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Abstract
Gastrointestinal (GI) cancers are a set of diverse diseases affecting many parts/ 
organs. The five most frequent GI cancer types are esophageal, gastric cancer 
(GC), liver cancer, pancreatic cancer, and colorectal cancer (CRC); together, they 
give rise to 5 million new cases and cause the death of 3.5 million people annually. 
We provide information about molecular changes crucial to tumorigenesis and 
the behavior and prognosis. During the formation of cancer cells, the genomic 
changes are microsatellite instability with multiple chromosomal arrangements in 
GC and CRC. The genomically stable subtype is observed in GC and pancreatic 
cancer. Besides these genomic subtypes, CRC has epigenetic modification 
(hypermethylation) associated with a poor prognosis. The pathway information 
highlights the functions shared by GI cancers such as apoptosis; focal adhesion; 
and the p21-activated kinase, phosphoinositide 3-kinase/Akt, transforming 
growth factor beta, and Toll-like receptor signaling pathways. These pathways 
show survival, cell proliferation, and cell motility. In addition, the immune 
response and inflammation are also essential elements in the shared functions. We 
also retrieved information on protein-protein interaction from the STRING 
database, and found that proteins Akt1, catenin beta 1 (CTNNB1), E1A binding 
protein P300, tumor protein p53 (TP53), and TP53 binding protein 1 (TP53BP1) are 
central nodes in the network. The protein expression of these genes is associated 
with overall survival in some GI cancers. The low TP53BP1 expression in CRC, 
high EP300 expression in esophageal cancer, and increased expression of 
Akt1/TP53 or low CTNNB1 expression in GC are associated with a poor 
prognosis. The Kaplan Meier plotter database also confirmed the association 
between expression of the five central genes and GC survival rates. In conclusion, 
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GI cancers are very diverse at the molecular level. However, the shared mutations and protein 
pathways might be used to understand better and reveal diagnostic/prognostic or drug targets.

Key Words: Gastrointestinal cancers; Genome; Cellular pathways; Protein-protein interaction; Prognosis; 
OMIC data
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Core Tip: We highlight the genomic mutations and cellular pathways in gastrointestinal (GI) cancers. 
These are responsible for the cell’s behavior, allowing unlimited cell replication and invasion of other 
tissues. Using the STRING database, we found that Akt1, catenin beta 1, E1A binding protein p300, tumor 
protein p53 (TP53), and TP53 binding protein 1 are central nodes in the GI cancer protein network. Their 
expression is associated with poor survival in some GI cancers, which was confirmed by the Kaplan Meier 
plotter database. This information points to crucial and shared aspects of the most frequent GI cancers.

Citation: Bispo IMC, Granger HP, Almeida PP, Nishiyama PB, de Freitas LM. Systems biology and OMIC data 
integration to understand gastrointestinal cancers. World J Clin Oncol 2022; 13(10): 762-778
URL: https://www.wjgnet.com/2218-4333/full/v13/i10/762.htm
DOI: https://dx.doi.org/10.5306/wjco.v13.i10.762

INTRODUCTION
In 2020, the number of cancer cases in the digestive system was 5 million and 3.5 million deaths 
worldwide[1,2]; the physiologic system with the highest number of cases and among the highest 
percentage of deaths[3] (Table 1). The cancer types in this system can be classified as organ origin and 
cell type. The most frequent are esophageal cancer (EC), gastric cancer (GC), liver cancer, pancreatic 
cancer, and colorectal cancer (CRC)[2,3]. GC, liver cancer, and CRC are among the most common causes 
of cancer deaths annually[2]. Gastrointestinal (GI) cancers also have specific molecular changes in 
genetic/genome, epigenetics, gene expression, and cellular pathways contributing to tumor behavior. 
This information might be helpful in diagnosis, prognosis, and new drug development.

EC
EC has two subtypes: esophageal squamous cell cancer (ESCC) and esophageal adenocarcinoma (EAC)
[4]. The incidence of ESCC increases globally and predominantly in Eastern Asia and Eastern/Southern 
Africa[4-7]. However, the ESCC decreases while EAC increases in the United States and a few European 
countries[5]. The ESSC and EAC incidence differences are geographically observed in sex and ethnic 
patterns[4,5].

There is also a well-established genetic factor associated with sex, and although it is still not well 
understood, it is known that the ratio between men to women is 2.5-4.4:1[4,6]. Studies indicate a 
protective effect of female sex hormones, including a lower risk of cancer for women previously 
breastfed. Nevertheless, environmental factors also influence this prevalence as, for example, men tend 
to abuse alcohol and tobacco, which are primary risk factors for the manifestation of EC[4,8].

