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Abstract
Artificial intelligence (AI) is the timeliest field of computer science and attempts to 
mimic cognitive function of humans to solve problems. In the era of “Big data”, 
there is an ever-increasing need for AI in all aspects of medicine. Cholangiocar-
cinoma (CCA) is the second most common primary malignancy of liver that has 
shown an increase in incidence in the last years. CCA has high mortality as it is 
diagnosed in later stages that decreases effect of surgery, chemotherapy, and 
other modalities. With technological advancement there is an immense amount of 
clinicopathologic, genetic, serologic, histologic, and radiologic data that can be 
assimilated together by modern AI tools for diagnosis, treatment, and prognosis 
of CCA. The literature shows that in almost all cases AI models have the capacity 
to increase accuracy in diagnosis, treatment, and prognosis of CCA. Most studies 
however are retrospective, and one study failed to show AI benefit in practice. 
There is immense potential for AI in diagnosis, treatment, and prognosis of CCA 
however limitations such as relative lack of studies in use by human operators in 
improvement of survival remains to be seen.

Key Words: Artificial intelligence; Machine learning; Cholangiocarcinoma; Diagnosis; 
Treatment; Prognosis
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Core Tip: The wide array of modalities available to treat cholangiocarcinoma (CCA) in addition to the 
diversity of the tumor urges us to use individualized therapy. To establish the proper approach to diagnose, 
treat, and prognose CCA, analysis of available data is the key to achieve the individualized care. Artificial 
intelligence can be a potential modality for achieving this goal.

Citation: Haghbin H, Aziz M. Artificial intelligence and cholangiocarcinoma: Updates and prospects. World J Clin 
Oncol 2022; 13(2): 125-134
URL: https://www.wjgnet.com/2218-4333/full/v13/i2/125.htm
DOI: https://dx.doi.org/10.5306/wjco.v13.i2.125

INTRODUCTION
The ever-growing rate of technological advancement in medicine has resulted in the era of “Big data”. 
Artificial intelligence (AI) and its various techniques are used to harness the infinite potential of Big data 
in medical field[1]. AI, the timeliest field of computer science, involves development of computer 
algorithms attempting to mimic cognitive function of humans in order to learn and solve problems[2]. 
Since invention of the first operational computer by Alan Turing in 1940s, we have seen a prodigious 
rise in AI advancement. Machine learning (ML) is a very practical area of AI that enables computers to 
learn without direct programming. ML helps machines learn from previous data and improve their 
learning behavior by gaining experience from data patterns, thereby establishing ever improving 
predictive models[3]. Various AI techniques including representation learning, natural language 
processing, and different ML techniques, such as regression trees, support-vector machines (SVM), 
artificial neural networks (ANN) and more recently, deep learning (DL), have been used in medical field
[4]. ML and DL have vastly increased the scope of AI and enabled individualized medicine rather than 
algorithm-only-based care and has resulted in improved accuracy, efficiency, and outcomes[4].

Despite all the benefits of AI, one should be wary of the drawbacks[5]. The field of AI brings 
enormous potential however it concurrently brings big ethical problems. ML algorithms, to some extent, 
function as “black-boxes” where there is difficulty in finding the logic behind the decision by the 
machine. This will have medicolegal consequences which will be more pronounced as the models 
become more sophisticated and companies behind ML software reluctant to reveal the details of their 
software. Moreover, AI poses threats to privacy, data security, and patient autonomy. Lastly, ML 
algorithms do make mistakes and may not provide accurate results across race, gender, and 
socioeconomic status spectrum[5].

Cholangiocarcinoma (CCA) is the second most common primary malignancy of the liver. CCA 
originates from the epithelial cells of the bile ducts exclusive of gallbladder and ampulla of Vater. CCA 
is an aggressive tumor diagnosed sporadically in advanced stages with high mortality[6]. The incidence 
of CCA is increasing; therefore, there is increased interest in diagnosis, prognosis, and treatment of this 
malignancy[7]. Both serum markers and radiologic imaging are used for diagnosis of CCA. A 
combination of serum markers like liver function tests, carbohydrate antigen (CA) 19-9, and carcinoem-
bryonic antigen (CEA) are utilized to diagnose the disease[8]. The presence of the vast array of serum 
markers has led to utilization of the markers in novel AI tools in combination with imaging. Positron 
emission tomography with fluorodeoxyglucose (FDG-PET) integrated with computed tomography (CT) 
and Magnetic resonance imaging (MRI) in combination with magnetic resonance cholangiopancreato-
graphy (MRCP) are valuable tools harnessed by AI to assess the extent of tumor and stage the disease[9,
10]. Treatment includes surgical management, neoadjuvant/adjuvant chemotherapy and chemoradio-
therapy, hepatic artery radioembolization, and orthotopic liver transplant in selected patients[11-14]. 
Endoscopic retrograde cholangiopancreatography (ERCP) has two roles of diagnosis and treatment of 
CCA. Its diagnostic role includes inspecting and providing samples from the biliary system. As 
palliative treatment, stent placement provides increased quality of life especially in most unresectable 
cases[15]. Novel AI tools have been able to help in individualizing candidates for each treatment 
modality.

