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Abstract
Procathepsin D (pCD) is overexpressed and secreted by 
cells of various tumor types including breast and lung 
carcinomas. pCD affects multiple features of tumor cells 
including proliferation, invasion, metastases and apop-
tosis. Several laboratories have previously shown that 
the mitogenic effect of pCD on cancer cells is mediated 
via  its propeptide part (APpCD). However, the exact 
mechanism of how pCD affects cancer cells has not 
been identified. Recent observations have also revealed 
the possible use of pCD/APpcD as a marker of cancer 
progression. The purpose of this review is to summarize 
the three major potentials of pCD-tumor marker, poten-
tial drug, and screening agent.
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MATURE ENZYME CATHEPSIN D
Cathepsin D (CD) is a soluble lysosomal aspartic endopepti-
dase (EC 3.4.23.5) synthesized in rough endoplasmic reticu-
lum as pre-procathepsin D (Table 1). After removal of  signal 
peptide, the 52 kDa pCD is targeted to intracellular vesicular 
structures (lysosomes, endosomes, phagosomes)[1,2]. pCD is 
a glycoprotein with two N-linked oligosaccharides modified 
with mannose 6-phosphate (M6P) residues and asparagine 
residues 70 and 199[3,4]. Lysosomal targeting is mediated by 
two M6P-receptors (cation-dependent 46 kDa and cation-in-
dependent 300 kDa M6PR)[2,5]. An alternate method to target 
pCD to lysosomes is independent of  the M6P tag and is not 
yet fully understood. However, the role of  sphingolipid acti-
vator precursor protein prosaposin has been suggested[6-10].

Upon entering the acidic endosomal and lysosomal com-
partment, the cleavage of  the 44 amino acid N-terminal pro-
peptide results in a 48 kDa single chain intermediate active 
enzyme form. In addition, proteolytic cleavage that does not 
result in dissociation of  CD globular structure yields the ma-
ture active lysosomal protease which is composed of  heavy 
(34 kDa) and light (14 kDa) chains linked by non-covalent 
interactions[11-13]. In addition, it was proposed that pCD can 
be converted to enzymatically active pseudo-cathepsin D by 
autocatalysis. Cysteine proteases and autocatalytic activity of  
CD is sure to be involved in pCD/CD processing[14-17]. Sev-
eral factors were found to affect CD activation including a 
lipid second messenger ceramide and prosaposin[10,18].

Under normal physiological conditions, pCD is sorted 
to the lysosomes and found intracellularly which is unlike 
other members of  the aspartic endopeptidase family that 
are mostly secretory proteins[19]. In some physiological and 
pathological conditions, pCD/CD escapes normal targeting 
mechanism and is secreted from the cells. pCD was found in 
human, bovine and rat milk[20-22], serum[23] and the presence 
of  both pCD and CD (34+ 14 kDa) was demonstrated in 
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human eccrine sweat and urine[23,24]. pCD is a major secreted 
protein of  numerous types of  cancer cells[25]. It has been also 
shown that secreted pCD can be endocytosed via M6PR, or 
another yet unknown receptor, by both cancer cells and fi-
broblasts, and undergoes further maturation[26,27]. CD expres-
sion and activity was also detected in the extracellular matrix 
and synovial fluid of  cartilage during physiological and 
pathological conditions[28-31]. pCD and mature CD was also 
found in macrophage-conditioned media and extracellularly 
in macrophage-rich regions of  atherosclerotic lesions[32].

CATHEPSIN D/PROCATHEPSIN D AND 
CANCER
Increased levels of  CD were first reported in several hu-
man neoplastic tissues, more than 20 years ago[33]. Several 
years later, the first clinical studies found pCD/CD related 
to metastasis-free survival and disease-free survival in breast 
cancer patients[34,35]. Since then, numerous clinical studies 
reported an association between pCD/CD level and tumor 
size, tumor grade, tumor aggressiveness, incidence of  me-
tastasis, prognosis, and a degree of  chemoresistance in va-
riety of  solid tumors[25,36,37]. Studies dealing with pCD/CD 
diagnostic and prognostic value in cancer are complicated 
by the fact that, simultaneously, there are several forms of  
CD in a cell-inactive precursor pCD, enzymatically active 
intermediate (single chain) CD and mature (two chains) 
CD. Moreover, different forms of  CD are also present in 
stromal cells and may result in pCD/CD quantification in 
tumor tissues and consequently its prognostic significance. 
Therefore, a standardization of  techniques is needed to fur-
ther evaluate the therapeutic and prognostic significance of  
pCD/CD expression in solid tumors.