The risk factors for ESCC are smoking, a low vegetables/fruit diet, and alcohol consumption[9], 
whereas for EAC, the risk factors are obesity and gastroesophageal reflux disease[9,10]. When alcohol 
and tobacco are used together, there is an increased risk. This combination is believed to be responsible 
for 70%-90% of cases, mainly because they cause chronic irritation and inflammation of the esophageal 
mucosa. In the case of obesity, the greater the abdominal circumference, the greater the intra-abdominal 
pressure increases the probability of developing gastroesophageal reflux[4,6,11-14].

Early diagnosis is fundamental to improving prognosis. However, dysplasia usually is asymptomatic
[4,11,12,15] and manifests at an average age of 67 years, when there is a high incidence of metastasis, 
mainly in lymph nodes, liver, lungs, and bones[11,12]. These features make the EC an aggressive 
malignancy with a 15%-23% 5-year survival rate[9,10].

GC
GC has the fourth highest incidence and mortality worldwide[1,2]. The primary risk factors for GC are 
genetics, diet (high amount of salt and low consumption of fruits and vegetables), Helicobacter pylori or 
Epstein–Barr virus infection, smoking, alcohol intake, and sedentary life[16-19]. The principal risk factor 
for GC is H. pylori infection, accounting for 80% of the cases. Although the incidence of H. pylori 
infection is decreasing, GC deaths are still high. While the primary risk factor is H. pylori infection, many 
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Table 1 Gastrointestinal cancer data

Tissue Incidence[1] Mortality[1] ASR incidence[1] ASR mortality[1] 5-yr survival rate

Colorectum 1931590 935173 2.3 0.94 60%-70.9%[1]

Esophagus 604100 544076 0.78 0.68 14.6%-23.2%[1]

Liver 905677 830180 1.1 1.0 18%[3]

Pancreas 495773 466003 0.55 0.51 7.9%-14.3%[1]

Gastric 1089103 768793 1.3 0.90 20.8%-32.8%[1]

Age-standardized rate in 100000 people. ASR: Age-standardized rate.

genes are associated with GC[16,18,20], and some genetic variations that can interact with H. pylori 
increase the GC risk[21,22]. The incidence of GC is higher in males (1.32-2.2) and in Eastern/Central 
Asia and Latin America[16,18].

Obesity can induce inflammation of the stomach lining through tumor necrosis factor (TNF), 
interleukin 6 (IL-6), and C-C motif chemokine ligand 2. By contrast, a diet rich in fruits and vegetables 
has proven to be an ally in cancer prevention because it contains numerous antioxidants that prevent 
metabolic damage, especially vitamin C[18].

A relevant factor in the decline of GC has been the successful prevention and treatment of infections 
by H. pylori[18]. According to the International Agency for Research on Cancer, this is a carcinogen from 
group 1, meaning there is sufficient evidence of human carcinogenicity[23,24]. H. pylori infection affects 
more than half of the world’s population, and its eradication may considerably decrease the chances of 
stomach cancer. However, it would increase the chances of esophageal adenocarcinoma. However, it is 
unknown how this esophageal protection mechanism occurs[18,24,25].

Hepatocellular carcinoma
There are about 1 million new cases of liver cancer each year, with hepatocellular carcinoma (HCC) 
responsible for most patients (90%) and the second most common cause of cancer death worldwide[26,
27].

HCC presents a poor prognosis due to a late diagnosis. Multiple different tumors may occur in a 
single patient, leading to intra-tumor and intra-patient heterogeneity, which makes it difficult to 
establish a treatment line for HCC[27,28]. This heterogeneity can be caused by environmental factors 
and genomic and biological changes caused by the tumor lesion[27].

Cirrhosis and non-alcoholic fatty liver disease are risk factors associated with alcohol abuse and 
obesity that can lead to the onset of HCC. Genetic factors such as diabetes, exposure to carcinogens 
(aflatoxins), and biological factors, especially hepatitis virus infection, can be highlighted[28].

The HCC development is a multistep process. It starts as a chronic liver disease that leads to inflam-
mation, fibrosis, or aberrant hepatocyte regeneration. This set of conditions can progress to cirrhosis and 
later malignancy. The causes of this inflammation can be hepatitis B virus/hepatitis C virus infection, 
fatty liver disease, excessive alcohol intake, and aflatoxin consumption[26,29]. The outcome of this 
inflammation can be influenced by epigenetics and the immunological response in the tumor microen-
vironment to create a preneoplastic lesion until producing cells with highly proliferative, invasive, and 
survival skills[26].

The geographic regions most affected by HCC are Southeast Asia and sub-Saharan Africa, where 
there is endemic infection by the hepatitis virus and high exposure to aflatoxin, which are responsible 
for 70%-90% of cases in these places[28]. Currently, there is no line of therapy based on biomarkers 
suitable for HCC, although some candidate genes already exist[30].

Pancreatic cancer
Pancreatic cancer, characterized by pancreatic ductal adenocarcinoma (PDAC), is the seventh leading 
cause of cancer-related deaths worldwide[31]. Its incidence is higher in Europe, followed by North 
America and Oceania, mainly in people over 70-years-old. Incidence and mortality increase with aging 
and are more common in men than women[32].

