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Abstract
Proteinaceous infectious particles (prions) are unique 
pathogens as they are devoid of any coding nucleic acid. 
Whilst it is assumed that prion disease is transmitted 
by a misfolded isoform of the cellular prion protein, the 
structural insight of prions is still vague and research 

for high resolution structural information of prions is still 
ongoing. In this review, techniques that may contribute 
to the clarification of the conformation of prions are 
presented and discussed.
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Core tip: Prions (proteinaceous infectious particles) 
are misfolded isoforms of cellular proteins that cause 
neurodegenerative diseases in mammals and humans. 
Several structural models are available for prions but 
a 3D-structure does still not exist. More structural 
information is demanded for the understanding of the 
conversion process and finally for the design of efficient 
therapeutic approaches. In this review, techniques that 
may contribute to the clarification of the conformation 
of prions are presented.
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INTRODUCTION
Prions are infectious proteins that cause fatal neuro­
degenerative diseases[1-5]. Rearrangements of the 
structure of the cellular prion protein (PrPC) are the key 
of infection. PrPC is characterized by a high α-helical 
content and conversion in a β-sheet rich conformer 
(PrPSC) transforms it into an infectious protein[6,7]. 
According to the “prion hypothesis” the protein itself 
is the causative agent of disease even though several 
cofactors that may influence the conversion process are 
discussed in the literature[2,8-12]. A 3D-structure of PrPSC 
does still not exist, albeit several structural models for 
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PrPSC are described[13]. Definite structural information 
about prions is indispensable for the understanding of 
the conversion process and eventually for the design of 
new therapeutic strategies.

In the present review, several techniques to as­
sess the conformation of prions are presented and 
discussed with a main focus on the application of 
Fourier-transform infrared spectroscopy. The intention 
of this mini-review article is to give an overview of 
current techniques used in prion research to elucidate 
the structure of prions. For details readers are referred 
to the literature cited in the text.

FOURIER-TRANSFORM INFRARED 
SPECTROSCOPY
Fourier-transform infrared (FTIR) spectroscopy was 
one of the fundamental techniques that had demons­
trated the high β-sheet content of PrPSC in contrast 
to PrPC[14-16]. This technique has several advantages 
compared to other analytical approaches. With FTIR 
spectroscopy protein samples can be analyzed (1) 
without labeling; (2) under native conditions; (3) with 
only minute amounts of material (in particular in case 
of micro-FTIR); and (4) in a dynamic process. Moreover 
results can be obtained within a very short time[16,17]. 
FTIR spectroscopy elucidates primarily the secondary 
structure of proteins and originates essentially from 
C=O stretching vibrations of the amide groups of the 
protein backbone. For the structural characterization 
of PrPSC the amide I band is the most useful infrared 
absorption band[18-20]. 

FTIR of proteins typically is performed in H2O, 
D2O or under dried conditions. For spectroscopic 
analyses the purity of sample material is of utmost 
importance[16,21]. This is particularly challenging when 
sample material has to be extracted from infected 
tissue and when the protein of interest is present in 
only small amounts. Improved purification protocols 
for the extraction of prions from tissue have been 
published and allowed us to analyze tiny amounts of 
sample material by micro-FTIR[16]. Micro-FTIR can 
be applied on dried protein samples using a FTIR 
spectrometer linked to an IR-microscope. This enables 
the performance of measurements on pure protein 
samples in the range of only a few nanograms.

Micro-FTIR has been shown to be an appropriate tool 
for the screening of different prion strains and in vitro 
generated prion protein (PrP)[16,17]. Particularly in case of 
in vitro generated PrP only very small amounts of prions 
are expected to be extractable. This could impede an 
analysis by other structure-sensitive techniques [e.g., 
circular dichroism (CD) spectroscopy]. We recently 
recorded spectra from PrPSC molecules generated by 
protein misfolding cyclic amplification (PMCA) using 
micro-FTIR[16]. PMCA mimics the conversion of PrPC 
to PrPSC in vitro[22,23]. Comparing spectra from native- 
and PMCA-derived PrPSC revealed structural differences 

of molecules before and after PMCA. This technical 
progress provides the possibility to analyze the 
influence of cofactors on the conversion activity and 
putative correlating structural rearrangements in future 
experiments. 

As mentioned above, micro-FTIR is also suitable 
to discriminate different prion strains[14,24,25]. In prion 
research, strains are defined as prion-isolates that, 
after inoculation into distinct hosts, cause disease with 
consistent characteristics, such as incubation period, 
distinct patterns of PrPSc distribution and spongiosis in 
the brain (Figure 1). A concrete example of use would 
be strain typing for chronic wasting disease (CWD)[17]. 
CWD is a prion disease occurring in cervids in North 
America and rapidly spreads among free ranging deer 
and elk[26,27]. To test whether and to which extent 
there are different strains for CWD in the environment 
or whether new strains emerge in the future, micro-
FTIR (with only 100 mg of infected tissue needed to 
obtain a sufficient amount of protein extract for FTIR 
analysis) can be applied. The use of small amounts 
of sample material allows the preparation of multiple 
samples within a short time. Spectra from CWD field 
samples collected in the past, present or future could 
be compared. As different strains can correlate with 
different zoonotic potentials a rapid structural scan by 
FTIR may be suitable for a proper risk assessment.