Increased mortality from CCA in the last decade has coincided with development of AI technology. 
Figure 1 illustrates how AI can be used to diagnose, treat, and prognose patients with CCA. This review 
depicts how AI can analyze the radiologic, serologic, and histologic markers of CCA to diagnose, stage, 
and aid with an individualized treatment plan in addition to giving a prognostic estimate with or 
without treatment modalities.

AI has shown promise to aid in diagnosis of CCA. AI is particularly helpful in CCA diagnosis as the 
condition is not common and there is heterogeneity in anatomical location of the tumor and risk factors 
of the tumor[16]. This makes the traditional algorithms inferior compared to AI. Many AI tools in the 
field of ML have been utilized for diagnosis of CCA (Table 1). LR is a linear regression model used for 
binary classification of problems[17]. SVM is an appropriate model for small samples, high-dimensional, 
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Table 1 Advantages and disadvantages of artificial intelligence models used for cholangiocarcinoma diagnosis in radiology

AI technology Imaging modalities used 
in Advantages Disadvantages

Logistic regression US/CT Interpretable Low precision

Support-vector machine US/CT/MRI Avoids overlearning and dimension disaster problems Prone to missing data

Extreme learning machine CT Does not need high amount of data for training Slow processing speed

Artificial neural network CT/MRI High generalization power Needs long training 
time

Convolutional neural 
network

US/CT/MRI Higher efficacy and speed as there is no need to compute features as 
first step

Needs large training 
data

AI: Artificial intelligence; CT: Computed tomography; MRI: Magnetic resonance imaging; US: Ultrasound.

Figure 1 Application of artificial intelligence in addressing cholangiocarcinoma. LR: Logistic regression; SVM: Support-vector machine.

and non-linear patterns assigning labels to objects and has advantage of avoiding “over learning” 
problem[18]. ANN or multilayer perceptron is an attempt to simulate the biologic nervous system with 
neurons interconnected able to do parallel processing[17]. Developed by Huang et al, Extreme Learning 
Machines (ELM) are a type of feedforward neural network models that have shown superiority over 
SVMs and traditional feedforward neural networks[19]. Convoluted neural network (CNN), a type of 
DL consists of multilayer of ANN that results in a superior learning ability of complex tasks and has 
been used in radiology and imaging of the malignancy and associating the radiological data to the 
clinicopathologic data[20,21]. Every method has their advantages and drawbacks illustrated in Table 1.
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AI IN THE DIAGNOSIS OF CCA
Serum markers
Evaluation of serum markers is amongst the least invasive and most available data that is present in 
many patients even before there is a suspicion for diagnosis of CCA. Due to wide availability, these tests 
are used in adjunct with radiological and other clinical factors in diagnosis of CCA. Sometimes 
serological models are enough to diagnose the malignancy; for example, Negrini et al[22] developed a 
ML model that analyzed 15 bile acids of the serum and was able to diagnose CCA with good sensitivity 
of 79% and excellent accuracy, Area Under Curve (AUC), and specificity of 86.4%, 95%, and 100%, 
respectively. ANN based model using combination CCA associated carbohydrate antigen and alkaline 
phosphatase showed promise in diagnosing CCA with a sensitivity and specificity of more than 95%
[23].

Cytology
ERCP and Cytology of brushings is a valuable tool for diagnosis of CCA. As a common malignant cause 
of biliary stricture is CCA, cytology can be crucial in early stages of the malignancy when radiology may 
have limited roles. Urman et al[24], using a neural network model studying metabolomic and proteomic 
profile of bile from 36 CCA patients, was able to satisfactorily distinguish CCA from benign stricture 
with AUC, sensitivity, and specificity of 98.4%, 94.1% and 92.3%, respectively.