It is highly fatal because it presents aggressive growth and a lack of symptoms in the disease’s initial 
stage. As the tumor progresses, a picture of nonspecific symptoms begins, including jaundice, weight 
loss, abdominal pain, and fatigue[32]. About 80% of diagnoses are made in the advanced clinical stages, 
leading to a low 5-year prognosis of survival after surgery[33]. Surgical resection is the single strategy 
capable of curing pancreatic cancer. Besides, using chemotherapy concomitantly improves survival rates
[34].

The main risk factors for the onset of pancreatic adenocarcinoma are smoking, alcohol, obesity, H. 
pylori, and type 2 diabetes[34]. Other factors, such as fat infiltration into the pancreas, have been 
associated with developing intraepithelial neoplasms. Pancreatic cancer can also arise from genetic 
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factors that can cause familial syndromes, such as Peutz-Jeghers syndrome[31]. A history of pancreatic 
cancer in first-degree relatives leads to a 2- to 3-fold increase in incidence risk due to inherited genetic 
predispositions[35].

CRC
CRC is the second most deadly cancer worldwide (1.3 million) and is the third leading cause of cancer-
related deaths (540000) annually[2]. CRC is responsible for about 10% of cancer-related deaths 
worldwide, and in the last 45 years, there has been an increase in this mortality rate[36]. Its incidence is 
higher in developed countries such as Australia and New Zealand, followed by countries in Europe, 
East Asia, and North America. The frequency increases as individuals age, usually appearing in people 
over 50 years[37].

The tumor can originate in both the colon and the rectum. However, usually fuse because they have 
similar clinical and biological characteristics, with adenocarcinoma as the primary cell type of the tumor
[37]. Many factors are associated with this increase in the diagnosis/mortality rate, such as an increase 
in life expectancy, poor dietary habits, and risk factors: smoking, red meat consumption, sedentary 
lifestyle, obesity, alcohol intake, and genetics[36,38-40]. These factors change the genetic/molecular in 
colon epithelial cells deactivating suppressor tumor genes and activating oncogenes to create aggressive 
and malignant behavior[40].

In the early stages, the disease has no clinical manifestation. The patient may be asymptomatic for 
years, but as the disease progresses, it advances to a more severe condition, with symptoms such as 
changes in intestinal motility, hidden or evident colorectal bleeding, cramps, loss of weight, weakness, 
and fatigue are manifesting[37].

GENOME DATA IN GI CANCERS
EC
There are several generalized genomic changes when esophageal carcinoma cells are analyzed. The 
most evident is a somatic mutation in tumor protein p53 (TP53) that appears in about 83% of cells. The 
p53 protein is a tumor suppressor and one of the most important transcription factors for regulating 
proliferation, apoptosis, autophagy, and cell cycle. However, this gene has a high mutation percentage 
in cancer cases, reaching 75% in tumor cells[12,41].

There are also changes in genes that control cell cycle and differentiation, including cyclin-dependent 
kinase inhibitor 2A (CDKN2A), nuclear factor erythroid derived 2-like 2, checkpoint kinase 1/2, and 
Notch1/3. Others may appear overexpressed such as cyclin D1 (CCND1) and CDK4/6[12,42-44]. The B 
cell translocation gene 3 protein can regulate the cell cycle’s progression; its low expression is related to 
the appearance of esophageal adenocarcinoma, and its expression level is directly correlated with 
lymph node metastasis[12,45].

The presence of mutations in the growth factors in cancer cells is well documented in the literature. 
Overexpression of epidermal growth factor receptor (EGFR) in carcinoma cells is associated with lymph 
node metastasis, and its expression level also influences the patient’s clinical stage. Another growth 
factor correlated with esophageal carcinoma is vascular endothelial growth factor C (VEGFC), encoded 
by the Fms related receptor tyrosine kinase 1 gene, and its levels in the tissues correlate with tumor 
stages and metastasis state[12,41].

Using next-generation sequencing, frequent mutations in carcinoma cells have been observed in the 
lysine methyltransferase 2D (KMT2D), SET domain containing 2 histone lysine methyltransferase, 
Notch1, retinoblastoma 1, CDKN2A, BRCA1-associated protein-1, forkhead box O3, and MutS homolog 
6 (MSH6) genes compared to adenocarcinoma. It was also observed that some copy number variations 
in fibroblast growth factor 3 (FGF3), FGF4, FGF19, and CCND1 are more expressed in carcinoma 
compared to adenocarcinoma[46].

GC
Besides the infectious causes, the genetic data have helped to classify the GC into three additional 
subtypes: microsatellite instability (21.7%), genome stability (19.6%), and chromosome instability 
tumors (49.1%)[47].

