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Abstract
The guanine radical cation (G•+) is formed by one-elec-
tron oxidation from its parent guanine (G). G•+ is rapidly 
deprotonated in the aqueous phase resulting in the for-
mation of the neutral guanine radical [G(-H)•]. The loss 
of proton occurs at the N1 nitrogen, which is involved 
in the classical Watson-Crick base pairing with cytosine 
(C). Employing the density functional theory (DFT), it 
has been observed that a new shifted base pairing con-
figuration is formed between G(-H)• and C constituting 
only two hydrogen bonds after deprotonation occurs. 
Using the DFT method, G(-H)• was paired with thymine 
(T), adenine (A) and G revealing substantial binding 
energies comparable to those of classical G-C and A-T 
base pairs. Hence, G(-H)• does not display any particu-
lar specificity for C compared to the other bases. Tak-
ing into account the long lifetime of the G(-H)• radical 
in the DNA helix (5 s) and the rapid duplication rate of 
DNA during mitosis/meiosis (5-500 bases per s), G(-H)• 
can pair promiscuously leading to errors in the duplica-
tion process. This scenario constitutes a new mecha-
nism which explains how one-electron oxidation of the 
DNA double helix can lead to mutations. 

© 2010 Baishideng. All rights reserved.

Key words: Base pairing; Density functional theory; De-
protonation; DNA duplication; Duplication rate; Guanine 
neutral radical; Nucleotides; Oxidative DNA damage; 
Radical lifetime 

Peer reviewer: Millie M Georgiadis, Associate Professor, 
Department of Biochemistry and Molecular Biology Indiana 
University School of Medicine, 635 Barnhill Dr. Indianapolis, IN 
46202, United States  

Reynisson J. Molecular mechanism of base pairing infidelity 
during DNA duplication upon one-electron oxidation. World J 
Clin Oncol 2010; 1(1): 12-17  Available from: URL: http://www.
wjgnet.com/2218-4333/full/v1/i1/12.htm  DOI: http://dx.doi.
org/10.5306/wjco.v1.i1.12

INTRODUCTION
The aqueous redox chemistry of  the nucleosides and 
nucleotides has been extensively investigated for the last 
40 years using pulse radiolysis, laser photolysis, electron 
spin resonance and other time resolved and steady state 
techniques[1]. More recently, theoretical methods have 
been employed in the study of  redox damage of  DNA[1]. 
This intense interest in the components of  DNA is un-
derstandable since it carries our genetic code and if  dam-
aged can lead to mutations possibly resulting in cancer[2,3]. 
Furthermore, oxidative damage of  DNA is implicated in 
aging[4] and bacterial drug resistance[5]. It is now under-
stood that DNA damage initiated by ionising radiation 
elicits a complicated set of  events engaging various signal-
ling pathways in cells[6]. 

Given that cumulative cancer risk increases with the 
fourth power of  age and is associated with an accumu-
lation of  DNA damage, oxidative DNA damage is of  
great interest regarding early tumorigenesis and eventually 
cancer. These redox damage mechanisms have a potential 
role in the initiation, promotion and malignant conversion 
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stages of  carcinogenesis[2]. Lesions such as 7,8-dihydro-
8-oxoguanine (8OG) are established biomarkers of  oxida-
tive stress; coupled with their mutagenicity in mammalian 
cells, this has led to them being proposed as intermediate 
markers of  cancer[2]. A more complete understanding of  
these oxidative damage processes in DNA is highly desir-
able in order to find new therapeutic strategies to battle 
this devastating disease. 