Major studies and one meta-analysis found that pCD/
CD level in tumor homogenate measured by either ELISA 
or IRMA represents an independent prognostic factor[38-40]. 
In these studies, antibodies that can detect both pCD (52 
kDa) and CD (48 and 34+ 14 kDa) were used. Conversely, 
results of  immunohistological (IHC) studies using antibod-
ies specific to either pCD, CD or both are less consistent. 
This could possibly be due to different tissue fixation tech-
niques, antibodies and semi-quantitative nature of  IHC. 

The mechanism of  pCD mitogenic effect on cancer cells 
remains unclear. Numerous clinical studies have revealed that 
the level of  pCD/CD represents an independent prognostic 
factor in a variety of  cancers. These include breast and lung 
carcinomas[41]. It has been demonstrated that pCD/CD af-
fects multiple stages of  tumor progression including prolif-
eration, invasion, metastasis, angiogenesis and apoptosis[41-43]. 
Clearly, prognosis of  many types of  cancer is significantly 
worse in cases of  high pCD/CD expression and release. 

We, addition to others, have shown that secreted pCD 
binds to surface of  breast cancer cells[26,44]. We therefore 
hypothesize that pCD binds to a cell surface receptor with 
signaling properties. Despite a significant effort, the suggested 
pCD receptor has not been identified as yet and its molecular 
characterization remains elusive. Until now, the only receptors 
with known pCD/CD binding capacity are M6P receptors 
that recognize M6P tag on numerous glycoproteins. It has 
been shown that pCD secreted by cancer cells is highly glyco-

sylated and is able to bind to M6P/IGF-Ⅱ receptor (cation-
independent M6PR) on the breast cancer cell surface[45-48]. 
Numerous studies have demonstrated that neither binding 
nor pCD mitogenic potential is blocked by M6P, anti-M6PR 
antibodies or pCD deglycosylation[44,48-51]. Moreover, we re-
cently showed that mutation in one or both glycosylation sites 
of  pCD only slightly lower pCD mitogenic and pro-invasive 
activity in vivo and in vitro[52]. These results indicate that the 
sugar moieties are not important in the tumor-promoting 
effect of  pCD and that M6P receptors are not involved in 
mediating pCD mitogenicity. However, the binding of  pCD 
to M6P/IGF-Ⅱ receptor may decrease its binding capacity 
to other M6P/IGF-Ⅱ receptor natural ligands (e.g. IGF-Ⅱ, 
latent TGF-β) and thus perturb their biological functions[48].

We determined that binding to cancer cells, as well as 
pCD mitogenic potential, is blocked by antibodies specific 
for propeptide part of  pCD[49,53,54]. The propeptide (also 
called activation peptide-AP) of  pCD serves at neutral or 
basic pH to block the access of  substrates to the active 
site. The active site of  CD forms (as is the case with other 
mammalian aspartic proteases) a deep cleft between the 
two lobes of  the active enzyme[55,56]. According to the 3D 
model of  the pCD structure constructed by in silico homol-
ogy molecular modeling using known coordinates of  pCD 
and pepsinogen. The AP forms a loop where most of  the 
N-terminal half  is making electrostatic bonds with the ac-
tive site aspartates and most of  the C-terminal part of  AP 
is on the surface of  the molecule of  pCD suggesting that 
the C-terminal part can interact with other molecules[57,58].

Utilizing synthetic peptides that correspond to differ-
ent parts of  AP, we showed that the region responsible for 
binding of  pCD to cancer cell surface is localized between 
amino acids 33-44 of  the AP[44,54]. In numerous experi-
ments using synthetic AP, anti-AP antibodies or mutant 
pCD with deleted AP, we demonstrated that AP itself  
stimulates growth of  breast, prostate and lung cancer cells 
in vitro and in vivo[44,49,51-54,59-61]. Although the mitogenic ef-
fect of  AP was not confirmed by Glondu et al[50] under 
their experimental conditions, Bazzett et al[62] independently 
demonstrated mitogenicity of  AP in ovarian cancer cells.

Tumorigenesis is a complex process involving not only 
growth of  the primary tumor cells or tumor stem cells, but 
also communication with surrounding tissues and cells. In 
this process, different parts of  stromal tissue, including the 
vasculature, adipocytes, resident immune cells, and fibro-
blasts, play a role. All these cells are secreting numerous cel-
lular products, including various growth factors and extra-
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Table 1  Cellular localization of procathepsin D/cathepsin D

Form Localization Process

Pre-procathepsin Rough endoplasmic 
reticulum

Synthesis

Procathepsin Golgi apparatus Modification of 
oligosaccharides

Procathepsin Prelysosomal 
compartments

Cleavage of the activation 
peptide

Single chain 
cathepsin

Lysosomes Proteolytic processing, 
triming of oligosaccharides

Mature cathepsin Lysosomes
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cellular matrix components. It is likely that tumor fibroblasts 
originate from normal fibroblasts and that they are very 
similar to fibroblasts involved in wound healing processes. 
There is clear evidence that fibroblasts communicate with 
the primary tumor cells and this communication is critical 
for development of  the disease. There is an extensive in vitro 
and in vivo research demonstrating that this communication 
can promote the growth of  cancer cells. For more informa-
tion about pCD/CD and tumor environment[63].

