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Abstract
Retroviral replication proceeds through the integration 
of a DNA copy of the viral RNA genome into the host 
cellular genome, a process that is mediated by the 
viral integrase (IN) protein. IN catalyzes two distinct 
chemical reactions: 3’-processing, whereby the viral 
DNA is recessed by a di- or trinucleotide at its 3’-ends, 
and strand transfer, in which the processed viral DNA 
ends are inserted into host chromosomal DNA. Although 
IN has been studied as a recombinant protein since 
the 1980s, detailed structural understanding of its 
catalytic functions awaited high resolution structures 
of functional IN-DNA complexes or intasomes, initially 
obtained in 2010 for the spumavirus prototype foamy 
virus (PFV). Since then, two additional retroviral intasome 
structures, from the α-retrovirus Rous sarcoma virus (RSV) 
and β-retrovirus mouse mammary tumor virus (MMTV), 
have emerged. Here, we briefly review the history of IN 
structural biology prior to the intasome era, and then 
compare the intasome structures of PFV, MMTV and RSV 
in detail. Whereas the PFV intasome is characterized by 
a tetrameric assembly of IN around the viral DNA ends, 
the newer structures harbor octameric IN assemblies. 
Although the higher order architectures of MMTV and 
RSV intasomes differ from that of the PFV intasome, they 
possess remarkably similar intasomal core structures. 
Thus, retroviral integration machineries have adapted 
evolutionarily to utilize disparate IN elements to construct 
convergent intasome core structures for catalytic function. 
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Core tip: This review examines the history of retroviral 
integrase structural biology and covers the currently 
available high-resolution structures of retroviral intasomes 
in detail. We in particular focus on the similarities and 
differences among the intasome structures of prototype 
foamy virus, Rous sarcoma virus and mouse mammary 
tumor virus. 
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INTRODUCTION
Retroviral replication requires the incorporation of the viral 
genetic information into the host cellular genome, which 
occurs via two main steps: (1) the reverse transcription 
of single-stranded viral RNA into linear double-stranded 
DNA; and (2) the integration of this DNA into a host 
chromosome. These steps occur in the context of two 
subviral nucleoprotein complexes: The reverse transcription 
complex (reviewed in[1]) and the pre-integration complex 
(PIC)[2], each of which consists of a variety of cellular 
and viral proteins including reverse transcriptase (RT) 
and integrase (IN)[3-7]. In the cytoplasm, RT mediates 
the synthesis of a linear viral DNA (vDNA) molecule that 
harbors a copy of the viral long-terminal repeat (LTR) at 
each end[8-10]. In the confines of the PIC, vDNA is trafficked 
toward the nucleus, where its integration into host cell 
target DNA (tDNA) is promoted by IN. Here, we discuss 
the current knowledge of IN structural determinants and 
intasome function, highlighting both key similarities and 
differences among the retroviruses. 

REACTIONS CATALYZED BY IN 
Retroviral IN performs two biochemically and temporally 
distinct bimolecular nucleophilic substitution (SN2) re
actions[11]: 3’-processing and strand transfer (Figure 1). 
During 3’-processing, a di- or trinucleotide is hydrolytically 
cleaved from each 3’ vDNA end[12-14], exposing reactive 
hydroxyl groups of invariant CA dinucleotides. These 
groups act as nucleophiles for subsequent strand 
transfer whereby the newly processed 3’ vDNA ends 
are covalently inserted into a major groove of tDNA in a 
staggered fashion. The product of the second reaction 
is an integration intermediate that is characterized by 
unjoined 5’ vDNA overhangs[15,16]. Following disassembly 
of the associated strand transfer complex (STC, Figure 
1), a DNA polymerase, 5’ flap endonuclease, and 
DNA ligase are required to fill in the single-strand gap 
regions in tDNA, excise 5’ vDNA overhangs, and join 
the vDNA 5’ ends to host DNA strands, respectively 
(reviewed in[17]). During this process, short target site 

duplications are generated, which flank the integrated 
provirus. Depending on the genus of retrovirus, the size 
of these target site duplications ranges from 4-6 base 
pairs (bp). Whereas spumavirus prototype foamy virus 
(PFV)[18,19] and lentivirus human immunodeficiency virus 
1 (HIV-1)[20,21] integration yield 4 bp and 5 bp target site 
duplications, respectively, mouse mammary tumor virus 
(MMTV)[22] and Rous sarcoma virus (RSV)[23,24] INs cleave 
tDNA phosphodiester bonds that are separated by 6 bp.

