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Abstract
Cancer is the second leading cause of death worldwide and epidemiological 
projections predict growing cancer mortality rates in the next decades. Cancer has 
a close relationship with the immune system and, although Th17 cells are known 
to play roles in the immune response against microorganisms and in autoim-
munity, studies have emphasized their roles in cancer pathogenesis. The Th17 
immune response profile is involved in several types of cancer including 
urogenital, respiratory, gastrointestinal, and skin cancers. This type of immune 
response exerts pro and antitumor functions through several mechanisms, 
depending on the context of each tumor, including the protumor angiogenesis 
and exhaustion of T cells and the antitumor recruitment of T cells and neutrophils 
to the tumor microenvironment. Among other factors, the paradoxical behavior of 
Th17 cells in this setting has been attributed to its plasticity potential, which 
makes possible their conversion into other types of T cells such as Th17/Treg and 
Th17/Th1 cells. Interleukin (IL)-17 stands out among Th17-related cytokines since 
it modulates pathways and interacts with other cell profiles in the tumor microen-
vironment, which allow Th17 cells to prevail in tumors. Moreover, the IL-17 is 
able to mediate pro and antitumor processes that influence the development and 
progression of various cancers, being associated with variable clinical outcomes. 
The understanding of the relationship between the Th17 immune response and 
cancer as well as the singularities of carcinogenic processes in each type of tumor 
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is crucial for the identification of new therapeutic targets.
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Core Tip: Cancer is still an important cause of death worldwide. Its development and 
progression are intimately related to the host immune response. In that context, the 
Th17 profile plays crucial roles in the pathogenesis of several cancers, promoting 
antitumor and protumor mechanisms. This study reviews the interactions occurring 
between Th17 responses and cancer.

Citation: Marques HS, de Brito BB, da Silva FAF, Santos MLC, de Souza JCB, Correia TML, 
Lopes LW, Neres NSM, Dórea RSDM, Dantas ACS, Morbeck LLB, Lima IS, de Almeida AA, 
Dias MRJ, de Melo FF. Relationship between Th17 immune response and cancer. World J Clin 
Oncol 2021; 12(10): 845-867
URL: https://www.wjgnet.com/2218-4333/full/v12/i10/845.htm
DOI: https://dx.doi.org/10.5306/wjco.v12.i10.845

INTRODUCTION
Cancer represents the second leading cause of death worldwide and has been 
responsible for 8.97 million deaths from 2000 to 2016 according to the World Health 
Organization (WHO). The five most lethal malignancy types are lung, liver, gastric, 
breast, and colon cancers. Four out of the five aforementioned cancers are among the 
20 main causes of death in the world and epidemiological studies predict a tendency 
of increasing mortality rates associated with these diseases in the next 40 years[1]. The 
knowledge on the relationship between cancer and the immune system was limited for 
a long time due to the tumor capacity of evading immune response through various 
mechanisms[2]. However, current evidence has emphasized that CD4+ T cells are 
intimately associated with processes that unleash cancer as well as with the responses 
against the malignant cells through the detection of foreign antigens. These cells 
interact with each other and with other immune system components by releasing 
cytokines that are able to potentialize or suppress mechanisms in the tumor microen-
vironment, playing protumor and antitumor roles in that context[3].

Th17 cells is a type of T cell and its main related cytokine is the interleukin (IL)-17, 
which plays roles in the expression of other cytokines, including IL-6, IL-21, IL-22, 
interferon (IFN)-γ, and IL-10[4]. The Th17 cells are associated mainly with the immune 
response against bacteria and fungi, and also perform remarkable contributions in the 
promotion of inflammation and autoimmunity[5-7]. Moreover, the Th17 profile plays 
controversial roles in the tumor immunity and can be associated both to unfavorable 
and favorable outcomes[8]. The duality of Th17 cells in the setting of tumor immunity 
is potentialized by their plasticity, since they are able to switch to a Th1 phenotype, 
performing antitumor activities, and they are also capable of expressing a Treg 
phenotype, which can exert pro and antitumor activities, depending on the context of 
the immune response[9,10]. The Th17 cells have a peculiar relationship with the tumor 
microenvironment and use various molecular processes such as the induction and 
recruitment of further Th17 cells to maintain tumor infiltration[11-14]. Moreover, these 
cells play important roles in the growing and development of cancerous cells[15]. In 
that context, the mechanisms performed by Th17 cells that favor or impair tumor 
progression are complex and depend mainly on the type of cancer. These cells induce 
some mechanisms with a high carcinogenic potential such as angiogenesis, whereas 
they can also promote the recruitment of immune system cells to the tumor microen-
vironment and the activation of effector CD8+ T cells, promoting antitumor activities
[16].

The understanding of the mechanisms developed by Th17 cells to modulate the 
tumor microenvironment and to interact with other cells is a way to identify potential 
therapeutic targets for various types of cancer that are associated with cellular 
activities related to that immune profile. Those cells interact in interesting manners 
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with various interleukins and with cancer stem cells (CSCs)[17]. In addition, the 
relationship between Th17 cells and CSCs can be considered as bidirectional, with 
mutual modulation mechanisms[18-20]. This paper aims to review the role played by 
the Th17 response in various types of cancer, describing its presence in the tumor 
microenvironment and comparing the repercussions related to this immune profile in 
cancers, and to approach potential therapeutic targets associated with the immune 
system mechanisms related to Th17 cells.

CHARACTERIZATION OF THE TH17 RESPONSE
CD4+ T cells can play proinflammatory and regulating roles in the immune response. 
The classic differentiation of CD4+ T cells into two sets of cells with patterns of 
cytokine secretion and distinct functions, known as Th1 cells and Th2 cells, has 
changed with the discovery of a new set of cells known as Th17 cells[21]. Th17 cells 
express the RORγt (Retinoic-acid-receptor-related orphan nuclear receptor gamma), 
which is a molecular determinant for its polarization through IL-17A expression[22,
23]. In rodents, these cells seem to have the same precursor as Foxp3+ Treg cells, since 
naive CD4+ T cells stimulated only by transforming growth factor (TGF)-β, convert into 
Treg cells. On the other hand, TGF-β and IL-6 together induce the emergence of Th17 
cells. A study using splenocytes from mice found that an environment containing 
TGF-β predisposed the emergence of ex-Th17 Foxp3 cells, and simultaneous TGF-β 
and IL-6 stimuli led to enhanced production of IL-17Foxp3++Neg cells. In addition, that 
study showed that TGF-β, IL-6, and IL-23 together induced an increase in IL-17A 
release by Th17 cells[24]. IL-23, in its turn, plays the role of maintaining and expanding 
these cells. In humans, a relationship between Th17 cells and Th1 cells is evident. 
Naive CD4+ T cells in the presence of IL-23 and IL-1β positively regulate RORγt, T-bet, 
IL-23R, and IL-12R. When the two aforementioned cytokines are expressed, IL-17 is 
produced alone or in combination with INF-γ. TGF-β inhibits the development of both 
Th1 cells and Th2 cells, and is not essential for the development or inhibition of Th17 
cells; therefore, it indirectly favors the expansion of the latter[25,26]. The main function 
of Th17 cells is to contribute to the immune response against extracellular pathogens 
during infectious processes, but they are also suggested to play an important role in 
the pathogenesis of autoimmune and inflammatory diseases, as well as in acute graft-
versus-host disease[5-7]. Th17 cells activate neutrophils, stimulate the emergence of 
CXCL chemokines and MUC5AC, the production of MUC5B mucins by bronchial 
epithelial cells, the expression of beta defensin-2 and CCL20 by lung epithelial cells, 
and contribute to the migration and activation of macrophages[7].