Secretory proteins of  different families play a role in 
primary tumor growth and metastasis formation and angio-
genesis. In addition to this autocrine mitogenic effect, pCD 
was also found to possess paracrine proliferative properties. 
Berchem’s group found that pCD stimulates not only par-
ent cancer cell proliferation but also tumor angiogenesis 
by a paracrine mechanism[42]. This possibility was further 
potentiated by the work of  the Liaudet-Coopman group 
who demonstrated that pCD was able to stimulate prolifera-
tion, survival, motility and invasion of  fibroblasts[43]. The 
detailed mechanisms of  the proliferative function of  pCD 
remain unknown. In experiments testing the influence of  
IL-4, IL-10 and IL-13 on growth of  several cancer cell lines, 
we have found that these cytokines had a similar prolifera-
tive effect as pCD. The difference between the pCD- and 
cytokine-induced proliferation lies in fact that the stimula-
tion of  proliferation has been observed only in the case of  
ER+ cell lines. Supposed mechanism of  action is pCD-
dependent triggering of  IL-4, IL-8, IL-10, and IL-13, which 
subsequently further stimulate cancer cell growth.

In an attempt to better understand the autocrine and para-
crine effects of  pCD, we tested the possibility of  secretion of  
cytokines upon pCD addition. We demonstrated substantial 
secretion of  cytokines, especially IL-4, IL-8, IL-10, IL-13 
and MIP-1β from both cancer cell lines and fibroblasts upon 
addition of  pCD. This secretion was shown to promote the 
growth of  both cancer cells and fibroblasts. As a result of  our 
experiments, we can conclude that pCD secretion observed 
in many cancer derived cell lines leads to a secretion of  cyto-
kines which, in turn, promote the growth of  both types of  
cells. Therefore, a selective inhibition of  pCD interaction with 
a cellular receptor could decrease or halt this process. These 
data underline pCD as a potential target for cancer therapy.

PCD IN SCREENING
Research performed in our laboratory, in addition to others, 
has demonstrated the presence of  anti-pCD autoantibod-
ies[64]. As these antibodies are specific to pCD only, and do 
not recognize mature CD[65-67], they represent an ideal target 
for comparison of  the pCD presence and cancer progression. 

We hypothesized that the level of  anti-pCD autoanti-
bodies correlates with the stage of  breast, lung, and pros-
tate cancer and offers development of  a cost-effective, non-
invasive screening test. We prepared an ELISA assay for 
evaluation of  the presence of  anti-AP/pCD antibodies. 
Attributable due to the low affinity of  the antibodies, acti-
vation peptide alone is not optimal for evaluation in ELISA 
or RIA assays. We decided to overcome this potential set-
back by using a specifically modified synthetic activation 
peptide as an antigen assay. Employing Multiple Antigen 

Peptide (MAP), we were able to measure the level of  anti-
pCD autoantibodies in patient serum.

Since pCD has been found to be involved in numerous 
types of  cancer, one can assume that the specific autoan-
tibodies will also be formed in additional types of  cancer. 
Using a small number of  samples, we found the elevated 
levels of  these autoantibodies in lung, prostate, and stom-
ach cancer (unpublished data). Serum samples were mostly 
from the commercial source ProMedDx, which provides 
serum samples from over 60 different diseases. Compared 
to the cancer samples, sera of  patients suffering from ad-
ditional diseases were negative (Figure 1).

We hypothesize that the amount of  the APpCD/pCD in 
the patient’s serum will change with the progress of  the can-
cer disease, thus corresponding with the increased number 
of  pCD-releasing cancer cells. This hypothesis configures 
well with our preliminary findings on breast cancer (Figure 
2) and clearly shows higher levels of  antibodies in more ad-
vanced stages. These preliminary data define the high clinical 
potential in the evaluation of  specific anti-AP autoantibodies.

Based on these data, we prepared a model of  a proposed 
mechanism of  pCD action (Figure 3). The overexpressed 
pCD escapes normal intracellular targeting pathways and is 
secreted out of  the cancer cells. Subsequently, pCD inter-
acts with surrounding proteins and is recognized via its AP 
part by a specific cell surface receptor. This interaction re-
leases a signal resulting in differential expression of  cancer-
promoting genes including various cytokines that, in turn, 
stimulate tumor growth. pCD secreted by cancer cells is also 
captured by stromal cells and promote fibroblasts prolifera-
tion, motility and invasion that results in cancer progression. 
In addition, stress affects keratinocytes resulting in increased 
both cytokine and pCD synthesis and secretion leading to 
the elevated proliferation of  keratinocytes (Figure 4).

