
of transcription 5, promoting the epithelial-mesenchymal 
transition, and upregulating stemness regulators such 
as Notch, Wnt and the Sex determining region Y-box 
2/octamer binding transcription factor 4/Nanog signaling 
axis. In this review we will summarize the major signaling 
pathways that regulate cancer stem cells in breast cancer 
and describe the effects that adipocyte secreted IL-6 and 
leptin have on breast cancer stem cell signaling. Finally 
we will introduce a new potential treatment paradigm of 
inhibiting the adipocyte-breast cancer cell signaling via  
targeting the IL-6 or leptin pathways.
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Core tip: We discuss the relationship between adipocytes 
in the microenvironment and breast cancer cells. We 
emphasize the role of adipocyte-secreted leptin and 
interleukin-6 in inducing breast cancer cell epithelial-
mesenchymal transition and activating stemness pathways. 
Finally we summarize possible microenvironmental 
therapeutic targets and the potential role of non-coding 
RNAs in adipocyte-breast cancer interactions.
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INTRODUCTION
Breast cancer occurs through the accumulation of 
genetic and epigenetic changes, activating oncogenes 
and silencing tumor suppressors in the mammary 
ductal or lobular tissues. Ductal carcinomas make up 
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Abstract
Signaling within the tumor microenvironment has a critical 
role in cancer initiation and progression. Adipocytes, one 
of the major components of the breast microenvironment, 
have been shown to provide pro-tumorigenic signals that 
promote cancer cell proliferation and invasiveness in vitro  
and tumorigenicity in vivo . Adipocyte secreted factors 
such as leptin and interleukin-6 (IL-6) have a paracrine 
effect on breast cancer cells. In adipocyte-adjacent 
breast cancer cells, the leptin and IL-6 signaling pathways 
activate janus kinase 2/signal transducer and activator 
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approximately 85% of diagnosed breast cancers, and 
are the focus of this review[1]. Ductal tumors progress 
linearly beginning as atypical hyperplasia that grow 
into ductal carcinoma in situ (DCIS) lesions which later 
acquire malignant phenotypes and become invasive 
ductal carcinomas[2]. The final stage of breast cancer 
involves dissemination of primary tumor cells and 
colonization of distant tissues by metastatic tumor 
cells. 

Gene expression profiling has been used to identify 
molecular subtypes of breast cancer with different 
prognosis and treatment responses. Luminal A and B 
both express estrogen (ER) and progesterone receptors 
(PR), differing primarily in their proliferation kinetics. 
Luminal subtype breast cancers comprise the majority 
of tumors and are among the best prognosis, in part 
due to availability of antiestrogen therapies. Human 
epidermal growth receptor breast cancers overexpress 
or amplify HER2 and respond to targeted anti-HER2 
therapies. Basal-like breast cancers are frequently 
triple-negative (ER-/PR-/HER2-), often harbor P53 
mutations, and are aggressive with poor prognosis. 
A newly described molecular subtype, claudin-low 
breast cancers, also do not express ER and PR, but are 
identified through their characteristic lack of cell-cell 
adhesion molecules (claudins) and basal cytokeratins. 

White adipose tissues account for approximately 80% 
of the volume of the adult breast, and are composed of 
a heterogeneous collection of cells including adipocytes, 
fibroblasts, capillaries, immune cells, and extracellular 
matrix. It was long believed the primary function of 
adipose tissue was energy storage; in fact stromal 
adipose is a complicated endocrine organ. Adipose 
tissues produce a wide variety of adipokines and 
signaling molecules that play numerous roles in breast 
tumor formation and progression[3]. This relationship is 
cemented by a well-established link between obesity and 
breast cancer. Obesity is a major risk factor for breast 
cancer development and patient survival, with a 33% 
increase of cancer mortality in obese patients[4]. The 
majority of the mammary microenvironment consists 
of adipocytes and adipocyte precursors. Mesenchymal 
stem cells differentiate into adipocytes through the 
two stages of adipogenesis, driven by transcription 
factors peroxisome proliferator-activated receptor γ 
and the C/EBP family. Initially mesenchymal stem cells 
commit to the adipocyte lineage forming preadipocytes, 
which become mature adipocytes through terminal 
differentiation[5]. Both preadipocytes[6] and mature 
adipocytes increase breast cancer growth, with marked 
effects on migration and the colony forming ability 
of breast cancer cells. Moreover, cancer associated 
adipocytes undergo phenotypic changes, forming a more 
supportive tumor niche[7]. Identifying the mechanisms of 
this relationship could lead to novel targets for prevention 
and treatment of breast cancer. 