The IL-17 family is made up of six different cytokines: IL-17A, IL-17B, IL-17C, IL-
17D, IL-17E (IL-25), and IL-17F. IL-17 cytokines have proinflammatory properties, are 
expressed in various parts of the body, and signals by interacting with their 
transmembrane receptors. Five receptors from the IL-17 family have been identified: 
IL-17RA, IL-17RB, IL-17RC, IL-17RD, and IL-17RE. In addition to Th17 Lymphocytes, 
CD8+ T cells, macrophages, and γδ T cells produce IL-17. These cells also express IL-
23R and secrete IL-21 and IL-22. Among all IL-17 cytokines, IL-17F has the highest 
degree of conservation with the main cytokine in the family, IL-17A[27]. The IL-17 
induces neutrophil recruitment and production of proinflammatory mediators, such as 
IL-1, IL-8, metalloproteinases 1 and 13, and prostaglandin E2[28,29].

Th17 cells can also produce IL-22. This cytokine is a member of the IL-10 family, and 
the IL-22R and IL-10R2 receptors have been identified as heterodimeric receptors 
mediating IL-22 signaling. Whereas IL-10R is ubiquitously expressed, IL-22R is 
restricted to cells harbored in tissues[30]. IL-22 targets epithelial and non-
hematopoietic stromal cells and can promote cell proliferation, playing a role in tissue 
regeneration. In addition, it regulates host defenses on barrier surfaces. However, IL-
22 has also been associated with the development of several diseases involving inflam-
matory mechanisms[31].

The inflammatory effects produced by IL-17 include stimulus for secretion of IL-6 
by human fibroblasts and increased expression of the intercellular adhesion molecule-
1[32]. In addition, Th17 cells that co-produce IL-21 regulate B cell responses, induce 
differentiation of plasma cells, and lead to the formation of antibodies[33]. In that 
context, the role of Th17 cells as key promoters of inflammation in various 
pathophysiological contexts, including cancer, has been investigated[8]. Of note, Th17 
cells have already been identified in various types of human tumors[8], such as 
melanoma, ovarian cancer, colorectal cancer, and lung cancer[34,35].
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Despite the advances in the knowledge about the roles of Th17 cells in complex 
biological contexts, many interactions involving these cells remain unknown mainly 
due to their plasticity[35]. The differentiation of T cells is no longer considered as 
linear and irreversible, since evidence has shown that populations of differentiated 
CD4+ T cells can alter the spectrum of cytokines produced and, thus, the outcomes 
they promote[36]. The plasticity of Th17 cells stands out among the other T cells due to 
its high level of complexity, involving cytokine-dependent and -independent events, 
and due to the variability of functional phenotypes that can be adopted by the cells
[37]. Th17 cells can play roles that are often heterogeneous, depending on the environ-
mental conditions they are found in. Phenotypes similar to Th1 cells are expressed by 
Th17 cells in inflammatory environments, with a remarkable production of IFN-γ, 
contributing as an immunological support against fungal and extracellular bacterial 
infections, but also for intestinal inflammation observed in colitis, when the activity of 
these cells is not properly controlled[38-40]. The transfer of antigen-specific Th17 cells 
to a host has shown that Th17 cells can assume the phenotype of a Th2 cell in 
infections by Nippostrongilus brasiliensis[41]. This Th17/Th2 conversion has also been 
identified in the peripheral blood of patients with asthma, whose Th17/Th2 cells 
secreted cytokines from both profiles (Il-17, IL-22, IL-4, and IL-5), which evidences the 
pathogenic potential of these cells in the induction of intense inflammatory infiltrates
[42]. In addition to their pro-inflammatory role, Th17 cells are also able to adopt a 
phenotype similar to that of Treg cells. In fact, both the conversion of Treg cells into 
Th17 cells and the conversion of Th17 cells into Treg cells are described by previous 
studies, possibly because both cell types share differentiation characteristics, given the 
participation of TGF-β in inducing the differentiation of both Treg and Th17 cells[43]. 
Although TGF-β, IL-6, and IL-23 alone tend to promote IL-17A release by Th17 cells, 
the presence of Prostalglandins E2 (PGE2) makes the stimuli with these cytokines 
result in the conversion of Th17 cells into regulatory IL-17AnegFoxp3 cells, which 
demonstrates the importance of the PGE2 in the transdifferentiation of Th17 cells along 
with TGF-β[24]. Although it presents a certain stability, the aforementioned process 
has been shown to be bidirectional and, in the presence of Th17-polarizing cytokines, 
Th17-derived Treg cells can reassume their original Th17 cells phenotype (Figure 1)
[9]. Moreover, in response to IL-27, Th17 cells acquire a phenotype similar to that 
observed in TR1 cells via activation of the Blimp-1 factor, which results in the secretion 
of cytokines such as IL-10[44].