RETROVIRAL IN DOMAIN 
ORGANIZATION
Retroviral IN proteins consist of approximately 275-470 
amino acid residues. The INs to be discussed in detail in 
this review amount to 288 (HIV-1), 392 (PFV), 286 (RSV), 
and 319 (MMTV) residues[25-27]. Retroviral INs comprise 
three domains common to all genera: The N-terminal 
domain (NTD), the catalytic core domain (CCD), and 
the C-terminal domain (CTD)[28-32], which connect to one 
another via flexible linkers that vary in length across the 
viruses (Figure 2). The NTD adopts a helix-turn-helix fold 
and harbors two pairs of Zn2+-coordinating histidine and 
cysteine residues (HHCC motif), which are additionally 
conserved in retrotransposon INs and are involved in the 
recognition of the viral LTRs[30,31,33-35]. Accordingly, Zn2+ 
binding triggers HIV-1 IN multimerization and increases 
its catalytic activity[36,37]. The CCD adopts an RNase H 
fold and coordinates two Mg2+ ions via the invariant 
Asp and Glu amino acid residues that comprise the D, 
DX35E catalytic triad motif[28,29,38-40]. The coordination 
of Mg2+ ions chemically activates the nucleophiles for 
3’-processing (water) as well as for strand transfer 
(3’-OH groups of vDNA) and destabilizes the respective 
scissile phosphodiester bonds[41-43]. The CTD is the least 
conserved among the shared IN domains, however, 
the tertiary structures of resolved CTDs show similar 
characteristics: They adopt a Src homology 3 fold[44,45], 
are involved in DNA binding[46], and promote IN multi
merization[47,48]. Some retroviruses, namely spuma-, ε- 
and γ-retroviruses, harbor an additional NTD extension 
domain (NED) that precedes the NTD[26,40,49] and engages 
vDNA in the context of the intasome structure[40]. These 
IN proteins accordingly are larger than their lenti-, α-, β- 
and δ-retroviral cousins that lack the NED. 

MULTIMERIZATION OF IN
Numerous biochemical studies revealed that the active 
form of retroviral IN is a multimer that engages vDNA 
and tDNA in the confines of a nucleoprotein complex[50-58]. 
Bacteriophage Mu-mediated PCR footprinting of PICs 
extracted from infected cells revealed the protection of 
several hundred bp at the vDNA ends, and the associated 
complex was termed “intasome” to distinguish it from 
the larger PICs[59,60]. Subsequently, the intasome term 
was adopted by structural biologists who constructed 
and purified distinct, functional IN-DNA complexes capable 
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of efficient concerted integration of two synapsed oligo
nucleotide vDNA ends, the structures of which were 
solved by X-ray crystallography[40,43,61-63] or single particle 
cryo-electron microscopy (EM)[26]. Although retroviral 
INs have been studied for decades, the 3-dimensional 
structures of PFV intasomes greatly aided the elucidation 
of the details of 3’-processing and strand transfer reaction 
mechanisms[40,43,62].

The “intasome” term today applies to the family of 
nucleoprotein complexes that are known to mediate 
retroviral DNA integration (Figure 1), which encompasses 
the stable synaptic complex (SSC)[43], the cleaved donor 
complex (CDC) or cleaved intasome[40,43], the target 
capture complex (TCC)[43,62], and the STC[62,63] (Figure 1). 
The SSC forms upon IN binding to the vDNA ends[5,40,55,

57-60,64,65]. The hydrolytic cleavage of a di- or trinucleotide 
from each 3’-end marks the transition to the CDC. The 
TCC forms when the CDC engages tDNA, whereas the 
STC is formed when the vDNA ends are inserted into 
tDNA and thus strand transfer is completed[57,58,61-64,66]. 
The PFV system has importantly afforded high-resolution 
structures for each of these complexes[40,43,62,63].