Although infection is environmental, GC caused by infection is associated with genetic modifications 
such as phosphoinositide 3-kinase catalytic subunit (PIK3CA) mutations or gene amplification of Janus 
kinase (JAK), programmed death-ligand 1/2, or ERBB2. The infectious pathogen can also induce 
epigenetic modifications in this type of GC as DNA methylation in the phosphatase and tensin homolog 
(PTEN) gene promoter[48] and tumor-suppressor gene adenomatous polyposis coli (APC)[49]. 
Microsatellite instability is more associated with many truncating or missense mutations. The genes 
with the highest number of mutations in microsatellite instability GC are EGFR, ERBB3, KRAS/NRAS, 
and PIK3CA[50].
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Genomically stable tumors present many mutations, especially genes well associated with cancer. The 
gene Ras homolog family member A works as signal transduction inducing cell proliferation, actin 
cytoskeleton structure, and cell movement associated with metastasis[51,52]. The genes claudin 18 and 
Rho-GTPase-activating proteins are frequently translocated in genomically stable GC tumors. The gene 
cadherin 1 (CDH1) encodes a cell-cell adhesion protein, which is also currently mutated in this type of 
cancer[53]. Furthermore, CDH1 has a role in cell proliferation, invasive behavior, and migration[54-56]. 
In the CDH1 gene, autosomal dominant mutations increase stomach cancer risk, especially when one of 
its copies is lost, generating a scenario of diffuse hereditary GC[18].

The chromosomal alterations involve gene amplification of EGFR, ERBB2/3, KRAS/NRAS, and 
RASA1; gene deletion of PTEN. These genetic modifications probably would result in gene activation or 
deactivation, which would result in tumor cell phenotypes. EGFR, ERBB2/3, JAK2, FGFR2, MET, 
KRAS/NRAS, and PIK3CA are predicted to be active, while RASA1, PTEN, and PIK3R1 would be 
inactive.

HCC 
Numerous genetic changes in HCC cells, including mutations, changes in the number of copies, and 
chromosomal rearrangements, lead to a very complex genomic picture. Its complexity is further 
aggravated when etiological factors that precede the tumor development for years are considered[57].

Some genes play a fundamental role in cancer development, which is why they appear more 
frequently as TP53, MYC, WNT, and CTNNB1. Also highlighted are genes related to the cell cycle, such 
as CCND1 and CDKN2A[57].

A study integrating RNA sequencing, DNA sequencing, T cell receptor sequencing, and single 
nucleotide polymorphism array was carried out to investigate the space-time interactions between 
cancer and immune cells. A difference in the interaction of the adaptive immune system was detected in 
different regions of the same tumor. The TP53 and CTNNB1 genes expressed clonal mutations. High-
level amplifications have been reported for CCND1, FGF19, and VEGFA. Mutations related to environ-
mental risk factors such as smoking and alcohol were found in telomerase reverse transcriptase (TERT), 
CTNNB1, TP53, axin 1, and AT-rich interactive domain-containing protein 1A (ARID1A). There were 
also mutations without an apparent etiological factor in TERT, KMT2B, CCNA2, and CCNE1[58].

HCC results from of a multistep process involving genetic, epigenetic, and transcriptomic 
interactions. Among these interactions, epigenetics is among the most affected, leading to profound 
gene expression changes that can facilitate tumor formation The most common form of epigenetic 
silencing of tumor suppressor genes is hypermethylation of DNA. This epigenetic change usually occurs 
in CpG islands of gene-promoting regions such as deleted in liver cancer 1, tissue factor pathway 
inhibitor 2, CDKN2A, and PTEN[30].

Pancreatic cancers
The etiology of PDAC is mainly related to genetic predisposition, environmental factors such as 
smoking, obesity, and poor nutritional diet. These factors lead to chromosomal instability, affecting cell 
cycle pathways, chromatin remodeling, WNT, MYC, NOTCH signaling, and DNA damage repairs[35,
59]. Among the mutated genes, the one that appears most frequently is KRAS[60]. It is also possible to 
highlight mutations in MLH1, MSH2, PMS2, and MSH6 responsible for Lynch Syndrome and mutations 
in the germ lines of PALB26, 11, 12, and ATM7, 12, 13[35].