BINDING SPECIFICITY ALTERATION OF 
THE GUANINE BASE
It has been found that when organic molecules are one-
electron oxidized in the aqueous phase, a rapid deproton-
ation occurs from hydrogen bond donors undoubtedly 
driven by the massive solvation energy of  the proton (∆
Gaq = -263.9 kcal/mol)[7-9]. As an example, the pKa-value 
of  cytosine (C) is lowered from 12.15 to between 2 and 
4 when C is one-electron oxidized[8,10,11]. With respect to 
DNA, guanine (G) is its most easily oxidized component[12] 
and when the π-stack of  double stranded DNA loses an 
electron, the positive charge migrates to G-C rich areas in 
the double strand[13-16] and the pKa-value of  G is lowered 
significantly from 9.4 to 3.9 at the nitrogen-1 atom (N1), 
as depicted in Figure 1[10,17,18]. After departure of  the pro-
ton from the N1-site, it becomes a hydrogen bond accep-
tor instead of  a hydrogen bond donor. The question has 
emerged as to whether this event leads to a change in the 
pairing ability of  the G moiety with other bases[19]? In fact, 
it is a common view that ligand hydrophobicity improves 
affinity, whereas hydrogen bonding improves specificity for 
interactions in biochemical systems[20]. Simulating one-elec-
tron oxidation and the consequent deprotonation of  the 
central N1-proton for G-C, using the density functional 
theory (DFT)[21], a new slipped conformation of  the base 
pair was formed as depicted in Figure 2[19]. This slipped 
configuration, G(-H)•-C, was later independently derived 
by Bera et al[22] using a systematic search for all possible hy-
drogen bonding configurations between G(-H)• and C. The 
predicted base pairing energy (BPE) was -18.2 kcal/mol  
for G(-H)•-C[19,23]. This lies between the BPE’s of  the ade-
nine-thymine base pair (A-T) at -13.0 kcal/mol and that of  
G-C at -21.0 kcal/mol[24,25].

DEPROTONATION OF OXIDIZED 
GUANINE IN DOUBLE STRANDED DNA 
Under what circumstances can G•+-C in the DNA stack 
lose the central N1 proton making up one of  the Watson-
Crick hydrogen bonds? It does not have access to the 
aqueous phase since it is the central hydrogen bond and is 
flanked by base pairs on either side in the double stranded 
DNA helix. It is imperative that N1-H comes into contact 
with the water phase (water acting as a proton acceptor), 
i.e. within G-C, the G(N1-H)-C(N3) Watson-Crick hydro-
gen bond has to be broken for the N1 proton to be lost 
(Figure 2). The hydrogen bonds between the base pairs 
may be broken in three situations: First, the “swing-out” 
of  the bases by concerted thermal motions of  the DNA 
strand[26,27]. This mechanism is unlikely since it takes place 
on the milli- to micro-second time scale and is in competi-
tion with further charge migration in the DNA helix and/
or with water addition to C8 of  G•+, which are considerably 
faster. The rate of  charge migration is estimated as 5 × 
107/s and 6 × 104/s for the water addition, i.e. in the micro-
nanosecond timescale[16,28]. Furthermore, the BPE of  G•+-C 
is increased to -40.9 kcal/mol compared to -21.0 kcal/mol 
of  its parent pair, inhibiting the frequency of  the breathing 
motions of  the base pair[24,29,30]. Second, when duplication 
of  DNA occurs, the DNA strand is untwisted and the 
hydrogen bonds between the bases are broken to allow 
duplication of  the strand. Third, during DNA transcrip-
tion to messenger-RNA, it proceeds in a similar fashion to 
the duplication of  DNA. In addition, it has been suggested 
that deprotonation occurs from the exocyclic amine group 
of  C in G•+-C based on pulse-radiolysis and kinetic isotope 
experiments[31-33]. The proposed deprotonation mechanism 
is shown in Figure 3. This reaction cascade can lead to the 
G(-H)•-C slipped configuration[34].

PAIRING INFIDELITY OF THE 
DEPROTONATED GUANINE RADICAL
A related question has emerged as to whether it is pos-
sible to pair T, A and G itself  to G(-H) •? This was inves-
tigated using the DFT method and the results are given 
in Figure 4[19].
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Armed with the knowledge that the G(-H)•-C base 
pair has only two hydrogen bonds, G(-H)• was paired to 
T and structurally optimized. The BPE was calculated to 
be -10.4 kcal/mol for G(-H)•-T, which is comparable to 
the A-T base pairing energy (-13.0 kcal/mol[24 25,29,35]). The 

relatively low energy can be explained in terms of  the 
non-planarity of  the bases with respect to each other. On 
the basis of  the calculations, they are roughly 25º out of  
plane, measured at their carbonyl groups, O6 (G) and O4 
(T). The distance between these oxygen atoms is 3.5 Å, 
which proximity leads to Coulombic repulsion and hence 
the non-planar conformation.