APPROACHES TO STUDY THE THREE-
DIMENSIONAL STRUCTURES OF 
RETROVIRAL IN PROTEINS 
Mechanistic studies of retroviral DNA integration began 

in earnest in the late 1980s and early 1990s when 
PICs partially purified from infected cells were shown 
to promote correct DNA integration in vitro[5,14,60,67-70]. 
Nearly parallel biochemical studies, which utilized purified 
avian, murine, and human retroviral proteins, importantly 
showed that IN alone was sufficient to catalyze both the 
3’-processing and strand transfer of recombinant vDNA 
substrates[71-77]. The results of these experiments opened 
up a new field dedicated to the structural and functional 
analysis of retroviral INs. Initial work on HIV-1 IN quickly 
revealed the relatively poor solubility of the full-length 
enzyme in vitro, which limited further biochemical and 
thus structural characterization[48]. To date, there is no 
high-resolution structure of a full-length retroviral IN in 
the absence of DNA, which is likely attributable to the 
inherent flexibility of the interdomain linkers[78-80]. In 
essence, the intertwined architecture of IN with vDNA in 
the context of the intasome complex necessarily “locks 
down” the inherently flexible enzymes, which afforded 
platforms for their detailed structural analyses. 

STRUCTURES OF INDIVIDUAL DOMAIN 
AND TWO-DOMAIN IN CONSTRUCTS
Initial structures of individual IN domains or two-domain 
constructs in the absence of DNA (reviewed in[81,82]) 
(Figure 2) turned out to be challenging in many cases, 
and were only possible for the HIV-1 IN protein with the 
help of solubility-enhancing mutations. By systematically 
replacing hydrophobic residues in the HIV-1 IN CCD, 
Phe185 was identified as a solubility-limiting residue[83]: 
Substituting either Lys or His for Phe185 dramatically 

SSC
vDNA

IN
5'

3'

3'

5'

vDNA

IN
5'

3'
3' 5'

CDC

vDNA
STC

IN
5'

5'

tDNA

vDNA

IN
5'

5'

tDNA

3'
3'

3' processing

Strand transfer

TCC

Figure 1  Integrase catalytic functions and intasome complexes. A multimer 
of integrase (IN) (depicted simply by blue oval) engages the end regions of 
the linear vDNA molecule (yellow), forming the stable synaptic complex (SSC). 
During 3’-processing, IN hydrolyzes the vDNA ends adjacent to invariant CA 
dinucleotides, revealing a set of reactive 3’-hydroxyl groups in the confines of 
the cleaved donor complex (CDC). After nuclear localization, the target capture 
complex (TCC) is formed upon tDNA (black) capture. Strand transfer, whereby 
IN employs the 3’ hydroxyl groups as nucleophiles to attack the tDNA, marks 
the transition to the strand transfer complex (STC).
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Figure 2  Integrase domain organization and representative secondary 
structures. Starting and ending residues for integrase (IN) domains are 
indicated above the boxes, and interdomain linker lengths as well as 
C-terminal tail lengths are indicated below the lines. Crystal structures of 
N-terminal domains (NTDs), catalytic core domains (CCDs), and C-terminal 
domains (CTDs) are provided underneath the corresponding schematic IN 
representation. Crystal structures in the absence of DNA are not available for 
the PFV NTD extension domain (NED), NTD, or CTD, as well as for the RSV 
NTD. PDB accession codes: HIV-1 (NTD, 1K6Y; CCD, 1BIU; CTD, 1EX4), 
PFV (CCD, 3DLR), RSV (CCD, 1C0M; CTD, 1C0M) and MMTV (NTD, 5CZ2; 
CCD, 5CZ1; CTD, 5D7U). HIV: Human immunodeficiency virus; PFV: Prototype 
foamy virus; RSV: Rous sarcoma virus; MMTV: Mouse mammary tumor virus.
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improved HIV-1 IN protein solubility[48,84]. Although the 
F185K change enabled the determination of the HIV-1 CCD 
X-ray structure[85], it conferred a lethal viral phenotype 
due to deficiencies in virus particle assembly and reverse 
transcription in addition to defective vDNA integration[48]. 
Indeed, the vast majority of IN mutations elicit such 
pleotropic defects on HIV-1 replication (reviewed in[86]). 
In contrast, the F185H change was tolerated by the virus, 
and importantly enabled crystallization of the CCD[84,87]. 
In both cases, the positively charged substituent residue 
reaches across the CCD dimerization interface and makes 
a hydrogen bond contact with the main chain carbonyl 
of Ala105 of the partner IN monomer. The F185K and 
F185H changes are therefore likely to dramatically in
crease HIV-1 IN solubility by removing a surface exposed 
aromatic residue that may nucleate protein aggregation, 
as well as by enhancing multimerization by adding two 
hydrogen bonds per IN dimer. Even greater solubility of the 
HIV-1 CCD was achieved by mutating the tryptophan at 
position 131 to glutamic acid in the context of the F185K 
change[88]. Simultaneous to the work on the HIV-1 IN 
CCD, the X-ray structure of the avian sarcoma virus (ASV) 
IN CCD was solved[89]. Of note, ASV IN harbors His at the 
position analogous to Phe185 in HIV-1 IN, and solubility-
enhancing mutations accordingly were not required to 
crystallize the ASV IN CCD. Succeeding structures of 
HIV-1[88,90-93] and ASV[94-97] IN CCDs elucidated binding 
sites for metal ion cofactors as well as for early inhibitors. 
NTD and CTD structures of HIV-1 IN and HIV-2 IN, 
which were solved by nuclear magnetic resonance spec
troscopy[34,35,44,45,98,99], suggested functions of the NTDs 
in metal ion coordination and the binding of the CTD to 
vDNA, each of which is required for integration. 