Pancreatic cancer genome analyses showed a homogenous profile with somatic mutations in a few 
genes shared KRAS, TP53, CDKN2A, and SMAD4. However, other less frequent genes are also involved 
including mitogen-activated protein kinase kinase 4 (MAP2K4), lysine demethylase 6A, ring finger 
protein 43, ARID1A, transforming growth factor beta receptor 2 (TGFβR2), GNAS, Ras responsive 
element binding protein 1, and Polybromo 1[61-63]. These mutations can vary, and it is observed that 
non-silent mutations, gene amplification (> 8 copies, deletions, and structural variants)[63]. The set of 
genes that appear often mutated in pancreatic cancer plays a role in oncogenes, DNA damage repair, 
and chromatin modification[61,64]. The pancreatic cancer genome has chromosomal rearrangements 
classified into four subtypes: stable, locally rearranged, scattered, and unstable[61]. The mutation event 
more frequent is non-silent single nucleotide variants and copy number change (loss)[61]. The 
pancreatic cancer stable subtype was found in 20% of samples and had very few structural rear-
rangements (< 50 structural rearrangements) and more chromosomal mutations (aneuploidy). The 
locally rearranged subtype was found in 30% of samples with a high number of structural 
rearrangements (> 200) in a few chromosomes (three or fewer chromosomes), and there is more gene 
amplification. The scattered subtype is the most frequent (36% of samples) and has 50-200 structural 
rearrangements. Besides, the mutation type gene amplification is more frequent than in the other 
subtypes. The unstable subtype is less frequent (14% of the samples) and has the highest number of 
structural rearrangements (> 200 structural rearrangements), such as intrachromosomal, translocations, 
inversion, deletions, and duplication. Besides the frequent mutation described in pancreatic cancer, the 
unstable subtype is also associated with BReast CAncer gene 1 (BRCA) pathway mutations (BRCA1, 
BRCA2, and PALB2)[61].
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CRC 
Most CRC cases are sporadic (70%), and only 30% are inherited[38]. The genes most affected are DNA 
mismatch-repair genes, APC, or mutY DNA glycosylase[39,40]. The DNA mismatch-repair proteins 
malfunctioning creates the condition of genetic mutation accumulation and tumor cells rising.

The CRC has three genetic subtypes based on their genomic alterations. The genomic alterations are 
chromosome or microsatellite instability or epigenetic changes of CpG islands (CpG island methylator 
phenotype - CIMP)[65,66]. Chromosomal instability is the most frequent in CRC, present in 71%-85%[65,
66]. The genetic differences also lead to overall survival differences in CRC. The CIMP subtype is 
associated with poor prognosis, followed by chromosome instability, and microsatellite instability 
showed the best survival[66-68]. The CIMP's poor prognosis indicates the importance of CpG meth-
ylation dysregulation in CRC tumorigenesis. The methylation dysregulation might affect the proto-
oncogenes and tumor-suppressor genes. The worst prognosis in the CIMP subtype indicates that a 
different approach is necessary to deal with molecular modifications. Epigenetic modifications can also 
be therapeutic targets to improve the treatment.

The genetic/genomic diversity in GI cancers shows the importance of molecular characterization to 
improve the treatment and prognosis.

PATHWAYS
The cellular pathways show the main activities and functions present in a cell when proteins work 
together. The cancer pathways are responsible for the cell’s behavior, allowing unlimited cell 
replication, survival, and tissue invasion. The pathways also are responsible for the molecular changes 
driving tumorigenesis. Understanding how a set of proteins work together to develop a cancer cell 
might point to the target proteins to block these processes.

The pathways most present among the GI cancers discussed here are apoptosis, focal adhesion, and 
p21-activated kinase (PAK), PI3K/Akt, TGF-β, and Toll-like receptor (TLR) signaling pathways (Table 2)
[69-93].

Apoptosis plays a role in maintaining the balance in cell division and death during development and 
life. The unbalance of apoptosis leads to survival and uncontrolled division in tumorigenesis[94]. The 
apoptosis pathway is triggered by irreparable DNA damage, and it has many proteins that can fail and 
be blocked to inhibit cell death. The intrinsic process is mediated by mitochondria releasing cytochrome 
C after BH3 proteins activate B-cell lymphoma 2 (Bcl-2)-associated X protein and Bcl-2 homologous 
antagonist/killer. The cytochrome C and apoptotic protease activating factor 1, and caspase-9 create the 
apoptosome to continue the apoptosis process. The extrinsic process has death receptor ligands (cluster 
of differentiation 95 ligand [CD95L], TNF-related apoptosis-inducing ligand, and TNFα), death 
receptors, and associated proteins (Fas-associated death domain and TNF receptor 1-associated death 
domain protein) that transduce the death signal until caspase-8. Both intrinsic and extrinsic processes 
act on caspase-3/6/7 to induce the apoptosis cascade. Cell death by apoptosis results in a non-inflam-
matory process, which attracts research to the development of therapies that use apoptosis to treat 
cancer[95-97].

The PAK1 signaling pathway has six members divided into two groups and induces proliferation, 
survival, and motility[98]. PAK1 participates in cancer tumorigenesis after being highly expressed. The 
crosstalk of PAK1 with the MAPK/extracellular signal-regulated kinase (ERK) and PI3K/Akt pathways 
induces proliferation and survival, respectively[99]. PAK1 also connects with the Wnt signaling 
pathway through CTNNB1 and continues to stimulate growth and metastasis[98]. PAK1 expression 
protects the cell from apoptosis after interaction with Raf, which inactivates Bcl-2 family members 
(BCL2 associated agonist of cell death [BAD]) in mitochondria[98,100].