RELATIONSHIP BETWEEN TH17 CELLS AND CANCER
Although advances have been achieved in the study of Th17 responses, the knowledge 
regarding its roles in the immune system is still limited. Moreover, the tumor microen-
vironment has been broadly studied because it is directly associated with cancer 
development and progression. The understanding on how the immune system cells 
behave in the aforementioned microenvironment and how this environment is 
influenced by those cells make possible a broader comprehension about cancer and the 
therapeutic possibilities against this disease[45]. The participation of Th17 cells in the 
different types of cancer is paradoxical, since they can play antitumor and protumor 
roles[8]. It is believed that the Th17 cells prevail in the tumor microenvironment 
through some mechanisms, including: (1) The induction of T cells involving the TGF-β
1 and IL-6. Signal transducer and activator of transcription 3 (STAT3)[11]; (2) 
Recruitment of Th17 cells dependent on various chemokines including CCL20, CCL17, 
CCL22, MIF, RANTES, and MCP1[12-15]; (3) Conversion from other cell types[15]; and 
(4) Th17 cell polarization through cytokines such as IL-1β and IL-13 that are produced 
in the tumor environment by specific myeloid cells[46]. In addition, the tumor 
microenvironment has antigens and metabolites that are able to suppress CD4+ T cells, 
which start producing co-inhibitory and less effective molecules[47]. However, the 
Th17 cells from the tumor microenvironment seem to have an enhanced resistance to 
dysfunctionality because they present less exhaustion markers than other T cells as 
well as more CCR7, Lef1, and TCF7 markers[48,49].

An important aspect regarding Th17 cells in cancer settings is the aforementioned 
plasticity potential through their transformation into Treg cells, which occurs with 
TCR engagement leading to the expression of Foxp3 and subsequent imunossu-
pressive roles by those cells. Of note, IL17+Foxp3+ T cells have been associated with the 
emergence of CSCs and with the inhibition of tumor-specific T CD8+ cells in colorectal 
cancer. A study showed that IL17+Foxp3+ T cells induce the expression of markers such 
as CD133, CD44s, CD166, EpCAM, and ALDH1 in bone marrow-derived mononuclear 
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Figure 1 Interleukin-6, interleukin-23 e transforming growth factor-β stimuli for interleukin-17A production and the role of Prostalglandins 
E2 in Th17 cells transdifferentiation into interleukin-17NEG FOXP3 cell. TGF: Transforming growth factor; IL: Interleukin; PGE2: Prostalglandins E2.

cells and promoted their conversion into cancer-initiating cells[50,51].
Conversely, the production of IL-6 in mice with melanoma led to the conversion of 

Treg cells into Th17 cells, which resulted in the promotion of the activation of CD8+ T 
cells and reduction in tumor growth[52]. A recent study on CpG (ODNs)/CpG 1826 
oligodeoxynucleotides demonstrated the potential of these cells in the inhibition of 
Treg cells and in the stimulation of Th17 cells, extending survival among mice with 
leukemia[53]. Another study observed that the Treg/Th17 cell ratio was higher among 
patients with oral squamous cell carcinoma (OSCC) than in controls, suggesting that 
these cells are involved in the progression of OSCC and have the potential to be used 
as a prognostic indicator[54]. Considering the importance of the Th17/Treg axis in 
cancer-related immune response and inflammation, a study assessed the metabolic 
features involved in that setting. The researchers found that Th17 cells are more 
dependent on the synthesis of fatty acids than Treg cells, which primarily perform the 
oxidation of fatty acids to keep their energetic homeostasis. This metabolic differences 
can make the manipulation of the Th17/Treg axis possible for new therapeutic altern-
atives against neoplasms[55].

Interestingly, the plasticity of Th17 cells has also been observed with their 
conversion into Th1 Lymphocytes, exerting antitumor effects[10,56]. It is not well 
known if that transformation occurs inside the tumor microenvironment or if 
Th17/Th1 cells are recruited to the tumor microenvironment[57,58]. Muranski et al[48] 
reported that the Th17 cells polarization leads to the production of Th1 cells-related 
molecules such as INF-γ and T-bet, which are associated with remarkable antitumor 
activities[48].

The mechanisms taking place in tumor-related Th17 responses are various and 
depend on the type of cancer. A study observed that the transference of Th17 cells 
implied in the recruitment of CD4+ T cells, CD8+ T cells, and DCs for the tumor 
microenvironment. Additionally, when in contact with tumor antigens, Th17 cells 
acquired dendritic cell MCHI-peptide complexes and, through MHCI-TCR interaction 
and IL-2 release, there was an activation of CD8+ T cells, reinforcing the role of Th17 
cells in tumor immunity[16]. Studies have verified that IL-17 may indirectly 
potentialize the functions of cytotoxic T lymphocytes by stimulating the expression of 
IL-6 and IL-12, leading to antitumor effects[59]. The Il-17 acts in the recruitment and 
expansion of neutrophils that are essential to the destruction of tumor cells as well as 
contributes to the expression of various proinflammatory molecules including IL-1β, 
IL-6, tumor necrosis factor (TNF)-α, PGE2, CXCL1, CXCL5, CXCL8, and GMCSF[60-
65]. On the other hand, Wang et al[54] demonstrated that Th17 cells play protumor 
roles since IL-17 induces the expression of IL-6, which is responsible for activating 
oncogenic signal transducers and STAT3. The STAT3 aids in the promotion of tumor 
growth through the regulation of pro-angiogenic genes[66]. Differently from the IL-17 
dualism, the IL-22 has shown to be a protumor interleukin that, through STAT3, is 
involved in the development of tumor cells[67-69].
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The Th17 cytokines, especially IL-17, play important roles in the promotion of tumor 
angiogenesis[70]. Studies have described that the IL-17 induces the expression of 
vascular endothelial growth factor (VEGF), and that cytokine seems to be associated 
with a higher tumor vascular density[71]. In addition, the Il-17 induced the expression 
of angionenic chemokines including CXCL-1, CXCL-5, CXCL-6, and CXCL-8, leading 
to an increased angiogenic potential among immunocompromised rats with non-small 
cell lung cancer (NSCLC)[72]. Another study described that IL-17 is involved in the 
activation of angiogenic genes through the IL-6/STAT3 pathway[73]. The IL-22 has 
also been positively correlated with angiogenesis. A study suggested that it is involved 
in the proliferation, survival, and migration of endothelial cells. Moreover, that invest-
igation described that IL-22 leads to vascular growth in animals[74]. Finally, a 
systematic review highlighted that, although there is a paradox in the behavior of the 
Th17 response in the different types of cancer, the expression of Th17 cells is often 
associated with better prognosis whereas the IL-17 is related to cancer progression[75].