Two-domain IN constructs were initially studied as an 
approach to understand how individual IN domains might 
interact to form an active nucleoprotein complex. Three 
different CCD-CTD two-domain structures for HIV-1, 
simian immunodeficiency virus (SIV), and avian sarcoma-
leukosis virus (ASLV) were reported in 2000[100-102]. Each 
construct harbored at least one solubility-enhancing 
mutation: C56S, W131D, F139D, F185K, and C280S for 
HIV-1, F185H for SIV, and F199K for ASLV, the latter two 
of which are analogous to the F185K change in HIV-1. 
The HIV-1 CCD-CTD structure revealed an extended 
α-helix for the CCD-CTD linker region[100]. Whereas the 
SIV IN CCD-CTD linker could not be traced[101], the RSV 
IN CCD-CTD linker had a rather extended, non-helical 
form compared to the HIV-1 IN CCD-CTD linker[102]. 
The appearance of three different linker configurations 
in three different IN CCD-CTD constructs led some to 
suggest that such configurations may result from crystal 
packing and therefore represent limited physiological 
relevance[82]. 

Crystallization of a HIV-1 IN NTD-CCD construct 
was achieved in 2001 by including W131D, F139D and 
F185K solubility-enhancing mutations[103]. The resulting 
X-ray structure revealed possible interactions between 
two of the NTDs with two CCDs of opposing NTD-CCD 
molecules, which was of potential physiological relevance 

due to the fact that it was known from prior biochemical 
studies that the NTD functioned in trans with the 
CCD[51-53]. However, the inability to trace the NTD-CCD 
linker regions limited the confidence of this interpretation. 
Importantly, the domain sharing arrangement sug
gested by this structure was later confirmed by additional 
NTD-CCD structures and mutagenesis[104], and ultimately 
through the elucidation of intasome structures (see below). 

LENTIVIRAL IN-LEDGF CO-CRYSTAL 
STRUCTURES
In the early 2000s, a host factor implicated in the nuclear 
retention of HIV-1 IN, lens epithelium-derived growth 
factor/transcriptional co-activator p75 (LEDGF/p75), was 
reported to increase the solubility of HIV-1 IN through its 
tight binding interaction[105-107]. LEDGF/p75 is a lentiviral-
specific IN-binding protein[105,108,109] that tethers vDNA 
integration to transcriptionally active regions of the 
host genome (reviewed in[110,111]). LEDGF/p75 engages 
lentiviral IN via its C-terminally located IN-binding domain 
(IBD)[112]. Although the HIV-1 IN CCD was sufficient for 
LEDGF/p75 binding, the NTD was required for the high 
efficiency interaction[107]. LEDGF/p75 binding stabilizes 
lentiviral IN tetramerization[104,113], which is likely related 
to its ability to enhance the solubility of the viral proteins.