TLRs are part of the family of pattern knowledge receptors and operate on innate immunity, 
participating in the body’s first line of defense against invasion of microbial pathogens, tissue damage, 
and cancer. Its signaling pathway controls immune cell activation, maturation, and immune functions, 
especially the secretion of cytokines, influencing the tumor’s metabolism, proliferation, and spread
[101]. They are expressed by several immune cells such as macrophages, dendritic cells, B lymphocytes, 
natural killer cells, non-immune cells such as epithelial cells, and cancer-associated fibroblasts[102]. 
When expressed in the tumor, TLRs can release cytokines and chemokines into the tumor environment 
to recruit other immune cells to release more proinflammatory cytokines, pro-angiogenic factors, and 
growth factors[101].

The TGF-β signaling pathways are pleiotropic, regulating multiple functions such as cell growth, 
differentiation, apoptosis, angiogenesis, motility, invasion, and immune response. Modifications in this 
pathway might play an essential role in developing tumors and metastasis. These modifications can 
affect not only the tumor cells but also the environment. At this level, the TGF-β generates an 
environment conducive to tumor growth and metastasis at all carcinogenesis stages. TGF-β has a contra-
dictory behavior at the cellular level, acting as a suppressor and a tumor promoter[103,104]. Initially, the 
TGF-β pathway promotes cell cycle arrest and apoptosis. It promotes cancer cell motility, invasion, 
tumor progression, and metastasis in advanced stages. Thus, the accumulation of mutations is 
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Table 2 Pathways enriched in transcriptional analyses in esophageal, gastric, liver, pancreas, and colorectal cancers

Pathway CRC EC GC HCC PDAC Ref.

Focal adhesion X X X X X [69-76]

Apoptosis X X X X X [71,72,77-79]

PAK pathway X X X X [80-83]

PI3K/Akt signaling pathway X X X [71,84-86]

TGF-beta pathway X X X X [75,76,87-90]

Toll-like receptor signaling pathway X X X [88,91-93]

CRC: Colorectal cancer; EC: Esophageal cancer; GC: Gastric cancer; HCC: Hepatocellular carcinoma; PAK: p21-activated kinase; PDAC: Pancreatic ductal 
adenocarcinoma; PI3K: Phosphoinositide 3-kinase; TGF: Transforming growth factor beta.

responsible for guiding the evolution from a suppressor pathway to a tumor promoter[105].
The HCC RNA sequencing study identified four subtypes of HCC using 212 samples. The pathway 

analyses using the expression data reveal the enriched pathways metabolism RNA processes such as 
RNA processing, binding, and splicing. Although all the samples are from HCC, this result indicates 
different gene expression, cell activity, and behaviors. These enriched processes are not shared by the 
four HCC groups funded. However, at least three groups shared translation, ribosome, metabolism of 
proteins, and cytoplasm ribosomal proteins[106]. The microarray analysis using 25 HCC samples 
identified thousands of differentially expressed genes, and the pathways of cell cycle response, DNA 
damage response, cell survival, and apoptosis were identified. In addition, it was also linked to pathway 
terms and poor prognosis clinical parameters. These results also agree with RNA sequencing study 
point transcriptional regulation, RNA processing, and cell cycle regulation. The single-cell RNA 
sequencing analysis indicates 119 genes associated with HCC. The pathways analysis using Gene 
Ontology showed an acute inflammatory response, oxidative stress, and humoral response. Simultan-
eously, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways indicate IL-17 and TNF 
signaling pathways, infectious disease, and rheumatoid arthritis. These samples present more immuno-
logical functions[107]. According to the OncoVar database, the KEGG pathways associated with HCC 
are mainly cancer pathways, viral infection, cell longevity (growth and death), antineoplastic drug 
resistance, and transduction signaling pathways (Wnt and Hippo signaling pathways)[108]. The 
molecular pathways in HCC are not entirely understood, and these results showed a notable variation 
of response in the differentially expressed genes working together to express a function.

Analysis combining CRC and endometrial cancer microarray samples identified 139 genes 
upregulated in both studies. These genes operate in the cellular functions of cell proliferation, Wnt 
signaling pathway, fatty acid beta-oxidation, transcription, exocytosis, dopaminergic neuron differen-
tiation, and platelet degranulation. The KEGG pathways enriched were tight junctions, rheumatoid 
arthritis, renal cell carcinoma, and cancer pathways signaling. The rheumatoid arthritis pathway was 
enriched in more than one study with the genes (ATP6V0D1, ATP6V1D, CD28, CTLA4, CTSK, FOS, IL-
18, and JUN)[109]. Other microarray meta-analysis studies using CRC samples point to also the KEGG 
pathways related to the cell cycle, pathways in cancer, and the Wnt signaling pathway. These pathways 
are linked; as a result, they share proliferation and block apoptosis[65]. Together, these processes induce 
the normal cell to convert to a tumor cell.