Histology
Histology remains the gold standard for diagnosis of malignancies including CCA. From their Shanghai 
laboratory, Sun et al[25] developed a CNN model for diagnosis of CCA from microscopic hyperspectral 
pathological slides with promising results. After setting up the first benchmark based on microscopic 
pathological images consisting of 880 images with pixels manually labeled as tumor or non-tumor for 
the AI learning, the CNN model was able to diagnose CCA with 88.3% accuracy[25]. AI assistance in 
histology has not always shown benefits. Stanford University researchers developed an AI diagnostic 
assistant using DL model to assist pathologists in differentiating hepatocellular carcinoma (HCC) from 
CCA (26). The model had a good accuracy rate of 84.2% on a set of 80 slides however it failed to 
improve performance among pathologists [Odds ratio (OR) 1.287, 95%CI: 0.886-1.871]. For all case 
difficulty levels, the model highly biased the decision of pathologists which led them to wrong 
diagnosis[26]. The authors concluded that this would question the use of current AI technology for 
difficult subspecialty tasks[26]. Sometimes CCA can manifest as cancer of unknown primary site (CUP) 
as it metastasizes to other organs. AI has been used to delineate source of CUP, consisting of 3 to 5% of 
tumors[27]. CUP-AI-Dx is a CNN model that was trained on more than 18,000 tumors including CCA 
and has achieved an accuracy of 98.54% in finding the primary site of tumor from the human body 
system in cross-validation[28].

CT
To elucidate the lesion detected by ultrasound, further workup is required with CT, MRI, and MRCP. 
As CNN is a DL technique that consists of multilayers of ANN, it has shown great potential especially 
once it comes to radiology image analysis of pixels. Human yield in diagnosing CCA is limited. Nakai et 
al[29] have developed CNN models factoring in a combination of CT with serum tumor markers 
including CEA and CA 19-9. Their CNN model was superior to human radiologists in detecting CCA 
(0.68 vs 0.45; P = 0.04) [29]. One challenge in diagnosing CCA is differentiating intrahepatic CCA from 
other intrahepatic malignancies. Xu et al[30] have developed an AI model on 28 intrahepatic lymphomas 
and 101 CCAs. Their model was able to differentiate between the two tumors with AUC and accuracy 
both more than 85%. Pannoprat et al[31]  have developed CNN model that can differentiate between 
CCA and hepatocellular carcinoma (the most common primary liver malignancy) with an 88% accuracy. 
Zhang et al[32] performed a retrospective analysis of contrast enhanced CT of 86 patients with CCA and 
46 with combined CCA/HCC tumors, which are difficult to differentiate from CCA necessitating biopsy 
and surgery. Using ML techniques to classify the lesions as CCA or combined CCA/HCC achieved an 
AUC of 94.2%[32].

MRI and MRCP 
MRI and MRCP have a superior function to diagnose CCA than CT due to ability to illustrate soft tissue, 
vasculature, and biliary system better than that of CT. ML has been widely utilized in MRI and MRCP. 
Xu et al[33]  and Yu et al[34]  each studied MRI of more than 100 patients with CCA and developed SVM 
models that showed superiority (validation group AUC 87.0% and 90%, respectively). Logeswaran et al
[35] in a 2009 study showed 88 to 94% detection rate of Multilayer Perceptron ANN in diagnosis of CCA 
in MRCP. Yang et al[36]  developed an AI model for MRI diagnosis and evaluation of extent of lymph 
node metastasis of CCA patients. After training the model on 100 CCA patients, the model was able to 
differentiate high vs low risk CCA groups and lymph node metastasis with AUCs of 80% and 90% in 
testing cohorts, respectively[36]. Table 2 lists the studies using AI models to diagnose CCA.
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Table 2 Studies utilizing artificial intelligence in the diagnosis of cholangiocarcinoma

Ref. Year of 
publication Title of study Diagnostic 

modality AI model

Chu et al[44] 2021 Radiomics using CT images for preoperative prediction of futile resection 
in intrahepatic cholangiocarcinoma

CT LR 

Ibragimov et al[45] 2020 Deep learning for identification of critical regions associated with toxicities 
after liver stereotactic body radiation therapy

CT CNN

Liu et al[46] 2021 Can machine learning radiomics provide pre-operative differentiation of 
combined hepatocellular cholangiocarcinoma from hepatocellular 
carcinoma and cholangiocarcinoma to inform optimal treatment planning?

MRI, CT SVM

Logeswaran[35] 2009 Cholangiocarcinoma--an automated preliminary detection system using 
MLP

MRCP ANN

Midya et al[47] 2018 Deep convolutional neural network for the classification of hepatocellular 
carcinoma and intrahepatic cholangiocarcinoma

CT CNN

Nakai et al[29] 2021 Convolutional neural network for classifying primary liver cancer based 
on triple-phase CT and tumor marker information: a pilot study

CT, tumor 
markers

CNN

Negrini et al[22] 2020 Machine Learning Model Comparison in the Screening of Cholangiocar-
cinoma Using Plasma Bile Acids Profiles

Serum bile acids ML

Pattanapairoj et al
[23]