Crystal structures of lentiviral INs in complex with 
LEDGF/p75 include an HIV-1 IN F185K CCD construct[114] 
as well as HIV-2[115] and maedi-visna virus (MVV) IN NTD-
CCD two-domain fragments[104]. Though HIV-2 and MVV 
INs harbor hydrophobic residues at the positions analogous 
to Phe185 in HIV-1 IN (Phe and Ile, respectively), the 
favorable solubility properties of lentiviral IN-LEDGF/
p75 complexes likely dispelled the need for solubility-
enhancing mutations for the crystallization of these con
structs. The LEDGF/p75 IBD is a PHAT domain composed 
of two helix-hairpin-helix motifs[116], with Asp366 at the 
tip of the N-terminal hairpin nestling into a binding cleft at 
the HIV-1 IN CCD dimerization interface and contacting 
the main chain amides of IN residues Glu170 and His171 
via hydrogen bonds[114]. A novel class of potent anti-HIV 
compounds, known as LEDGINs (LEDGF-IN inhibitors) 
or ALLINIs (allosteric IN inhibitors), structurally mimic 
the role of Asp366 in their binding to HIV-1 IN, which 
accounts for their abilities to compete for LEDGF/p75 
binding to IN (reviewed in[117]). The two domain NTD-
CCD constructs revealed the structural basis for the IN 
NTD interaction with the LEDGF/p75 IBD, which was ionic 
in nature. Interestingly, the polarities of the participating 
salt bridges were functionally reversible, such that HIV-1 
particles carrying NTD reverse charge substitutions that 
were otherwise dead regained partial activity in the 
presence of the complementary reverse charge LEDGF/
p75 partner protein[115,118]. 

PFV INTASOME STRUCTURE
Although the aforementioned individual and two-domain 
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constructs provided insight into retroviral IN function, 
the field sorely required the structural determination of a 
functional intasome. The sole class of clinically approved 
HIV-1 IN inhibitors, known as IN strand transfer inhibitors 
(INSTIs), displays little if any binding affinity for free IN 
protein; their clinical target is the IN-vDNA complex[119]. 
Fortuitously, INSTIs are active against most types of 
retroviruses[120-122], so intasome structures derived from 
basically any retroviral genus would have in theory 
provided a backdrop for understanding the structural 
basis for INSTI action and the clinical emergence of drug 
resistance.

Due to the poor solubility of HIV-1 and other early 
studied retroviral INs, the search for an enzyme with 
more favorable biochemical properties for in vitro 
experimentation and crystallography was initiated. 
Though early work had revealed that relatively short 
oligonucleotide substrates, which modeled the vDNA 
ends, supported IN 3’ processing and strand transfer 
activities[72-77], not all enzymes behaved similarly. Most 
critical for intasome structural biology was the ability 
for the IN multimer to coordinate the binding of two 
vDNA ends, and insert these in concerted fashion 
into opposing strands of tDNA. Critically, PFV IN was 
discovered to promote efficient concerted integration 
of oligonucleotide vDNA ends[121]. By contrast, HIV-1 
IN had revealed the tendency to insert just one vDNA 
end at a time[77]. Subsequent modifications of HIV-1 IN 
expression systems, including protein purification under 
relatively dilute conditions to prevent IN aggregation[123], 
or by fusing the small Sso7d DNA binding domain from 
Sulfolobus solfataricus to the IN N-terminus to mimic the 
NED that naturally exists in PFV IN[124], yielded proteins 
that supported efficient concerted integration activity. 
Such modifications might eventually prove useful to 
characterize HIV-1 intasomes structurally[123,124]. 

Functional PFV-vDNA complexes assembled by diffe
rential salt dialysis migrated as a distinct species on 
gel filtration columns, and remained intact and active 
following challenge with high salt concentrations[40]. 
The initial X-ray crystal structure of the PFV intasome, 
representing the CDC, was reported in 2010[40] (Figure 3). 
To date, 37 PFV intasome structures composed of wild-
type IN or mutant variants that contain clinically relevant 
amino acid substitutions have been solved by X-ray 
crystallography or cryo-EM, representing complexes 
in the presence of divalent metal ion cofactors, tDNA/
nucleosomes, and INSTIs[40,43,62,63,125-130]. The INSTI-
bound structures elucidated the mechanism of drug 
action: The halo-benzyl chemical group common to 
these compounds assumes the position of the invariant 
3’ deoxyadenylate in vDNA with its critical hydroxyl 
group, thus ejecting the strand transfer nucleophile from 
the enzyme active site and disarming the nucleoprotein 
complex[40]. 