Studies have described the IL-27 potential as a Th17 response inhibitor. This process 
occurs through the downregulation of RORγt[17]. The IL-27 is involved in the 
suppression of protumor cytokines such as IL-23 and IL-17[76]. A recent study 
described the existence of an inverse relationship between IL-27 and IL-17 as well as 
between IL-27 and IL-6. In patients with gastric cancer, studies have observed high 
concentrations of Th17 cells-related cytokines including IL-1β, IL-6, IL-17A, IL-23, and 
TGF-β and it is believed that this phenomenon occurs due to the low or null IL-27 
Levels, since IL-27 inhibits RORγt and IL-6. This relationship has been observed in 
other cancers as well[77]. Additionally, another study observed that the IL-27 
performed an antitumor activity through the IL-17 inhibition via RORγt among 
patients with small-cell lung cancer[78]. Of note, these findings suggest a therapeutic 
potential of the IL-27 through the inhibition of protumor Th17 cells-related 
mechanisms.

Interestingly, the cancerous cells inside individual tumors frequently exist in 
various phenotypic states. CSCs are a subpopulation of cells present in several types of 
cancer and that have self-renewal ability and tumorigenicity when transplanted to an 
animal host. Evidence on CSCs have aimed at developing a promising approach for 
the improvement of antitumor therapies. The CSCs are closely related to Th17 cells-
related cytokines and other components in the tumor microenvironment, and they 
play crucial roles in the tumor progression and metastasis[79,80]. These cells can 
promote the differentiation of CD4+ T cells into Th17 cells through the release of 
soluble mediators and cell-to-cell contact[18,19]. Moreover, a study observed that the 
interaction between stem cells and CD4+ T cells can lead to the transformation of 
remaining Th17 cells through the activity of STAT3[81]. On the other hand, the IL-17 
has shown to participate in the maintenance of CSCs through the action of the IL-17A 
receptor and the capacity of activating these cells in their quiescent state, configuring a 
more aggressive protumor behavior for the CSCs[20]. The recurrence of tumors after a 
primary treatment is still very frequent, and studies have supported that a successfull 
cancer therapy might be related to the elimination of CSCs[82]. In that context, the 
understanding of the relationship between these cells and the Th17 response in the 
various types of tumor can lead to new therapeutic possibilities[18].

ASSOCIATION BETWEEN TH17 RESPONSE AND DIFFERENT TYPES OF 
CANCER
Urogenital system cancers
Ovarian cancer: Ovarian cancer ranks fifth in cancer deaths among women[83]. This 
cancer usually has a late and advanced diagnosis causing resistance to treatment[84]. 
Studies have emphasized the involvement of the immune system in the process of 
development and progression of ovarian cancer, including the interactions of immune 
cells in the ovarian tumor microenvironment[85,86]. The expression of IL-23 is 
increased and positively correlated with IL-17 in immunohistochemical analyses of 
ovarian cancers[87]. Studies showed that IL-17 and IL-6 induce STAT3 phosphory-
lation, leading to the production of programmed death-ligand 1 (PD-L1), which is 
related to the inhibition of antitumor T cells[88-90]. Additionally, T lymphocytes and 
antigen presenting cells can stimulate the secretion of proinflammatory interleukins 
such as IL-1, IL-6, and IL-23, providing favorable means for the differentiation and 
expansion of Th17 cells[91]. In addition, ovarian tumor cell lines secrete IL-6, IL-8, IP-
10, MCP-1, and VEGF in large amounts[91]. The IL-17 stimulates tumor progression 
due to proangiogenic effects and increased percentage of CD4+/IL-17 T lymphocytes 
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among cells that infiltrate ovarian cancer[92,84]. The chemokine CXCL12 (SDF-1α) 
participates in the induction of angiogenesis verified in several types of tumors along 
with VEGF[93]. Curiel et al[94] demonstrated that ovarian cancer patients had 
increased levels of proangiogenic cytokines (IL-8 and TNF-α) that stimulate the 
development of new tumor blood vessels[94]. This abnormal vasculature allows the 
tumor to spread more effectively, facilitates the escape of immune surveillance, and 
impairs the action of antineoplastic agents, limiting the beneficial effects of these drugs
[84,85]. Notably, IL-17A and gdT cells recruit small peripheral peritoneal macrophages 
that selectively secrete IL-17A receptors that trigger tumor growth and angiogenesis
[95].

Another study reported that there is an inverse relationship between Treg and Th17 
cells observed in ovarian cancer and this difference leads to an antitumor response, 
which significantly influences survival, and the presence of these polyfunctional Th17 
cells is statistically related to more favorable clinical outcomes[96]. In contrast, the 
significant presence of regulatory T cells is associated with worse survival[97]. Studies 
suggest that the responses of T cells directed to ovarian cancer may be related to the 
expansion of Th17 cells and may neutralize the suppression of these cells through the 
activity of Treg cells[97,98]. Moreover, the decrease in Th17 Lymphocytes and the 
increase in Treg cells was related to an increased level of TGF-β and this, in turn, is 
associated with metastatic processes resulting in poorer clinical prognosis[99,100]. 
Additionally, in vivo studies observed that a high Treg cells/Th17 cells ratio seems to 
predispose tumor progression because this ratio has shown to be significantly higher 
in epithelial ovarian cancer and peritoneal metastasis than in benign ovarian tumors 
and benign peritoneum[101]. It is believed that the presence of tumor-associated 
macrophages may induce this imbalance[102]. M2 macrophages have been shown to 
modulate the tumor microenvironment and to promote a relative deviation to the Treg 
immune profile through the release of exosomes carrying miRNAs that are often 
overexpressed in some types of cancer, such as ovarian cancer[103,104].

Th17 cells in ovary cancer secrete IL-21, which, along with TGF-β, can interfere in 
the differentiation of T cells into Th17 Lymphocytes and stimulate the transformation 
of Th17 cells into Treg cells. In addition, there is a regulation in the distribution of 
Th17 and Treg cells via CCR6 chemokine receptors to direct Th17 cells to specific sites
[105,106]. In this sense, some therapeutic methods have been developed aiming at 
increasing the patients' survival as well as at reducing the recurrence rates. Among 
these methods, stand out immunotherapy approaches based on therapeutic vaccines 
that stimulate the expansion of specific T cells in patients with ovarian cancer, using 
the alpha folate receptor (Fra) as the vaccine target antigen, since this receptor is 
overexpressed in patients with high-grade serous ovarian cancer[97,107]. The vaccine 
induces stimulation of Fra-specific INF-γ+ and IL-17+ T cells[97]. Furthermore, a study 
showed that the Th17 profile and IFN-γ induce the production of CXCL9 and CXCL10 
that promote the migration of effector cells to ovarian tumors[98,108]. The use of 
vaccines that stimulate the expression of Th17 cells specifically in an ovarian tumor is 
associated with a reduction in recurrence rates, as well as in the improvement of 
survival rates[97,98].