The standard of care for breast cancer is a combination 
of surgery, radiation and chemotherapy. Treatment 

success varies depending on molecular subtype of the 
tumor, and additional adjuvant and targeted therapies 
are available. While adjuvant hormonal therapies 
such as Tamoxifen are effective for ER+ patients, and 
targeted therapies such as the monoclonal antibody 
Trastuzumab are effective for HER2+ patients, there 
are no targeted treatments available for patients with 
basal-like or claudin-low breast cancer[8]. Additionally, 
drug resistance is a major factor in the treatment 
failure of all molecular subtypes. One suspected culprit 
of resistance is cancer stem cells. The cancer stem 
cell model describes an intratumoral subpopulation of 
cancer cells that have unregulated stem cell properties, 
primarily self-renewal and multipotent differentiation, 
which drive tumorigenesis and tumor heterogeneity[9]. 
First isolated from AML cell populations by using flow 
cytometry to sort cells based on the molecular markers 
CD34+ CD38-[10], cancer stem cells have been identified 
in breast cancer as the CD44+ CD24-/low ALDH1+ cell 
population[11,12]. Cancer stem cells are resistant to 
traditional cancer therapies due to their quiescence, 
DNA repair capabilities and overexpression of drug 
efflux pumps[13]. 

In part through the activation of cancer stem cell 
signaling, the tumor microenvironment plays a critical role 
in the development and progression of breast tumors. 
Targeting the microenvironment has the potential to 
inhibit cancer stem cells, preventing drug resistance 
and relapse across all molecular subtypes. This is 
an attractive therapeutic option due to the relative 
genetic stability and the reduced risk of resistance 
of the microenvironment[14]. Therapies targeting the 
microenvironment have been successful in multiple 
myeloma through targeting multiple myeloma cell-
bone marrow interactions using bisphosphonates[15] and 
bortezomib[16]. Aromatase inhibitors, a recent success 
story in breast cancer, target post-menopausal estrogen 
produced by extragonadal aromatization in stromal cells 
as well as breast tissues and tumors[17].

In this review we will focus on the relationship bet
ween breast cancer cells and mature adipocytes, with 
emphasis on two of the best studied adipocyte secreted 
signaling molecules, leptin and interleukin-6 (IL-6). These 
molecules promote breast cancer progression through 
activation of the epithelial-mesenchymal transition and 
cancer stem cell signaling in breast cancer cells, and are 
potential novel microenvironmental targets.

BREAST CANCER STEM CELL SIGNALING
A number of signaling pathways that have fundamental 
roles in the regulation of self-renewal and differentiation 
of adult and embryonic stem cells have been linked to 
breast cancer stem cells. Adipocyte secreted leptin and 
IL-6 can activate many of these pathways, dysregulating 
self-renewal and differentiation within breast cancer 
cells. Targeting these signaling pathways within the 
microenvironment may be an important method of 
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targeting breast cancer stem cells. While numerous 
stemness pathways have been identified, we will focus 
on three of the best characterized: the Notch, Wnt and 
octamer binding transcription factor 4 (OCT-4)/ Sex 
determining region Y-box 2/Nanog pathways.