The PFV intasome consists of a tetrameric assembly 
of IN arranged around a dimer-of-dimers architecture[40] 
(Figure 3). The inner dimer is composed of two inner 
monomers (green and pink in Figure 3A), whereas each 

outer dimer is composed of an inner IN monomer and 
an outer IN monomer (cyan-green and pink-light grey 
in Figures 3 and 4). The inner IN monomers make all 
contacts with vDNA and thus are the catalytic subunits, 
with each of their constitutive domains mediating vDNA 
in addition to IN-IN contacts. As previously alluded 
to, the catalytic subunits are established via a domain 
sharing mechanism whereby the NTD of each inner 
IN monomer interacts intimately with the CCD of the 
opposing IN monomer. The outer IN dimers center 
around the extensive CCD dimeric interface observed 
in prior retroviral IN CCD crystal structures[85,87-97]. The 
CTDs, NTDs, and NEDs of the outer IN monomers are not 
resolved in the electron density maps, and it is currently 
unclear what precise role(s) they may play in the catalysis 
of vDNA integration[131]. It is generally thought that the 
outer IN monomers mainly play a supportive architectural 
role to truss the inner IN monomers and vDNA together. 
As the outer CTDs can contribute to nucleosome binding 
in vitro[130], it seems possible they might play a role during 
vDNA integration into chromatinized templates, as occurs 
during virus infection. The NTD-CCD and CCD-CTD linkers, 
which are only visible for the inner IN monomers in the 
crystal structures, adopt extended conformations and 
contact the vDNA[40]. 

MMTV AND RSV INTASOME 
STRUCTURES
MMTV and RSV intasome structures were recently 
solved using single-particle cryo-EM[26] and X-ray cry
stallography[61], respectively. The MMTV intasome was 
assembled using pre-processed 22 bp vDNA, and thus 
represents the CDC[26]. The RSV intasome structure by 
contrast is the STC, which was assembled using a so-
called X-mer disintegration substrate[132] where three 
oligonucleotide strands were annealed together to yield 
a synapsed complex composed of two 22 bp vDNA 
branches covalently linked through a central 6 bp stagger 
to a 38 bp palindromic tDNA[61]. The crystal structure of 
the PFV STC assembled with its analogous X-mer DNA 
substrate[63] was virtually identical to the structure that 
was solved when the CDC integrated into tDNA during 
crystallogenesis[62], validating the X-mer substrate design 
approach for RSV STC crystallography. 

Although the tetrameric IN4-to-vDNA2 stoichiometry 
represented by the PFV intasome was generally thought to 
be evolutionarily conserved across the retroviruses[54,55,57,58], 
the intasome structures of MMTV and RSV strikingly 
revealed octameric IN assemblies[26,61] (Figures 3 and 4). 
The MMTV and RSV intasomes comprise a core density 
region consisting of IN dimers A and B, as well as flanking 
density regions that consist of IN dimers C and D 
(Figure 3). Analogous to the PFV structure, core inner IN 
monomers IN1 and IN3 intimately contact the vDNA ends 
and are catalytically active, with their NTDs reaching out 
and contacting the CCDs of the opposing inner monomer 
(Figure 4). The core structure moreover is primarily 
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supported through CCD dimerization interfaces with outer 
IN monomers IN2 and IN4. In contrast to PFV, flanking 
structures in the MMTV and RSV intasomes constitute 
additional IN dimers, which on their own multimerize 
primarily through the familiar CCD dimer interface[26,61]. 
The NTD-CCD linker that is extended in IN1 and IN3 
to contact the opposing CCD in trans is contracted in 
the other IN monomers[26]. This observation highlights 
the necessity for NTD-CCD linker flexibility: Though 
principally contracted, it must also possess the ability 
to extend when situated at the IN1 and IN3 positions 
to support IN catalytic function. In hindsight, it is not 
surprising that the linker regions in the original HIV-1 
IN NTD-CCD structure, which lacked LEDGF/p75 or 
DNA binding partners, were untraceable[103]. Of note, 
whereas the crystallographic PFV intasome structure 
is rather rigid, the flanking dimer regions in the MMTV 
and RSV intasome structures reveal significant flexibility 
(Figure 3B). As small angle X-ray scattering analysis of 
the PFV intasome revealed significant conformational 
flexibility for the outer subunit NEDs, NTDs and CTDs 
of the IN tetramer[79], it is tempting to describe retroviral 

intasomes as common rigid core structures surrounded 
by extraneous elements that, although likely to play 
physiologically relevant roles during virus infection, display 
marked movement as purified biochemical entities.