Prostate cancer: Prostate cancer is the most prevalent type of cancer among the male 
population[109]. Chronic inflammation has been identified as a factor that is associated 
with the pathogenesis of various types of cancer, including prostate cancer[109,110]. In 
that context, IL-17 plays an important role in the inflammatory process related to the 
development and progression of that cancer[111]. Studies have shown that blocking 
IL-17 in mice inhibits the development of prostate cancer[112]. The imbalance in the 
proportion of CD4+ and IL-17+ cells and CD4+ Foxp3+ T cells, responsible for regulating 
Treg cells in the tumor microenvironment, may lead to worsening of the inflammatory 
process and promote carcinogenesis[113,114]. Treg cells are involved in the 
suppression of antitumor immune responses[115]. Blocking PD-1 can promote 
antitumor activity by balancing Th1/Th2 responses and stimulating Th17 cells, as well 
as inhibiting Treg cells and stimulating the Th17 response[116]. In that context, the use 
of vaccines that inhibit the action of programmed death 1 (PD-1)/PD-L1, which make 
up an immunological checkpoint, has demonstrated promising results[117,118]. In 
prostatic tumors, IL-17 has been shown to attract M1 and M2 macrophages. M1 
macrophages inhibit tumor growth, whereas the M2 cells promote tumor growth[119-
121].

Respiratory tract cancers
NSCLC and small cell lung cancer: Chronic inflammation is a crucial factor in the 
pathogenesis of different types of cancer, including lung cancer, which has proved to 
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be a major public health problem affecting 1.8 million patients each year[122]. Lung 
cancer is the leading cause of cancer-related deaths in recent decades and can be 
divided into two types: Small cell lung cancer and NSCLC[123]. In addition to Th17 
cells and the association with tumor survival, chemokines and their receptors related 
to T cell migration were examined in NSCLC cases. The high expression of CCR6 was 
associated with shorter disease-free survival[124]. Likewise, CCL20, a chemokine 
known to interact with CCR6, was elevated in the tumor compared to tumor-free lung 
tissue. Thus, these results suggest that CCL20/CCR6 may facilitate the infiltration of 
Th17 cells in the NSCLC and promote tumor progression[125]. A regulatory role for 
Th17 cells in the tumor microenvironment of NSCLC was found to modulate the 
differentiation and activation of various subsets of local T cells[126]. IL-17A is 
associated with the concentration of VEGF in patients with NSCLC, suggesting that IL-
17A may promote angiogenesis in that tumor[127]. In addition, patients with high 
levels of IL-17A demonstrated shorter survival compared to those with low expression 
of the cytokine[128]. Studies suggest that IL-17A/Th17 cells may play a pro-
tumorigenic role, as an increased number of Th17 cells are found in lung cancer[129]. 
Th17 cells can be generated under oncogene activation or inhibition of tumor 
suppressors in human and murine models[130,131]. Oncogenic NSCLC models have 
shown a predominant pro-tumorigenic role of IL-17A[130,61], while downregulation 
of IL-17A in a tumor suppressor NSCLC model has been associated with antitumor 
activities[131].

Studies also demonstrated that IL-17A deficiency or blockade leads to the 
suppression of lung metastasis in experimental tumor models. This suggests that the 
key cytokine IL-17 produced by lung CD4+ Th17 cells plays an important role in cancer 
regulation[132]. In addition, anti-IL-17A treatment in pulmonary adenocarcinoma 
modifies cytokine responses by lung CD4+ T cells and induces production of TNF and 
IFN-γ by Th1 cells at the tumor site, leading to improved antitumor immune responses 
and suppression of tumor growth[133]. Other studies assessed the role of IL-6, a 
cytokine produced by Th17 cells, in a murine model of lung adenocarcinoma and 
human tumors, showing that IL-6 inhibits regulatory T cells and induces Th17 cells. In 
vivo treatment with anti-IL-17A antibodies reduced the production of IL-6 in the 
airways[132]. Thus, anti-IL-17A-mediated regulatory T responses can induce increased 
anti-tumor immune responses[134]. The main transcription factors of Foxp3 regulatory 
T cells, as well as the main transcription factors of Th17 in human cells, were increased 
in lung tumor tissues, resulting in a parallel local expansion of Th17 and Treg 
responses. These findings suggest a potential direct relationship between both T cell 
lines in lung cancer[135]. T-cell immunoglobulin-3 (TIM-3) expressed in Th1, Th17, 
and CD8 T cells, but not in Th2 cells, has already been described as a critical 
component of cell-mediated immunity against cancer[136]. Recent studies have 
supported an important role in the exhaustion of TIM-3 T cells in lung cancer[137]. 
TIM-3 as well as PD-1, another T cell exhaustion marker, are co-expressed in TCD8 in 
mice with lung tumors, exhibiting depleted phenotype as defined by the failure to 
proliferate and produce IL-2, TNF, and IFN-γ[137]. Blocking the TIM-3 and PD-1 
pathways is more effective in controlling tumor growth than targeting either pathway 
alone, suggesting that these two pathways work synergistically in establishing T-cell 
exhaustion[138].

Gastrointestinal tract cancers
Gastric cancer: Gastric cancer is the fifth most common and the third most lethal 
malignancy around the world. The development of this cancer is mainly linked to 
factors such as the chronic inflammation induced by Helicobacter pylori infection and 
age[139]. It is well established that the immune response of the host infected by Helico-
bacter pylori leads to the activation of the IL-23 pathway, which induces the differen-
tiation of CD4+ naive T cells into Th17 cells. This immunological pathway is called the 
IL-23/IL-17 axis[140]. The IL-17 acts in the endothelium, monocytes, and gastric 
epithelial cells producing TNF-α, IL-1, IL-6, and IL-8 that stimulate the recruitment of 
neutrophils to the inflammatory site[140,141]. In an interesting study, a significant 
increase in the levels of IL-17 was observed in the serum of patients with gastric 
cancer. In addition, this increase in IL-17 expression was associated with a high 
density of microvessels, which assist in the development of the tumor[142]. An 
important study also found high levels of plasma IL-17 in a patient with gastric cancer 
and, interestingly, the results showed an increase in the expression of IL-17 and RORγt 
in the cancer tissue. In addition, a 26-fold increase in IL-17 expression was observed 
among patients who had metastasized[143].
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Moreover, a study found high levels of IL-6, TGF-β1, FoxP3, and IL-17 expression in 
gastric cancer patients, highlighting the importance of the Th17/Treg axis in this 
neoplasm. IL17 and IL-6 have been associated with tumor progression, and Foxp3 and 
TGF-β1 were mainly expressed in patients with advanced gastric cancer. These 
findings suggest that these molecules play a role in the tumor immune response 
evasion and cancer progression[144].