THE PROTEIN-PROTEIN INTERACTION IN CANCER
The number of GI cancer projects in different OMIC levels found many genes working in tumorigenesis. 
The GI cancers discussed here sum 178 different genes with associated mutations. The number of genes 
with mutations associated with GI cancers ranges from 41 to 89 genes in HCC and GC.

Each of these cancers has variation and can be classified into subtypes according to cell origin, 
chromosomal structural rearrangements, gene expression, and cell behaviors. However, there are 46 
genes shared by at least two types of cancers. These genes should be investigated to understand better 
how they assist in the cell transformations to tumors, biomarkers of tumor cells, and potential drug or 
therapy targets. The genes present in all five types of cancers are activin A receptor type 2A, APC, 
ARID1A, and CTNNB1.

We used information from STRING database to check the protein-protein interaction (PPI) from these 
178 genes. We used the experimental information only to build this PPI network. The PPI investigation 
allows for building a network with 111 genes connected (Figure 1)[110]. The number of nodes in the PPI 
network indicates that these genes work together in GI cancer tumorigenesis.
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Figure 1 Protein-protein interaction of genes with mutations associated with gastrointestinal cancers. The nodes represent the genes, and the 
edges represent the protein interactions. The network was built using information from experimental data only from the STRING database[110]. The node size 
represents the number of protein interactions (degree), indicating the node’s centrality.

We analyzed the GI cancer network to identify in this PPI most connected protein (high degree) as 
central nodes. The proteins CTNNB1, Akt1, TP53, EP300, and TP53-binding protein 1 (53BP1) are the 
central nodes with the highest degree.

The CTNNB1 gene encodes a beta-catenin protein expressed in the adherens junctions[53]. The beta-
catenin is a cytoplasm protein that works in the adhesion between cells. The beta-catenin binds the actin 
in the cytoskeleton and the E-cadherin protein in the cell membrane, connecting neighboring cells[111]. 
The beta-catenin is also a mediator in the Wnt signaling pathway. When activated, the Wnt signaling 
pathway induces the accumulation of beta-catenin in the nucleus, activating target genes' transcription
[53]. The WNT protein binds the receptor in the membrane and induces beta-catenin to accumulate, 
promoting cell survival and proliferation[65]. The mutations in CTNNB1 gene are frequently found in 
HCC (13%)[112,113], CRC (6%)[114], and it is mutated in 4% of GC[47].

The Akt1 is a central protein in cell transduction signaling, which, when induced by PI3K, induces 
process cell proliferation, survival, and angiogenesis. The activation of the mammalian target of 
rapamycin (mTOR) complex by ATK is investigated as a drug target to treat PDAC[115-117]. The 
Epstein-Barr virus and H. pylori induce inflammation and the expression of Akt in GC. The outcome is 
cell proliferation and telomerase activation[118,119]. The investigation of blockage of Akt in GC resulted 
in suppression of growth and metastasis[120]. The investigation of critical proteins in HCC PPI 
identified several functions crucial in tumorigenesis, cell proliferation, anti-apoptosis, and metastasis. 
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The PPI network showed Akt1 as a potential drug target[104]. These results indicate Akt1 central 
position in tumorigenesis and a potential drug target.

The 53BP1 protein has a role in DNA damage response and cycle arrest, triggering the expression of 
p53; the malfunctioning of this protein might lead to the development of genomic instability and 
molecular diseases. The lack of function of 53BP1 is associated with poor prognosis, angiogenesis, and 
metastasis[121]. The decreased expression of 53BP1 in CRC induces radiotolerance and chemoresistance. 
Moreover, CRC cells with lower expression of 53BP1 have a higher proliferating rate, decreased 
apoptosis, and poor prognosis[122-124]. The 53BP1 also interacts with p53, as indicated in CRC and EC, 
when the reduction of 53BP1 induces the downregulation of p53[122,123,125]. The 53BP1 is expressed as 
soon as DNA damage treatment occurs in human pancreatic cells[126]. The 53BP1 might also influence 
tumor outcome in pancreatic cancer, as shown when the variation of 53BP1 expression changes the 
association of carbohydrate 19-9, a well-known pancreatic cancer marker, and overall survival[100].

The p300 protein (encoded by the EP300 gene) is a histone acetyltransferase that participates in 
chromatin remodeling and interacts with basal transcriptional machinery to improve DNA binding, 
affecting gene transcription in normal and cancer cells[127]. The EP300 mutations are common in CRC 
and GC by frameshift in microsatellite regions[128]. The mutation in EP300 is frequent in EC (10%), and 
it correlates with a poor prognosis, associated with cell proliferation, migration, and invasion 
(metastasis)[129,130]. The role of p300 in remodeling the chromatin makes it appropriate to investigate 
epigenetic therapies, and the use of natural nutrients as potential prevention and treatment has already 
been discussed with GC[131].