The most striking difference between the tetra
meric and octameric IN assemblies is the unique function 
attributed to the CTDs of the flanking dimers in the 
MMTV and RSV intasome structures. While contacts with 
vDNA in the PFV structure are restricted to the inner IN1 
and IN3 subunits, MMTV and RSV INs donate their CTDs 
in trans to the core region of the intasome[26,61]. The 
locations of six CTDs, including those of the flanking IN 
dimers, are conserved in the MMTV and RSV intasomes 
(Figure 4). The exclusive conformation of the CTDs allows 
them to tightly associate near the vDNA and assume 
positions resembling those of the inner PFV CTDs (Figure 
4). Biochemical complementation assays revealed that 
the flanking MMTV IN dimers are crucial for IN catalytic 
function[26]. Intriguingly, the length of the CCD-CTD linker 
is quite variable among retroviral INs, amounting to about 
50 residues for PFV, but only to 8 residues for MMTV and 
RSV IN[26] (Figure 2). The extended conformation of the 
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PFV IN 49-mer CTD-CCD linker affords the positioning of 
IN1 and IN3 CTDs to enable critical contacts with vDNA 
and tDNA during integration[40,62]. The analogous HIV-1 
IN linker, composed of 20 residues (Figure 2), could be 
stretched to similarly position inner IN monomer CTDs in 

a molecular model of the HIV-1 intasome based on the 
PFV structure[133]. However, it is physically impossible for 
an 8 amino acid region to span the required distance. 
MMTV and RSV accordingly solve this conundrum by 
employing additional IN molecules to donate their CTDs 
to the required positions in the intasome core structure 
(Figure 4). Hence, retroviral IN CTD-CCD linker length is 
suggested to be a key determinant for the higher-order 
architecture of the respective intasome structures[26,61]. 

TARGET DNA BINDING AND STRAND 
TRANSFER
The integration of vDNA into tDNA does not occur ran
domly in the host genome, with integration site selection 
preferences varying among retroviruses (recently re
viewed in[134]). Whereas HIV-1 and other lentiviruses 
favor integration into highly expressed genes that are rich 
in introns[135-139], the spumavirus PFV avoids active gene 
regions[130,140,141]. Interestingly, α- and β-retroviruses such 
as RSV and MMTV are the least selective in integration 
site selection, displaying patterns that much more closely 
approach random[138,142,143]. 

The co-crystallization of the PFV intasome with an 
oligonucleotide tDNA[62] derived from the PFV consensus 
integration sequence[121,140] elucidated the mechanism of 
strand transfer. Whereas crystallization in the absence 
of Mg2+ or the presence of a dideoxy viral 3’ end led 
to high-resolution TCC structures, the addition of Mg2+ 
with the normal vDNA end afforded integration during 
crystallogenesis, yielding the first high-resolution 
structure of a retroviral or bacterial transposon STC[62] 
(Figure 5). The tDNA adopted a highly bent conformation 
at the PFV DNA insertion sites, with the major groove 
widened to 26.3 Å and the minor groove compressed to 
9.6 Å[62]. This conformation enables the accommodation 
of the inner IN1 and IN3 D,DX35E catalytic triads to the 
scissile phosphodiester bonds of tDNA, thus promoting 
integration[62]. As SN2 transesterification reactions are iso-
energetic, they have the potential to reverse direction 
if chemical leaving groups remain associated with 
the catalytic active site. Following strand transfer, the 
newly formed phosphodiester bonds are displaced by 
2.3 Å from the IN active sites, effectively suppressing 
the probability for strand transfer reversal[62]. A similar 
displacement is described for the tDNA in the RSV 
intasome[61]. 