The induction of Th17 cell expression is very important in the pathophysiology of 
gastric cancer. Moreover, it is well described that IL-1, IL-6, IL-21, IL-23, and TGF-β 
induce the differentiation of T naïve cells into Th17 cells[145]. In this sense, Su et al
[143] also observed increased levels of TGF-β and IL-21 in gastric cancer tissues[143], 
positively regulating Th17 cells and, consequently, IL-17 levels. Some studies suggest 
that treatment with anti-IL-17A monoclonal antibodies such as Secukinumab and 
Ixekizumab may be beneficial in gastric cancer therapy[146]. An experimental study 
with rats, which had tumor growth stimulated by injection of gastric cancer cells of the 
YTN16 type, showed an expressive regression of the tumor with a complete 
elimination of the cancer in 8 of 10 mice using a combination of anti-IL-17A and anti-
PD-1 monoclonal antibodies[147]. Despite being experimental results, they point to 
new paths regarding the treatment of gastric cancer with immunotherapy.

Pancreatic cancer: Pancreatic cancer is the 14th most common cancer and the 7th that 
kills the most in the world[148]. Obesity, type 2 diabetes, and smoking are the main 
risk factors for the development of this cancer[149]. Th17 cells are important in tumor-
associated inflammation, stimulating migration, invasion, and induction of angiogenic 
factors[150]. A recent study observed that IL-17 stimulates an important mediator of 
pancreatitis (REG3-β) in pancreatic cells and can activate the gp130-JAK2-STAT3-
dependent signaling pathway, which results in a greater acinar-ductal metaplasia and 
in the development of lesions of early pancreatic intraepithelial neoplasia[151]. An 
interesting study pointed to a similarity between the IL-17A-IL-17RA pathway and the 
IL-17B-IL-17RB pathway in tumor malignancy. It was observed that IL17-B increased 
the expression of IL-8, Nuclear factor kappa-light-chain-enhancer of activated B cells 
(NF-κB), and activating protein-1 (AP-1), which aid the tumor invasion in the 
pancreatic tissue and recruit neutrophils, lymphocytes, and endothelial cells[152]. 
Although advances have been achieved, the roles played by Th17 cells in the 
development of pancreatic cancer are not well understood. Previous investigations in 
mice suggest how this pathway works. However, the mechanism in humans needs 
further studies. Some studies have observed increased levels of Th17 cells in patients 
with pancreatic ductal adenocarcinoma, supporting theories about the role of this 
profile in the immune response involved in this cancer. He et al[153] reported that the 
frequency of these cells was higher in pancreatic tumor tissues when compared to 
other tissues of the organ (P = 0.031). Serum levels of IL-17 and IL-23 were 
significantly increased in pancreatic cancer patients when compared to healthy 
patients (P = 0.02)[153]. IL-17 blockade demonstrated an inhibition in neutrophil 
recruitment and increased activation of CD8+ T cells in the environment close to the 
tumor. In addition, a synergy was observed between the inhibition of IL-17 and PD-1 
in the therapy against that cancer[154]. Interestingly, a study that aimed at 
understanding the Th17/Treg axis and its implications in pancreatic cancer found that 
the balance between these immune response profiles was altered in the peripheral 
blood of patients with this malignancy, with an important deviation to the Treg 
immune profile. Furthermore, it was observed that this relationship becomes even 
more accentuated as the disease progresses, supporting the hypothesis that Treg cells 
might impair the antitumor immune response and contribute to the tumorigenesis in 
pancreatic cancer[155]. Despite these results, studies for the clinical use of these agents 
are still scarce.

Colorectal cancer: Colorectal cancer is the third most common cancer and the fourth 
with the highest mortality in the world[156]. The main risk factors for the development 
of this cancer are age, genetics, obesity, type 2 diabetes, and inflammatory bowel 
disease[157]. Possibly, IL-17A acts to increase IL-6 and VEGF, which are important in 
carcinogenesis and pro-angiogenic, respectively[158]. Other studies indicate that Th17 
cells stimulate immunosuppressive factors such as TGF-β, CXCR3, chemokine receptor 
CC 6 (CCR6), and IL-6. In addition, they decrease the anti-tumor activities of CD8+ T 
cells[159]. An interesting Chinese study observed the positive regulation of IL-17 in the 
progression of the adenoma-carcinoma sequence, with the levels of this cytokine being 
higher in cancer patients[160]. Although the pathogenesis of colorectal cancer has 
different pathways, in fact, IL-17 has an important role in the immune response and in 
the development of this cancer. The possible treatments that have been studied in this 
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setting involve blocking IL-23, IL17, IL-17R, and RORγt nuclear receptor antagonists, 
which can inhibit the differentiation of Th17 cells[159]. However, clinical trials with 
these agents have not been developed and further studies are needed to understand 
the effectiveness of these drugs in patients at different stages of this disease.

Liver cancer: Liver cancer is the fifth and ninth most common cancer in men and 
women, respectively, and has a high mortality rate around the world[161]. Infection 
with hepatitis B and C viruses, alcoholic liver disease, and, possibly, non-alcoholic 
fatty liver disease are the main risk factors for the development of hepatocellular 
carcinoma[162]. A recent Chinese study found that IL-17 has a direct effect over 
hepatocellular carcinoma with the induction of IL-6/JAK2/STAT3 by activating the 
AKT pathway. This pathway positively regulated IL-8, matrix metalloproteinases 2 
(MMP2), and VEGF, and neutrophil recruitment, neoangiogenesis, and tumor growth 
were observed in vivo[163]. Another study also indicated the influence of the 
CCL20/CCR6/Th17 cells pathway in promoting vascular invasion and metastasis
[164]. A study identified that the high intramural expression of IL-17 and IL-17E were 
predictors of a worse survival prognosis (P = 0.016; P < 0.001)[165]. It has been well 
described that IL-17 is important in the development and prognosis of hepatocellular 
carcinoma. However, there are not many studies on immunological therapy, and the 
concomitant use of IL-17 inhibitors with conventional treatments, may be a promising 
alternative to be explored by new studies.