OTHER TECHNIQUES TO DETERMINE 
THE STRUCTURE OF PRIONS 
Electron microscopy analyses directly reveal the 
morphological difference between PrPC and PrPSC as 
the latter appears as amyloid fibrils[28,29]. Moreover, it 
is possible to distinguish between some prion strains 
due to their distinct morphological shape. Electron 
crystallography had a limited scope to predict general 
conformational features because prions tend to 
aggregate[30,31]. Atomic force microscopy (AFM) is used 
as an alternative technique that needs no staining of 
samples[16,32]. AFM can be combined with infrared- 
and Raman-spectroscopy suitable for site-directed 
sample characterization. Tip enhanced infrared- or 
Raman-spectroscopy principally allow measurements 
on defined positions within a prion fibril[33,34]. These 
techniques could be useful for the analyses of mixtures 
of prion fibrils (“quasi species”) and would allow a 
precise biochemical characterization of prions[17,35].  

The impact of specific amino acids on the prion 
conversion process can be determined by mutational 
analyses when subsequently tested in animal-, cell 
culture- or in vitro conversion assays[36-39]. By this 
means it could be demonstrated that specific amino 
acids accelerate or decelerate the conversion process 
and that the N-terminus is not essential for prion 
infectivity[40]. Limited proteolysis with Proteinase K is 
used to discriminate PrPC from PrPSC as the conversion 
in a β-sheet rich conformation (PrPSC) prevents the 
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C-terminus from degradation while the less structured 
N-terminus is cleaved off[41-46]. Limited proteolysis at 
different pH values, with rising amounts of protease 
or in the presence of chaotropic salts can give further 
structural information and may help to discriminate 
prion strains with different conformations.

Recombinant PrP can (after site-directed muta­
genesis) site-specifically be labelled with fluorophores 
or spin labels and then analyzed by fluorescence- or 
EPR spectroscopy, respectively. Such studies propose 
a parallel in-register β-sheet structure of PrP amyloids 
and enable the calculation of distances between specific 
residues within an amyloid fibril[11,47-49]. It has to be 
mentioned that misfolded recombinant PrP without the 
addition of cofactors usually lacks infectivity and may 
therefore not exactly represent the in vivo structure of 
PrPSC[11].

The exchange of hydrogen for deuterium ions and 
subsequent analysis by mass spectrometry allows the 
detection of unstructured and highly structured regions 
within PrP[50-52]. The C-terminal part of prions shows 
low exchange rates indicating a highly structured 
conformation[53].

While the above mentioned techniques reveal basic 
and to some extent indirect structural insights, high 
resolution structure information is needed to unders­
tand the conversion process of PrP. High resolution 
3D-structural data from X-ray fiber diffraction and NMR 
are available for PrPC but not for the complete PrPSC 

molecule. Because of the insolubility and the propensity 
to aggregate only parts of PrPSC are structurally resolved 
until now[54-57]. 

CONCLUSION
Misfolding of a cellular protein into an infectious 
isoform sharing the same primary structure is unique 
for prions. This phenomenon is currently discussed 
to be a general principle for other neurodegenerative 
diseases[58-60]. Prions lack a coding nucleic acid thus 
diagnosis and the detection of misfolded isoforms 
cannot be done by genetics but e.g., by structural 
characterization. 

A lot of structural models for PrPSC exist but as 
discussed recently by Requena and Wille “the results 
and/or their interpretation remain controversial”[61]. 
For a better understanding of the conversion of PrPC 
to PrPSC, more structural data from biochemical and 
biophysical experiments are required for PrPSC (Figure 
1). Therapeutic strategies that aim at the prevention 
of this misfolding process would benefit from such a 
progress. 
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Figure 1  Different conformations of the prion protein. In mammals and humans both isoforms of prion protein (PrP) [the cellular isoform (PrPC) and the misfolded 
isoform (PrPSC)] are encoded by the same gene (Ⅰ). PrPC is shown in green (Ⅱ). Under specific conditions PrPC can be transferred into a misfolded and then 
putatively infectious conformation (PrPSC). Prion strains can adopt different conformations (indicated by different symbols and colors). When a misfolded isoform 
of the prion protein becomes infectious it is characterized by specific features as incubation period, PrPSC-spreading, PrPSC-deposition and a distinct potential of 
infection. For structural analyses of misfolded prion proteins several methods are available. While FTIR, NMR and X-ray structure analyses provide information about 
the secondary structure as well as 3D-structural information (“direct”), limited proteolysis, fluorescence spectroscopy, EPR, H/D-exchange, cross-linking or mutational 
analyses reveal more “indirect” structural information that is focused on specific residues within the protein. FTIR: Fourier-transform infrared. 
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