Notch
The Notch receptor is an important developmental 
mediator of self-renewal and regulator of cell fate 
decisions in many cell types, including within the 
mammary gland[18]. When ligand is bound, ADAM and 
γ-secretase proteases cleave the Notch receptor. The 
cleavage product is transported to the nucleus, where 
it activates gene transcription. In both basal like and 
ER+/PR+ breast cancer cell models Notch activates 
histone deacetylase SIRT2, which deacetylates and 
activates ALDH1A1, and increases mammosphere 
formation[19]. Inhibition of Notch signaling using a 
neutralizing antibody is sufficient to significantly reduce 
mammosphere formation of DCIS cells in vitro, indicating 
a crucial function in breast cancer stem cell signaling[20]. 
Constitutive Notch activation is a common feature of 
early stage breast cancer[20], and high levels of Notch 
are correlated with poor breast cancer prognosis[21]. 

Wnt 
The Wnt signaling pathway is crucial for embryonic 
development, and is involved in cell fate determination, 
proliferation and cell migration. When Wnt ligand is 
present, it binds the Frizzled receptor, allowing β-catenin 
to be transported to the nucleus and activate gene 
transcription[22]. In the absence of Wnt, β-catenin is 
targeted for proteasomal degradation. Wnt pathway 
target genes such as LEF1 and AXIN2 are upregulated 
in breast cancer cells, especially in breast cancer stem 
cell populations[23]. Wnt signaling is important for breast 
cancer stem cell self renewal, when treated with Wnt 
inhibitor DKK1, ER+ and ER- breast cancer cells had 
reduced mammosphere formation[23]. Unregulated 
activation of the Wnt pathway can occur via mutations 
in downstream Wnt target genes, β-catenin and over
expression of the Wnt ligand. Secretion of Wnt ligand 
from cells in the microenvironment has a paracrine effect 
on cells on the invasive edge of tumors, increasing their 
proliferative and invasive abilities[24]. 

Oct-4/SOX2/Nanog signaling axis
Oct-4 is a member of the POU transcription factor 
family, and is critical for self-renewal of undifferentiated 
cells. It is normally only expressed in embryonic 
stem and embryonic germ cells, and is used as a 
marker for undifferentiated cells. Oct-4 is necessary to 
maintain stem cells in a pluripotent state[25]. Through 
interaction with HMG domain protein SOX2, Oct-4 
activates transcription of several genes in pluripotent 
cells, including Fgf4, Utf1, Fbx15, and the genes 
encoding themselves, Sox2 and Pou5f. SOX2 and Oct-4 
synergy also activates transcription of key pluripotent 
embryonic regulator Nanog[26], a homeodomain 

protein that maintains the primitive ectoderm in the 
embryo[27]. Nanog is expressed in cells that are able to 
form pluripotent stem cell lines, and plays a key role 
in inhibition of differentiation in these cells, as well as 
activation of self-renewal. Nanog also activates Oct-4 
transcription, although it is not necessary for Oct-4 
expression[28]. 

These key pluripotency transcription factors share 
numerous targets, and they are essential to the trans
criptional pathways that regulate embryonic stem cell 
identity[29]. Therefore it is not surprising that all three 
are frequently activated in breast cancer stem cells[30-32]. 
Overexpression of Nanog enhances ER+/PR+ breast 
cancer cell ALDH1 expression and drug resistance[30], as 
well as invasiveness and mammosphere formation[33]. 
Nanog overexpression also increases tumor formation in 
vivo[33]. SOX2 is highly expressed in early stage breast 
tumors, and knockdown prevents mammosphere 
formation as well as delaying tumor formation in vivo[32]. 
OCT-4 overexpression in healthy primary breast tissue 
cultures generated cells capable of tumor initiation[34]. 

