on the development lin-
eage and the differentiation state, suggesting miRNAs 
as a potential biomarker[14]. Following works used the 
miRNA expression profile to define a number of  nor-
mal and cancerous tissues from thyroid, kidney, bladder, 
liver etc[186-193]. Furthermore, miRNA profiling has also 
been used to classify tumor subtypes in breast cancer in 
development[194,195]. Mir-342 is differentially expressed in 
breast cancer subtypes with high expression in Luminal 
B-type tumors and decreased expression in therapeu-
tically difficult estrogen receptor/human epidermal 
growth factor receptor 2-negative tumors[196]. This obser-
vation suggested that select miRNAs expression could 
differentiate tumor subtypes that can be more sensitive 
or resistant to particular treatments.

Radiation therapy (RT) is one of  the most often used 
procedures in cancer treatment; however, not all patients 
respond well to it. So, it is very important to develop 
markers that can predict a patient’s response to RT. MiR-
NA profiling has a big potential for this type of  diagnosis.

One of  the first reports identifies the let-7 family for 
its role in modulating sensitivity for RT in lung cancer[197]. 
It has been demonstrated that over-expression of  let-7 
promotes radio-sensitivity while knockdown increases 
resistance both in vitro and in vivo. Mir-181a has been 
identified as an important miRNA for radio-sensitivity 
in glioma cells. Transient over-expression of  miR-181a 
prevented radio-sensitivity that correlated with decreased 

quantities of  Bcl-2, an anti-apoptotic protein[198]. Simi-
larly, over-expression of  mir-451 in colorectal cancer cell 
lines decreases proliferation and increases RT sensitivity 
of  colorectal cancer cells[199].

Chemotherapy is another widely used treatment in 
cancer therapy. The miRNA profile also has a big poten-
tial as a marker for chemo-sensitivity. Inhibition or intro-
duction of  some miRNAs to certain cancers can improve 
their chemo-sensitivity. Inhibition of  mir-21 sensitizes 
U251 glioma cells to etoposide and glioma in mice to tu-
mor necrosis factor-related apoptosis, inducing the ligand 
S-TRAIL (TNF-related apoptosis-inducing ligand)[200-202]. 
Mir-451 is downregulated in the glioblastoma stem cell 
population. Reintroduction of  mir-451 in combination 
with the frequently used glioblastoma treatment imatinib 
inhibits the growth of  glioblastoma stem cells and the 
formation of  neurospheres[203].

Mir-122 was shown to be downregulated in hepa-
tocellular carcinoma (HCC) cells, which promotes RT 
resistance as well as growth, proliferation and metasta-
sis[204]. Insulin growth factor 1 tyrosine kinase receptor is 
targeted and suppressed by miR-122 in normal liver cells. 
However, depletion of  mir-122 in HCC increases the 
IgfIR level. Reintroduction of  mir-122 in HCC promotes 
sensitivity to the tyrosine kinase inhibitor sorafenib[204].

In colorectal cancer, a number of  miRNAs have been 
associated with predicting the response to nucleoside 
analogs. Mir-143 is downregulated in colon cancer. It tar-
gets NF-kB, Bxl-2 and ERK5 and has been shown to in-
crease sensitivity to fluorouracil in HCT-166 colon cancer 
cell lines[205]. In rectal cancer, mir-125b and mir-137 were 
associated with poor response to capecitabine, a pro-
drug that is enzymatically converted to fluorouracil[206]. 
In colon cancer, mir-519c targets and suppresses ATP-
binding cassette sub-family G member 2 (ABCG2) in cell 
lines that are sensitive to mitoxantrone, whereas mir-519c 
inhibition increases the ABCG2 level and chemoresis-
tance. In the ABCG2 resistant cell line, mRNA possess a 
shortened 3’UTR, which results in the loss of  a mir-519c 
target site and a high-level of  ABCG2 protein[207].