Early studies revealed that retroviral INs prefer 
chromatinized tDNA templates over naked DNA for 
integration in vitro[144-147], and subsequent work revealed 
the propensity to similarly target nucleosomes during 
virus infection[135,148]. PFV IN prefers relatively flexible 
tDNA sequences for integration[62], and a cryo-EM 
structure of an intasome-nucleosome complex revealed 
the same degree of local tDNA distortion can occur 
on the nucleosome surface during PFV integration[130]. 
Since spumaviral INs cleave tDNA with a 4 bp stagger, 
it has been suggested that the degree of tDNA kink 
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has to be greater for spumaviral integration than for 
viruses that cleave target DNA with a 6 bp stagger, such 
as the α- and β-retroviruses[149]. Although the IN1 and 
IN3 catalytic triads of the PFV and MMTV intasomes 
are superimposable, modeling of tDNA into the MMTV 
CDC revealed a relatively unbent conformation to 
accommodate a 6 bp staggered cut as compared to the 
highly bent tDNA conformation for the 4 bp stagger in 
the PFV TCC[26] (Figure 5). 

The RSV STC harbors a highly bent tDNA 
conformation despite the fact that RSV IN cleaves the 
DNA with a 6 bp stagger (Figure 5). Kinks located at the 
vDNA/tDNA junctions of the RSV intasome provoke a 
20 Å shift in the helical axis, leading to an overall tDNA 
twist[61]. Hence, the tDNA conformation in the RSV STC 
differs significantly from the tDNA conformation in the 
PFV structure (Figure 5) and also from the relatively 
unbent tDNA confirmation in the MMTV TCC model[26]. 
These observations suggest potentially different modes 
of integration into nucleosomal DNA among the studied 
viruses. Whereas PFV and RSV are predicted to target 
chromatinized DNA during virus infection, MMTV was 
unique among a study of 10 exogenous retroviruses for 
its apparent avoidance of nucleosomal DNA in vivo[149]. 
Elucidation of high-resolution MMTV STC/TCC structures 
will help to illuminate the degree of tDNA bending that 
occurs during MMTV integration. 

Based on the variety of tDNA structural properties 
that influence target site selectivity, including bend
ability[62,149-152], major groove widening, and nucleosomal 
packaging[144-147,153,154], retroviral INs can be classified as 
shape-readout DNA binding proteins[155]. DNA minicircles, 
which mimic nucleosome-induced tDNA circularization in 
the absence of histones, represent a relatively new tool 
to tease out physiologically-relevant influences of tDNA 
structure on integration site selectivity in vitro, and the 

roles of IN-binding cofactors such as LEDGF/p75[156]. 

CONCLUSION
The study of retroviral integration has come a long way 
since its beginnings in the late 1970s. The relatively large 
repertoire of individual and two-domain retroviral IN 
structures that were solved initially has since expanded 
to a set of high-resolution intasome structures, including 
those from the spumavirus PFV, β-retrovirus MMTV, 
and α-retrovirus RSV. To date, the plethora of PFV in
tasome structures represents a remarkable advance 
for the field of retroviral integration. Not only have they 
elucidated the mechanism of INSTI action, they provide 
high-resolution structures of the entire set of complexes 
(SSC, CDC, TCC and STC) that mediate retroviral DNA 
integration[40,43,62,63]. 

The recently emerged octameric intasome structures 
of MMTV[26] and RSV[61] reveal an unexpected evolu
tionary diversity among retroviruses. As the intasomal 
core is conserved among the three studied retroviruses, 
the utilization of flanking dimers to complete the func
tional MMTV and RSV intasome structures represents a 
remarkable example of convergent evolution of the DNA 
integration apparatus[26,61]. Considering CCD-CTD linker 
length as a predictor of the state of IN multimerization 
within functional intasomes[26], it remains to be investigated 
whether retroviral INs with intermediary linker lengths, 
including those of HIV-1 and the δ-retrovirus human T-cell 
lymphotropic virus, which harbor 20 and 19 residues, 
respectively[26], will reveal tetrameric, octameric, or 
perhaps even higher-order IN assemblies. 

Motivated by the recent advances in the intasome 
field, new IN-DNA complexes are currently being in
vestigated in various laboratories, including those 
derived from lentiviruses. The emergence of new three-
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dimensional intasome structures will help to model novel 
interactions between HIV-1 IN and DNA, and thus should 
reveal new insights into the mechanisms of emergence 
of drug resistance to clinical INSTIs. 
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