EPITHELIAL-MESENCHYMAL 
TRANSITION
Through the epithelial-mesenchymal transition (EMT), 
epithelial cells lose cell polarity, cell-cell adhesion and 
undergo cytoskeletal reorganization gaining a motile, 
invasive phenotype. In healthy cells, EMT plays a 
critical role in development, embryogenesis and wound 
healing through the reorganization of tissues and 
germ layers[35]. The classic markers for EMT are loss 
of E-cadherin, a protein necessary for cell adhesion, 
and increase in N-cadherin. Additional mesenchymal 
proteins include smooth-muscle actin, vimentin and 
fibronectin. Change in expression of these markers is 
used to characterize EMT in vitro[36]. 

The tumor microenvironment produces EMT signaling 
molecules, promoting the mesenchymal phenotype 
necessary for cancer progression and metastasis. Cells 
in the inflamed microenvironment secrete transforming 
growth factor-β (TGF-β), stimulating Snail and Slug 
which transcriptionally repress E-cadherin[37]. Hypoxia 
in the microenvironment activates HIF-1, stimulating 
transcription of EMT activating protein Twist. In ER+ breast 
cancer cells, Twist is activated by locally produced IL-6 
through signal transducer and activator of transcription 
3 (STAT3) signaling[38]. EMT is also tightly regulated by 
microRNA signaling, most notably through repression of 
E-cadherin activators by the miR-200[39] and miR-34[40] 
families. miR-200 is significantly downregulated in breast 
cancer, a possible mechanism of EMT activation[41]. Loss 
of E-cadherin also increases the tumorigenicity of cancer 
cells, and is correlated with increased cancer grade[37]. 

Cancer stem cells and cells that have gone through 
EMT share many common characteristics. Breast cancer 
stem cells have protein expression consistent with EMT, 
decreased E-cadherin and increased N-cadherin and Slug 
expression[42]. Furthermore, non-tumorigenic immortalized 
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human mammary cells that have undergone EMT are 
enriched for cancer stem cell markers such as CD44+/
CD24- and signaling proteins SOX2, Nanog and octamer 
binding transcription factor 4 (OCT4)[42]. When mammary 
epithelial cells transformed through HER2 overexpression 
undergo EMT in vitro, the proportion of cancer stem cells 
is significantly increased. Human mammary epithelial cells 
transformed with a V12H-Ras oncogene overexpressing 
EMT proteins Twist or Snail were able to form tumors in 
vivo from significantly fewer cells than control transformed 
cells[42]. EMT is an important process for cancer pro
gression and metastasis, generating invasive cells with 
a cancer stem cell-like phenotype, however the exact 
relationship between EMT and cancer stem remains to be 
determined.

ADIPOSE SIGNALING
Adipose tissue is an amalgamation of adipocytes, 
fibroblasts, stromal precursors and immune cells. Adipose 
signaling regulates fatty acid metabolism, homeostasis, 
and insulin signaling via adipocyte-secreted factors such 
as adiponectin and leptin. Adipose tissue has significant 
immune and inflammatory signaling functions involving 
adipokines such as IL-6 and tumor necrosis factor-α 
(TNF-α). While IL-6 and TNF-α are classically produced by 
the non-adipocyte members of the adipose tissue, it has 
been demonstrated that cancer associated adipocytes 
secrete IL-6, one of the primary cytokines involved in 
adipocyte-tumor cell interaction.

The stromal microenvironment plays a critical role 
in breast cancer formation and progression, however 
the pro-tumorigenic abilities of mature adipocytes 
have only been recognized in the past 10 years[7]. In 
order to isolate the effects of cytokines from those 
of adipocyte produced estrogen, it is important to 
demonstrate the effects in both ER+ and ER- model 
systems. Using conditioned media from adipocyte 
culture plates, both ER+ and ER- breast cancer cells had 
significant increases in proliferation and survival[43]. 
Crosstalk between adipocytes and breast cancer cells 
leads to change in phenotype of the adipocyte cells 
in addition to the changes seen in breast cancer cells. 
Mature adipocytes co-cultured with breast cancer cells 
exhibit delipidation, loss of terminal differentiation 
markers and overexpression of inflammatory cytokines 
and adipokines. The expression of these signaling 
molecules plays a critical role in the tumor supporting 
functions of adipocytes[7] (Figure 1). Two of the best-
characterized signaling molecules in the breast cancer-
adipocyte relationship are leptin and IL-6.