The calculated hydrogen bonding energy of  the G(-H)•- 
A base pair is -13.6 kcal/mol, as shown in Figure 4. This 
binding is somewhat stronger than that for the natural A-T 
pairing (-13.0 kcal/mol)[24,25,29,35]. 

The hydrogen bond energy of  G(-H)•-G (structure 
depicted in Figure 4) is similar to that of  G-C[36]. This 
is not surprising as three hydrogen bonds are formed in 
both structures. A second type of  G-G base pair is con-
ceivable between two G(-H)• moieties (G(-H)•-G(-H)•) as 
shown in Figure 4. For this, the hydrogen bond energy is  
-18.5 kcal/mol, somewhat lower than for G(-H)•-G, since 
it has one less hydrogen bond. The Pt(Ⅱ) electrophile co-
ordinates at N7 of  G. This acidifies the N1 proton, similar 
to the oxidation of  G. With these Pt-G species, structures 
similar to G(-H)•-G and G(-H)•-G(-H)• were observed 
with 1H-NMR and X-ray crystallography[37], which pro-
vides experimental evidence of  their existence.

ONE-ELECTRON OXIDATION DURING 

DNA DUPLICATION
Using in-situ photolysis electron paramagnetic resonance 
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(EPR), Hildenbrand and Schulte-Frohlinde, detected a 
long-lived radical (lifetime 5 s) which was produced only 
from double stranded DNA when ionised with < 220 nm 
light in an aqueous solution at pH 7[38]. This radical was 
assigned to G(-H)•. The rate of  DNA duplication was 
measured to be between 5-500 nucleotides/s depending on 
the cell type, species and other factors[39,40]. Considering the 
long lifetime of  G(-H)• in double stranded DNA and the 
rapid DNA duplication rate, it emerges that in the case of  
one-electron oxidation during mitosis-/-meiosis, G(-H)• is 
formed when the two strands unwind. As shown in Figure 4, 
it can form base pairs with all of  the nucleotides with bind-
ing energies similar to the classical A-T and G-C Watson-
Crick base pairs. This means that G(-H)• does not have spe-
cific affinity for C, i.e. it is completely promiscuous when it 
comes to base pairing. Therefore G(-H)• can pair with all of  
the nucleotides leading to mispairing. A depiction of  this 
scenario is presented graphically in Figure 5. 

The mechanism presented here is new and an alter-
native to the scenario that mispairing of  DNA bases is 
mostly caused by oxidative end products such as 8OG[41]. 
These products are closed shell, i.e. they are not radical 
species and therefore, have a much longer lifetime than 
G(-H)•. 8OG is one of  the many redox products which is 
derived from the oxidation, and the subsequent water ad-
dition, of  G[17,18,42]. It can form syn-anti base pairs[43], with 
all of  the nucleotides and these have base pairing energies 
of  -10 kcal/mol[44]. The 8OG-T base pair is depicted in 
Figure 6 as an example of  syn-anti base pairs.

So far, the role of  DNA polymerase has not been 
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considered and the DNA bases and base pairs have been 
treated as in vacuo as a model. The structure of  DNA poly-
merase and its steric limitations within the active site are 
well documented[45-47]. The structure of  the binding site in 
the replicating enzymes will undoubtedly have an effect 
on the proposed infidelity mechanism based on G(-H)•, e.g. 
the rate of  duplication. 

CONCLUSION
In this review, an alternative mechanism for promiscuous 
base pairing during DNA duplication, initiated by one-
electron oxidation, is proposed based on theoretical calcu-
lations. Some experimental results exist which support the 
existence of  the non-classical base pairs discussed, i.e. the 
slipped G(-H)•-C and the G(-H)•-G base pairs. Further ex-
perimental and theoretical work is needed to corroborate 
the mechanism proposed. In particular, experiments con-
ducted with time resolved resonance Raman spectroscopy 
on model DNA duplication systems are pertinent as well 
as modelling studies on the effect of  DNA polymerase. 
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