Skin cancers
Non-melanoma skin cancer: According to the WHO, skin cancer has increased over 
the past 20 years. The global estimate is that there will be 2 to 3 million cases of non-
melanoma cancer and 132000 melanoma cancers annually[166]. Previous animal model 
studies using the chemical inductors dimethylbenzanthracene (DMBA) and 12-O-
tetradecanoylforbol-13-acetate (TPA) that promote the development of inflammation-
associated skin cancer, have demonstrated that IL-17R-deficient mice are resistant to 
DMBA/TPA and that the depletion of this cytokine increases the immune control 
performed by CD8+ T cells and inhibits the promotion of inflammation in the skin 
tumor. It has also been found that TPA-induced inflammation increases the suscept-
ibility of tumor growth and the development of tumor-specific IL-17-producing T cells 
and that IL-17 blockade can inhibit the progression of existing skin tumors stimulated 
by chemical reagents and cancel the induced inflammation that contributes to tumor 
growth[167]. In another study using the same experimental model, in addition to 
looking at the importance of IL-17-produced by CD4+ T cells in skin tumorigenesis, the 
researchers revealed an important regulatory role in the IL-17-STAT3 pathway in 
tumor development, verifying that IL-17 induces the oncogenic activity of STAT3 and 
promotes the proliferation of epidermal cells and hyperplasia. On the other hand the 
decrease in IL-17 reduced the activation of STAT3 and the unleashing of its protumor 
mechanisms[168]. In a research with samples of patients diagnosed with basal cell 
carcinoma (BCC) and squamous cell carcinoma (SCC) of the skin, the role of the 
cytokines IL-17 and IL-22 in the progression of both types of cancer was evaluated. 
The results showed that the tumor microenvironment in both carcinomas is enriched 
with IL-22+ and IL-17+ T cells. The IL-17, alone or along with TNF-α, was able to induce 
the production of IL-6 and IL-8, important for tumor progression in the analysis of 
SCC CAL27 cells. Another important finding is that IL-17 positively regulated NF-κB 
signaling, while IL-22 activated the STAT3 pathway and the anti-apoptotic AKT 
protein in both cell lines. Corroborating the in vitro findings, experiments with mice 
that received CAL27 also demonstrated that IL-17 and IL-22 increased the size of the 
tumor[169]. Another study with human BCC biopsies characterized by a moderate-to-
severe inflammatory infiltrate evaluated the expression of the cytokines IFN-γ, IL-23, 
IL-17, and IL-22 and their expression during treatment with the drug imiquimod 
(IMQ) and with photodynamic therapy (PDT). The results showed high expression of 
all cytokines in cancer, and they were related to the severity of the inflammatory 
infiltrate. It was also possible to observe a correlation between IFN-γ and IL-17 
expression, and both cytokines were expressed by CD4+ and CD8+ T cells. In addition, 
there was an increase in all cytokines in response to IMQ/PDT treatment[170].

Melanoma skin cancer: Melanoma is the 19th most frequent neoplasm in the world 
with an incidence rate of 3.3 per 100 thousand people[171]. Malignant melanoma is the 
type of skin cancer with the worst prognosis, having a high probability of spreading 
metastases when in advanced stage[172]. IL-17 promotes tumor growth by facilitating 
angiogenesis and the exit of tumor cells from their primary focus[172,173]. The 
expression of IL-17A represents an important target in the study of the escape of 
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tumor cells from the immune system[171]. A research conducted in 2010 points to IL-
17 as a useful biomarker for early diagnosis of melanoma in mucosae[174]. It is 
believed that the unregulated tissue inflammatory process may contribute to tumor 
expansion and metastasization[175-177]. A study analyzed the effect of IL-17 on the 
growth of melanoma, and wild type mice and IL-17-/-were inoculated with a B16 
melanoma cell lineage. The results showed that melanoma growth was significantly 
inhibited in IL-17-/- mice compared with wild type mice. In this same study, the 
Hmgb1 (High-mobility group box 1) molecule and its receptor RAGE, which is 
associated with inflammation and cellular injury, were also analyzed. The growth of 
the B16 cell lineage was inhibited and the expression of IL-23 and IL-17 was 
significantly reduced in RAGE-/-mice, indicating that the Hmgb1-RAGE route 
contributes to the IL-17 expression dependent on the production of IL-23, and 
promotes tumor growth[176]. A previous study demonstrates that the production of 
IL-17 by B16 melanoma strains induces the production of IL-6 that activates the 
nuclear transcription factor STAT3, which acts activating the transcription of several 
genes related to cell proliferation and to an increase in the expression of VEGF, MMP9, 
and prostaglandins E1 and E2. Moreover, STAT3 increases the expression of anti-
apoptotic genes[178]. Thus, it can be concluded that IL-17 promotes the growth of 
melanoma B16, while the blocking of IL-17 inhibits the growth of the tumor. On the 
other hand, Th17 cells might play a protumor role when they are converted into a 
hybrid phenotype expressing markers that characterize both this cell subtype and Treg 
cells. This conversion also occurs via the secretion of TGF-β and retinoic acid in the 
presence of suppressor cells derived from tumor-infiltrating myeloid cells. These 
findings reinforce that Th17 cells might play conflicting effects on melanoma, also 
contributing for its pathogenesis[179]. These studies support the involvement of Th17 
cells and interleukins produced by this population of T lymphocytes, highlighting the 
cytokine IL-17, in the development and progression of skin cancer. In addition, there is 
also the possibility of new therapeutic approaches targeting this immune response 
profile. Finally, further studies are needed to better understand the relationship 
between Th17 responses and skin cancers.

Other types of cancer
Cervical cancer: Cervical cancer is the second leading cause of cancer death in young 
women worldwide. Virtually all cervical cancers begin with infection with high-risk 
human papillomavirus (HPV)[180]. Most HPV infections are eliminated naturally as a 
result of humoral and cellular immune responses[181]. However, the persistence of 
this infection induces an inflammatory response, which seems to contribute to tumor 
growth and disease progression, instead of inducing an effective immune response
[182]. This response is partially induced by tumor cells that regulate the immune 
response negatively through the expression of human leukocyte antigen, which 
produces immunosuppressive cytokines, such as IL-10 and TGF-β, and attracts 
regulatory T cells[183].

A large number of Th17 cells was a factor that improved prognosis and survival in 
this type of cancer, suggesting that Th17 cells play important antitumor responses in 
cervical cancer settings[183]. Evidence emphasizes that the infiltrate of Th17 cells in 
the cervical tumor had an activated phenotype with increased expression of CCR6, the 
receptor for the CCL20 chemokine. It corroborates the hypothesis that the Th17/Treg 
axis imbalance may be involved in the promotion and progression of cervical cancer
[184]. A recent study suggested that the imbalance between Th1/Th2 and Th17/Treg 
cells was related to the stage of cervical cancer, tumor size, metastasis, and vasoin-
vasion. The findings demonstrated that the peripheral immune cell levels reflect the 
patient's condition[185]. Although some questions can already be answered, further 
studies on the involvement of the Th17 response to cervical cancer are still needed.