Leptin in the tumor microenvironment
Leptin is a 16 kd protein encoded by the ob gene, first 
discovered in ob/ob mutant mice that exhibit an obese 
phenotype due to the lack of satiety. The classical 
function of leptin is appetite control. When fat stores 
reach a certain level, leptin is secreted, and activates 

leptin receptors (OB-R) in the brain to indicate satiety. 
While OB-R is found at highest concentrations in the 
hypothalamus, it has been identified in almost all 
tissues. Levels of circulating leptin directly correlate 
with total fat mass, as larger fat cells produce more. 
Leptin signaling is dysregulated in obese subjects, with 
up to seven times higher leptin secretion compared to 
lean[44].

Leptin receptor OB-R is a member of the class I 
cytokine receptor family. Different isoforms of the OB-R 
protein are able to activate several classical cytokine-
signaling pathways, including the JAK/STAT, PI3K 
and MAPK pathways. Through these pathways leptin 
likely has significant, diverse effects on physiology and 
disease, many of which are not fully understood[45].

Leptin signaling is a significant factor in the adipocyte-
tumor signaling relationship. OB-R mRNA expression 
is highly upregulated in patient tumors of all breast 
cancer subtypes, with little to no expression seen in 
normal epithelial tissue[46]. Leptin signaling enhances 
tumor formation, proliferation and invasion by activation 
of cancer stem cell signaling pathways Notch and Wnt, 
and by activating numerous oncogenic pathways, 
including HER2, AKT, STAT3 and NFkB. Both leptin and 
OB-R are significantly upregulated in breast cancer 
stem cells, which exhibit increased sensitivity to 
leptin signaling due to higher receptor expression[47]. 
In ER+/PR+ breast cancer cells, STAT3 activation via 
leptin signaling also increases expression of chaperone 
binding protein Hsp90, resulting in upregulation of the 
HER2 oncogene. shRNA knockdown of STAT3 inhibited 
leptin induced HER2 upregulation[48]. 

Silencing of OB-R using shRNA in triple negative 
breast cancer cells inhibited expression of Nanog, SOX2 
and OCT4. These cells had reduced cell proliferation and 
mammosphere formation, indicative of a reduction in self-
renewal. Additionally, OB-R silenced cells went through 
mesenchymal to epithelial transition, with increased 
E-Cadherin and decreased vimentin expression[49]. 

Through the use of two mouse models, leptin-
deficient ob/ob mice and OB-R deficient db/db, the 
role of leptin in tumorigenesis was confirmed in vivo. 
Both models form early onset obesity with nearly 
identical characteristics, however ob/ob mice have 
no circulating leptin, whereas db/db have high levels 
of leptin. Using tumors resected from MMTV-WNT-1 
transgenic mice, a single cell suspension was injected 
into db/db, ob/ob or wild type mice. Tumor growth 
was detected earlier in db/db compared to wild type, 
and tumor volume was up to 8 times that of the WT 
tumors. Ob/ob mice formed tumors at a significantly 
lower rate, with volumes similar in size to the wild 
type tumors. Through the use of a limiting dilution 
assay, the authors demonstrated that injection tumor 
cells from wild type mice resulted in 100% secondary 
tumor growth formation, whereas the same number of 
cells from leptin deficient tumors were unable to form 
secondary tumors[50]. This provides in vivo evidence 
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of the necessity of leptin for breast cancer initiation 
and progression as well as implicating its role in breast 
cancer stem cell self-renewal.  In triple-negative breast 
cancer cell cultures, OB-R activation increases levels 
of stem cell regulator Notch[21]. Inhibition of leptin 
signaling decrease expression of both Wnt and Notch 
in carcinogen induced mouse mammary tumors[51]. 