OTHER POTENTIAL ROLE OF PCD
In recent decades, there has been focused on pCD’s additional 
contribution toward wound healing, tissue remodeling[68] and 
programmed cell death-apoptosis[69,70]. Epidermis, the barrier 
between the body and external environment, is constantly ex-
posed to various environmental and physical stresses. Keratino-
cytes are elemental cells forming the epidermis and are crucial 
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Figure 1  Level of anti-procathepsin D autoantibodies in patients with three 
types of cancer and two cancer-unrelated diseases evaluated by enzyme-
linked immunosorbent assay. Data represent mean value from 5 patients/group. 
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for normal regeneration and healing. Skin healing is dependent 
upon several processes that comprise inflammation, protein 
synthesis, matrix deposition, migration and subsequent prolif-
eration of  keratinocytes[71,72]. Keratinocytes are known to se-
crete numerous proteins that include proteolytic enzymes such 
as matrix metalloproteinases[73], interstitial collagenase[74] and 
cathepsin B[75]. During the wound healing process, these pro-
teolytic enzymes might play a role in motility of  keratinocytes 
by remodeling of  extracellular matrix for migration of  kerati-
nocytes to peripheral layers of  epidermis. When Katz et al[76]  
studied proteins secreted by cultured human epidermal kerati-
nocytes, they found that CD was one of  them. 

In skin, increased levels of  the mature form of  CD has 
been shown in basal keratinocytes during hyperproliferative 
skin disorders such as psoriasis[77]. In addition, the involve-
ment of  different isoforms of  CD in the epidermal cell dif-
ferentiation was also suggested. The presence of  pCD was 
shown in the spinous layer. These forms were present in 
stratum corneum, where they played a role in epidermal des-

quamation[78,79]. Although, the role of  CD in epidermal dif-
ferentiation has been defined, the presence of  pCD at differ-
ent stages of  differentiation is still unclear. Moreover, many 
of  these studies were performed using cell lysates where all 
the isoforms are present, making clear definition of  the roles 
played by individual isoforms virtually impossible. 

Therefore, we tested the hypothesis that the secretion of  
pCD from cells is one of  the normal physiological features 
in the skin. Initially, we began by demonstrating the secre-
tion of  pCD via the human keratinocytes cell line HaCaT. 
Subsequent experiments showed that the exogenous addition 
of  purified pCD enhanced the proliferation of  HaCaT cells. 
The proliferative effect of  pCD was inhibited by monoclonal 
antibody against the activation peptide (AP) of  pCD. Treat-
ment of  HaCaT cells with pCD or AP led to the secretion of  
a set of  cytokines that may promote the growth of  cells in a 
paracrine manner. The role of  secreted pCD and its mecha-
nism of  action were further studied in a scratch wound mod-
el. The presence of  pCD and AP enhanced the regeneration 
of  monolayer. Simultaneously, this effect was reversed by 
the addition of  anti-AP antibodies. Expression and secretion 
of  pCD was upregulated in HaCaT cells exposed to various 
stress conditions. Taken together, our results strongly suggest 
that the secretion of  pCD is not only linked to cancer cells 
but also plays an essential role in the normal physiological 
conditions such as wound healing and tissue remodeling[80]. 
However, current knowledge does not support the possible 
connection between pCD function in cancer and wound 
healing. This proteinase (both in enzymatically active and 
inactive state) just has several biological functions, including 
both pathological and physiological ones. 

CONCLUSION
While many functions of  pCD/CD in the physiological and 
pathological processes could be attributed to its enzymatic 
activity, it is clearly established that some of  its functions in 
the organism are independent of  its protease activity and 
rely on the ability of  pCD to interact with other important 
molecules. It appears to be inevitable that the search for 
pCD-interacting partners should be conducted to explore 
the mechanism of  pCD actions. 
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Figure 2  Level of anti-procathepsin D autoantibodies in patients with 
various stages of breast cancer evaluated by enzyme-linked immunosorbent 
assay. Average age of patients in each group varied from 31 to 69.
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Figure 3  Proposed mechanism of procathepsin D/cathepsin D function 
in cancer progression. The over-expressed procathepsin D (pCD) escapes 
the physiological intracellular targeting pathways and is secreted by the cancer 
cells. Small part of secreted pCD is bound and internalized via M6PR pathway, 
the rest by a yet unidentified receptor. The receptor-pCD interaction activates 
mitogen-activated protein kinases (MAPK) pathway with subsequent changes 
in expression of numerous cancer-promoting genes including NFKB2 and some 
cytokines. Interaction of pCD with endothelial and stromal cells is also involved.

Figure 4  Stress affects keratinocytes resulting in increased both cytokine 
and procathepsin D synthesis and secretion leading to the elevated prolif-
eration of keratinocytes.
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