All these examples clearly show that miRNA profil-
ing of  each cancer could provide useful information for 
choosing the right treatment strategy. Few bio-pharma-
ceutical companies are working on developing miRNA-
profiling platforms for more detailed identification of  
cancer subtypes that could improve recommendation of  
treatment. There are more than 100 ongoing trials incor-
porating miRNA as biomarkers underway in various bio-
pharmacological companies.

Direct miRNA therapeutics, the fundamental prin-
ciple of  miRNA therapy, involves either directed silenc-
ing or reduction in tumor-promoting miRNAs versus 
enrichment of  tumor suppressive miRNAs. In vivo, these 
approaches include genetically engineered animals and 
different ways of  delivery, such as viral vectors, nanopar-
ticle-based delivery, mimics and antimiRs. Targeting 
miRNA for suppression through the use of  antimiRs is 
perhaps the most promising model. Through comple-
mentary binding to the target miRNA (working strand), 
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these molecules can repress the action of  select miRNAs.
To improve stability and target specificity, investiga-

tors have developed various modifications. Three types 
of  modification currently give the most promising results: 
replacement of  2-OH residues by 2’-O-methyl modified 
oligonucleotides, 2’-O-methoxyethyl and locked nucleic 
acid. In addition, conjugation of  cholesterol may be used 
to improve target specificity[208].

Sponge is another tool for RNA-silencing. By having 
multiple target binding sites, sponges essentially compete 
with target mRNA for miRNA occupancy, thus decreas-
ing binding miRNA to its real target[209].

To target a few miRNAs involved in the same cancer 
formation, investigators started using tiny 8-mer locked 
nucleic acids with a phosphorothioate backbone to en-
hance the stability level[210]. They were shown to inhibit 
families of  miR-221/222 and let-7 with high specificity.

Viral vector-based delivery systems, including ad-
enoviral, retroviral and lentiviral systems provide some 
advantages. For example, lentiviral let-7 delivery has been 
successfully used in murine models of  lung cancer[32]. 
Several nanoparticles with lipid-based formulations were 
perhaps the most effective in delivery while minimizing 
toxicity. Lipid emulsions have been used to deliver miR-
NAs in lung cancer and lymphoma[211-213].

In spite of  big efforts, only mir-122 has successfully 
reached the clinical trial in targeted therapy[214,215]. The 
systematic delivery of  antimiR-122 could reduce the 
hepatitis C virus (HCV) viral load chimpanzee model of  
chronic HCV infection with minimal toxicity[216]. San-
taris Pharma conducted a human phase Ⅱa trial safety 
antiviral function using miravirsen (a locked nucleic acid-
modified miR-122 antagonist).

RNA binding proteins similarly can be used as mark-
ers for proper cancer diagnostics, leading to better treat-
ment selection. For example, IMP3 over-expression has 
been associated with distinct cancer types. Several studies 
have suggested IMP3 as an important marker for poor 
prognosis in cancer[217,218]. Moreover, it was demonstrated 
that IMP3 promotes cell growth, proliferation and re-
sistance to ionic irradiation in an IGF2-dependent man-
ner[219,220]. Since CPEB4 was found to be a key protein for 
pancreatic cancer and glioblastoma development, one can 
try to apply siRNA-dependent direct down-regulation 
of  CPEB4 protein in this type of  tumor using delivery 
methods that are discussed in this chapter.

In conclusion, 3’UTRs of  human mRNAs contained 
many cis-elements that bind trans factors and are impor-
tant for the development of  various diseases, including 
cancer. Additional work is required to identify the com-
plete set of  3’UTR cis-elements and the trans-regulatory 
factors that interact with them and to determine func-
tional consequences of  these interactions and their role 
in cancer transformation. Powerful transcriptome-wide 
computational and experimental methods are now be-
ing used to address these questions. Along with lower-
throughput reductionist approaches, they should move us 
closer to a system biology understanding of  how 3’UTRs 
contribute to gene regulation during cancer transforma-

tion. This will allow developing new, more powerful 
drugs in cancer therapy.
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