It is clear that leptin plays a significant role in 
activation of breast cancer stem cell signaling. Leptin 
activates several stemness pathways including the 
OCT-4/SOX2/Nanog axis, Notch signaling and Wnt/
β-catenin signaling. Through these pathways leptin 
increases self-renewal, tumor initiation and ALDH1 
expression, indicating an important role in adipocyte 
mediated pro-tumor signaling.  

IL-6 in the tumor microenvironment
Adipose tissue is a significant source of IL-6, producing 
approximately one third of IL-6 found in the plasma. 
In healthy adipose tissue, non-adipocyte members 
produce the majority of adipose IL-6[44]. There are 
seven members of the IL-6 family; IL-6, oncostatin 
M (OSM), IL-11, leukemia inhibitory factor (LIF), 
cardiotrophin-like cytokine (CLC), ciliary neurotrophic 
factor (CNTF) and cardiotrophin-1 (CT-1). There are 3 
plasma membrane receptors, gp130, LIFR and OSMR, 
which activate the JAK/STAT, MAPK and PI3K pathways. 
Through these pathways IL-6 cytokines activate genes 
involved in inflammation, differentiation, survival, 
apoptosis and proliferation[52]. Within the adipose tissue, 
IL-6 stimulates glucose uptake, and activates glucose 
and fatty acid oxidation as well as insulin release[53].

Serum level of IL-6 is a negative prognostic marker 
in breast cancer patients[51,54]. While adipocyte secretion 
of IL-6 is low, proximity with tumor cells upregulates 
IL-6 expression. As mature adipocytes are the most 
common cells in tumor stroma, the combined amount of 

adipocyte IL-6 may have a significant impact on tumor 
cells[7]. IL-6 stimulates invasion in both ER+ and ER- 
breast cancer cells, similar to the phenotype observed 
in adipocyte/breast cancer cell co-culture[7]. When 
ER+/ER-breast cancer cells were treated with adipocyte-
conditioned media, addition of an IL-6 blocking antibody 
significantly inhibited the pro-invasive effect[7]. However, 
depletion of IL-6 does not completely eliminate the 
invasive effects, supporting the model that multiple 
secreted molecules are important in the adipocyte-
breast cancer cell interaction[55].

IL-6 activates transcription of OCT4 though the janus 
kinase 2 (JAK2)/STAT3 pathway, inducing EMT[38]. In 
triple negative breast cancer cells, there is higher IL-6/
JAK2/STAT3 pathway activity in CD44+CD24- cancer 
stem cells compared to the differentiated CD44+CD24+ 
population[56]. Addition of IL-6 to culture media incr
eased the proportion of cancer stem cells in triple 
negative breast cancer cell lines as well as in primary 
cells isolated from triple negative tumors[57]. Both breast 
cancer stem cells and mesenchymal breast cancer 
cells secrete up to 1000-fold more IL-6 than non-stem 
epithelial breast cancer cells, indicating the presence of 
an autocrine positive feedback loop[58].