ESSENTIAL GENES AND KAPLAN-MEIER SURVIVAL ANALYSIS
All GI cancers discussed here have a low 5-year survival rate, except CRC (Table 1). The esophagus, 
liver, and pancreas have the lowest 5-year survival rate. The late diagnosis, metastasis, and aggressive 
behavior are associated with a low 5-year survival rate. Many studies describe the poor prognosis as 
associated with gene expression[97,122,129,132-135].

The expression levels are crucial information that might work as a prognostic factor in GI cancers. 
The association between TP53BP1 expression and overall survival analyses in CRC indicate a connection 
with low expression and low survival in the I-IIA stage, T3-T4, and N0[122]. Again, this protein has an 
essential role in CRC, not only to a high degree but also as a prognostic marker. The EP300 gene has 
high expression associated with poor survival in ESCC[129]. The long non-coding RNAs (lncRNAs) 
have a critical role in cancer development, and the high expression of ANRIL and homeobox A11-
antisense RNA (HOXA11-AS) lncRNA is associated with poor survival in GC[132,133]. The overex-
pression of lncRNA ANRIL is significantly associated with GC progression and can serve as an 
independent predictor of patient survival[136]. The high expression of ANRIL combined with polycomb 
repressive complex 2 significantly silences microRNA 99a (miR-99a) and miR-449a at the transcriptional 
level, which increases the expression of mTOR, CDK6, and E2 transcription factor 1[132]. The HOXA11-
AS gene reduces the expression of suppressor tumor genes Krüppel-like Factor 2 (KLF2) and protease 
serine 8 at the transcriptional level[133]. KLF2 downregulation is associated with migration, invasion, 
and poor survival[137,138]. KLF2 inhibits growth and migration and induces pancreatic cancer cells to 
senescence.

ESCC has poor survival when low esophageal cancer-related gene 4 expression occurs compared to 
the high-expression group[139]. EAC has worse overall survival when IL11 expression increases. Poor 
survival is also observed in a low expression of neuronal pentraxin 1, inositol 1,4,5-trisphosphate 
receptor type 1, and platelet derived growth factor D[140].

PDAC analyses show that high expression of the centromere protein F, sciellin, serpin family B 
member 5, solute carrier family 2 member 1 (SLC2A1), SLC6A14, transmembrane channel like 7, and 
transmembrane serine protease 4 is associated with a lower probability of survival compared to the 
same genes in low expression[141].

We investigated the gene expression and overall survival of the central genes present in the PPI 
network (Figure 1). We used information from the Kaplan Meier plotter (https://kmplot.com)[142] to 
investigate the potential prognosis of the central genes. Three of the five genes investigated have gene 
expression associated with survival (Akt1, TP53, and CTNNB1) (Figure 2).

The high expression of Akt1 and TP53 in GC is associated with a poor prognosis. In contrast, low 
CTNNB1 expression is correlated with reduced survival. The expression values and survival curves for 
TP53 (mRNA) in the Kaplan Meier plotter agree with tumor protein p53 expression in GC[143,144]. The 
TP53 expression is low and has a short half-life in normal cells, whereas in tumor cells, this gene has 
high expression and a long half-file[145]. The higher expression of TP53 is indicative of the worst 
prognosis. Akt1 expression was not indicative of prognosis[146]. However, they found that EGFR and 
Akt1 expression are mutually exclusive and associated with poor survival. This result might be due to 
the two proteins acting in the same pathway. The phosphorylated Akt1 and CTNNB1 high expression 
are associated with poor survival[147,148].

https://kmplot.com
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Figure 2 Prognostic value of Akt1, catenin beta 1, tumor protein p53 for gastric cancer (A) and hepatocellular carcinoma (B) in Kaplan 
Meier plotter (https://kmplot.com)[142]. Kaplan-Meier survival curves for patients of gastric cancer and hepatocellular carcinoma with high and low indicated 
gene expression. CTNNB1: Catenin beta 1; TP53: Tumor protein p53.

There is no significant difference between Akt1 or CTNNB1 high and low expression groups in liver 
cancer. Regarding the TP53 gene, the differences in expression are not significant in the initial stage of 
carcinoma. However, this high expression predicts a poor prognosis and a higher mortality rate than a 
low expression. The results are not according to the TP53 gene expression for HCC, where TP53 high 
expression is present in poor prognosis groups[149].

However, the prognosis markers based on expression have limitations, and the result must be taken 
together with other markers.

CONCLUSION
The OMIC information about GI cancer is very complex, and each organ/region has subtypes and 
particularities. We presented information about and brought to light the most common genomic 
changes among these cancers. The pathways shared by these molecular diseases also point to the 
standard functions and the crosstalk of these pathways and the PAK1 pathway centrality, connecting to 
MAPK/ERK, PI3K/Akt, apoptosis, and Wnt signaling pathways. The PPI network pointed to five 
central genes, and the literature corroborates the crucial role in GI cancer with expression and poor 
prognosis association. This information might help in the target choice of drug and therapy research.
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