Lymphoma: Every year, approximately 500000 people are diagnosed with non-
Hodgkin's lymphoma and 80000 with Hodgkin's lymphoma, the most common 
cancers among the 90 lymphoma subtypes[186]. In a study conducted in China, a 
significantly decreased frequency of Th17 cells was observed in the peripheral blood of 
patients with non-Hodgkin's B-cell lymphoma compared to healthy individuals, along 
with an increase in Th1 cells[187]. This activity may be associated with the patient’s 
response to treatment and the different stages of the disease[188]. Another study 
revealed that the number of Th17 cells in lymphomas is influenced by the amount of 
mast cells and granulocytes. The IL-6 expression by these cells contributes to the 
establishment of a pro-inflammatory environment for Th17 cells, favoring CXCL-13 
production and its interaction with CXCR3 and CXCR5 receptors expressed in mast 
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cells[189]. It has been shown that drugs that block the IL-23/IL-17 axis, which are 
already available for the treatment of certain autoimmune diseases, can increase the 
therapeutic impact against classic Hodgkin’s lymphoma[190,191]. Moreover, a recent 
study demonstrated that the prognostic implication of Th17 cells depends on the type 
of treatment employed, since the Th17 signature did not represent a negative 
prognosis in the treatment with the medication Lenalidomide in non-follicular 
lymphoma[192,193].

Breast cancer: Breast cancer is one of the main causes of death among women[194]. 
This type of cancer is a heterogeneous disease with different patterns of tumor infilt-
rating lymphocytes, depending on the molecular subtype and other factors of the 
tumor microenvironment that are important for prognosis and predictive for treatment
[195]. Studies point to a relevant infiltrate, characterized mainly by Foxp3+ cells and 
high levels of IL-6, in addition to revealing a high infiltration of IL-17-producing cells 
and a low amount of CD8+ cells, suggesting that Th17 cells participate in an effective 
immune response to eliminate the tumor in patients with breast cancer[196,197]. IL-6 is 
expressed in breast cancer patients, and its levels are positively associated with the 
number of Th17 cells. In the breast cancer microenvironment, IL-6 enhances the differ-
entiation and expansion of Th17 cells[198]. Another study showed that Th17 cells 
positively regulate the production of CXCL1 during the progression of breast cancer. 
CXCL1, which is produced by breast cancer cells, might promote the growth and 
development of cancer[199]. In a recent study carried out in China, the involvement of 
high salt intake was evidenced as a factor that accelerated the growth of breast cancer 
in addition to increasing Th17 cells circulation in mice. It was also demonstrated in an 
in vitro study that the elevation of Th17 cells was reversed with the application of 1.25 
Vitamin D3, inhibiting the differentiation of these cells (P < 0.001)[200]. Although some 
studies point to the important protective role of Th17 cells, further investigation is 
needed in that context[201].

Bone-related cancers: Studies evaluating the relationship between Th17/Treg axis and 
bone marrow cancer concluded that deregulations in this axis leading to immune 
tolerance or impaired immune response might contribute to bone tumorigenesis. In 
that context, a study evaluating peripheral blood mononuclear cells and bone-marrow 
mononuclear cells from patients with multiple myeloma and healthy controls 
observed an enhanced expression of Th17 cell-related cytokines in the affected 
individuals. Moreover, that study demonstrated that the IL-17 has the potential to 
promote the growth of myeloma cells and colony formation through the activation of 
IL-17 receptors as well as to inhibit the Th1 immune system profile along with the IL-
22[202]. Otherwise, studies have observed an increased number of Treg cells in 
patients with acute myelogenous leukemia (AML) compared to controls, which 
suggests that the Treg immune profile might contribute for an improper immune 
response against the malignancy and to a consequent progression of the AML[203,
204]. Furthermore, a study investigating the role of IL-22 produced by Th17 and Th22 
cells in osteosarcoma demonstrated that its levels were enhanced in osteosarcoma cells 
and that it stimulates the proliferation and invasion of tumor cells via STAT3 signaling
[205]. Finally, the aforementioned studies suggest that the understanding of the role of 
the Th17/Treg axis is essential for the study of bone-related cancers and should be 
explored as a potential therapeutic target in the treatment of those malignancies. 
Interestingly, vitamin D3 can act therapeutically over Th17 cells, reducing IL-17A and 
IFN-γ levels in rheumatoid arthritis. Therefore, vitamin D3 might could be used for the 
development of a therapeutic approach against bone-related cancers through the 
modulation of the Th17 immune profile (Figure 2)[206].

CONCLUSION
The Th17 response is intimately linked to the development of cancers and, in the last 
few years, the knowledge on the role of Th17 cells in the tumor microenvironment 
have significantly increased. However, much still has to be done in order to achieve a 
broader understanding on this issue. The IL-17 stands out among the Th17 cells-
related inflammatory cytokines, being involved mainly in processes that promote 
tumorigenesis. In addition, the plasticity of Th17 cells, which allows a broader 
dynamics of the Th17/Treg axis in different tumor activities, and the Th17/Th1 axis, 
which is associated with antitumor mechanisms, are important issues to be taken into 
account in the immune-oncology field. The modulation of these immune system 
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Figure 2 Main protumor mechanisms related to the Th17 immune response profile. STAT3: Signal transducer and activator of transcription 3; MMP2: 
Matrix metalloproteinases 2; VEGF: Vascular endothelial growth factor; PD-L1: Programmed death-ligand 1; PGE1: Prostalglandins E1; PGE2: Prostalglandins E2; 
TIM-3: T-cell immunoglobulin-3; NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells; AP-1: Activating protein-1.

interplays might be a potential alternative for the development of new therapeutic 
interventions for various malignancies. Moreover, the role of the IL-27 should be 
further studied in various types of cancer since an important antitumor effect has been 
associated with this interleukin in some malignancies. Because IL-17 has shown to be 
so important in the pathogenesis of several malignant tumors, anti-IL-17 monoclonal 
antibodies are promising drugs that should be evaluated in numerous neoplasms. 
Finally, it has to be emphasized that there are several similarities and differences 
between Th17 responses in various cancers, being it highly dependent on the tumor 
context. The comprehension of the Th17 immune response in cancer is important not 
only to predict prognosis, but also to identify new therapeutic possibilities.
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