FUTURE WORK AND THERAPEUTIC 
IMPLICATIONS
There is significant evidence that both adipocyte 
secreted IL-6 and leptin have pro-EMT activity, as 
well as promoting self-renewal and cancer stem 
cell signaling, however, these are just two of many 
signaling factors produced by adipocytes. Complete 
characterization of the adipocyte secretome in the 
breast cancer microenvironment is an important next 
step in the investigation of the adipocyte-breast cancer 
signaling relationship. Dirat et al[7] have demonstrated 
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Figure 1  Adipocyte secreted leptin and interleukin-6 
has a paracrine effect on nearby breast cancer cells. 
Through activation of the JAK2/STAT3 pathway, stemness 
factors SOX2 and OCT4 as well as EMT factors Notch 
and Wnt are transcribed. This leads to increased cancer 
cell proliferation and self-renewal entry into EMT and 
increased expression of leptin receptor OB-R. IL-6: 
Interleukin-6; OB-R: Leptin receptor; JAK2: Janus kinase 
2; STAT3: Signal transducer and activator of transcription 
3; SOX2: Sex determining region Y-box 2; OCT4: 
Octamer binding transcription factor 4; EMT: Epithelial 
mesenchymal transition.
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the phenotypic plasticity of adipocytes in culture with 
breast cancer cells, further description of the exact 
mechanisms and consequences of cancer-associated 
adipocytes will contribute significantly to our knowledge 
of the tumor microenvironment. While the breast cancer 
microenvironment is heterogeneous, adipocytes are 
the primary constituent. Blocking adipocyte-cancer cell 
interactions has the potential to inhibit cancer stem cell 
activity and prevent tumor initiation/progression. 

Conditioned media from adipocytes treated with 
Genistein and Sulforaphane has been shown to inhibit 
mammosphere formation of breast cancer cells[59,60].  
Furthermore, there is already a clinically available anti-
IL-6 antibody, Tocilizumab. Developed as a treatment 
for inflammatory rheumatic diseases, Tocilizumab may 
be useful for inhibiting adipocyte/breast cancer cell IL-6 
signaling[61]. There also is significant interest in targeting 
leptin signaling for treatment of breast cancer. Leptin-
signaling inhibition has anti-tumor effects in both ER+, 
ER- and triple negative in vitro and in vivo models of 
breast cancer[62,63]. OB-R inhibitors, including leptin 
muteins[64], leptin peptide modulators[65], antibodies[66] 
and nanobodies[67] are under development, but have 
yet to enter clinical trials.

Future studies will reveal if other adipocyte-derived 
factors contribute to tumorigenesis. There are many 
adipocyte-secreted cytokines, with only a few currently 
investigated. It is likely that non-coding RNAs such as 
miRNAs and long non-coding RNAs (lncRNAs) are also 
involved in stromal-tumor cell signaling. Microvesicles 
such as exosomes mediate paracrine and endocrine 
transfer of miRNA and lncRNA, as well as proteins 
including TGF-β[68]. Targeting exosome mediated 
signaling may provide unique methods of inhibiting the 
adipocyte-breast cancer relationship. 

miRNAs dysregulation is seen in almost all cancers[69] 
affecting nearly every hallmark of cancer[70]. Depending 
on the protein targeted, miRNAs act as either oncogenes 
or tumor suppressors, and miRNAs have a direct role in 
breast cancer stemness and progression[71,72]. Recently 
miRNAs with specific roles in adipogenesis and obesity 
have been identified[73]. There is differential miRNA 
expression in the adipocytes of obese mice compared 
to lean, including downregulation of miR-200 family 
microRNAs[74]. The miR-200 family inhibits epithelial 
mesenchymal transition through targeting of key 
EMT regulators such as ZEB1, SIP1[75] and SIRT1[41]. 
miR-200c expression is suppressed by IL-6, another 
potential mechanism for adipocyte-mediated increase 
in EMT signaling[76]. MiRNAs have important functions in 
both adipocytes and breast cancer cells, and may serve 
as signaling molecules or modify cancer cell interactions 
in the tumor microenvironment.  

Current research on lncRNAs is rapidly changing 
the current paradigm of cell signaling. Initially found to 
have important regulatory roles during development 
and stem cell biology, lncRNAs may be involved in 
dysregulated signaling associated with transformation. 
lncRNA have diverse roles, and function during nearly 

all levels of gene expression. Differential lncRNAs 
expression may be used to predict patient outcomes or 
targeted to disrupt cell signaling[77]. Through profiling 
of preadipocyte and adipocyte transcriptomes, lncRNAs 
that control adipogenesis were identified[78]. Dissection 
of lncRNA’s specific roles in adipocytes and breast 
cancer cells may provide new avenues of treatment.
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