2015 Improve discrimination power of serum markers for diagnosis of cholan-
giocarcinoma using data mining-based approach

Tumor markers ANN

Peng et al[48] 2020 Preoperative Ultrasound Radiomics Signatures for Noninvasive Evaluation 
of Biological Characteristics of Intrahepatic Cholangiocarcinoma

US SVM

Peng et al[49] 2020 Ultrasound-Based Radiomics Analysis for Preoperatively Predicting 
Different Histopathological Subtypes of Primary Liver Cancer

US Radiomics

Ponnoprat et al[31] 2020 Classification of hepatocellular carcinoma and intrahepatic cholangiocar-
cinoma based on multi-phase CT scans

CT CNN

Selvathi et al[50] 2013 Automatic segmentation and classification of liver tumor in CT images 
using adaptive hybrid technique and Contourlet based ELM classifier

CT ELM

Sun et al[25] 2021 Diagnosis of cholangiocarcinoma from microscopic hyperspectral 
pathological dataset by deep convolution neural networks

Histology CNN

Urman et al[24] 2020 Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant 
Biliary Strictures: A Machine-Learning Approach

Bile acids, lipids ANN

Uyumazturk et al
[26]

2019 Deep learning for the digital pathologic diagnosis of cholangiocarcinoma 
and hepatocellular carcinoma: evaluating the impact of a web-based 
diagnostic assistant

Histology DL

Wang et al[51] 2020 SCCNN: A Diagnosis Method for Hepatocellular Carcinoma and 
Intrahepatic Cholangiocarcinoma Based on Siamese Cross Contrast Neural 
Network

CT ANN

Wang et al[52] 2019 Deep learning for liver tumor diagnosis part II: convolutional neural 
network interpretation using radiologic imaging features

MRI DL

Xu et al[33] 2019 A radiomics approach based on support vector machine using MR images 
for preoperative lymph node status evaluation in intrahepatic cholan-
giocarcinoma

MRI SVM

Xu et al[30] 2021 Differentiation of Intrahepatic Cholangiocarcinoma and Hepatic 
Lymphoma Based on Radiomics and Machine Learning in Contrast-
Enhanced Computer Tomography

Contrast enhanced 
CT

ML

Yang et al[36] 2020 Radiomics model of magnetic resonance imaging for predicting 
pathological grading and lymph node metastases of extrahepatic cholan-
giocarcinoma

MRI Radiomics

Yao et al[34] 2020 A Novel Approach to Assessing Differentiation Degree and Lymph Node 
Metastasis of Extrahepatic Cholangiocarcinoma: Prediction Using a 
Radiomics-Based Particle Swarm Optimization and Support Vector 
Machine Model

MRI SVM

Yasaka et al[53] 2018 Deep Learning with Convolutional Neural Network for Differentiation of 
Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study

CT CNN

Zhang et al[32] 2020 Differentiation combined hepatocellular and cholangiocarcinoma from 
intrahepatic cholangiocarcinoma based on radiomics machine learning

CT Radiomics

CUP-AI-Dx: A tool for inferring cancer tissue of origin and molecular Zhao et al[28] 2020 Tissue biopsy CNN
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subtype using RNA gene-expression data and artificial intelligence

Zhou et al[54] 2021 Automatic Detection and Classification of Focal Liver Lesions Based on 
Deep Convolutional Neural Networks: A Preliminary Study

Multiphasic CT CNN

AI: Artificial intelligence; ANN: Artificial Neural Network; CCA: Cholangiocarcinoma; CNN: Convolutional neural network; CT: Computed tomography; 
DL: deep learning; ML: machine learning; ELM: Extreme learning machine; LR: Logistic regression; MRCP: Magnetic resonance cholangiopancreatography; 
MRI: Magnetic resonance imaging; SVM: Support-vector machine, US: Ultrasound.

TREATMENT AND PROGNOSIS OF CCA
ML techniques have also been used for treatment and prognosis of CCA. Almost all studies use a 
combination of radiological, histological, serological, and clinical data for the best results in predicting 
the survival of the patients and their response to treatment. Table 3 illustrates the studies using AI 
models to treat and prognose CCA. The fact that such sophisticated models are needed is proof to the 
complexity of the CCA pathophysiology and ever developing variety of treatment protocols that makes 
decision making impossible without help of AI technology. One example of such potential is studied by 
Tsilimigras et al[37]. They constructed a ML model that predicted survival of CCA patients after surgery 
based on preop serological and radiological data[37]. They conducted an international multi-institu-
tional study on 826 CCA patients, clustering them into groups based on CA 19-9, neutrophil-to-
lymphocyte ratio, and tumor size. Their machine learning model showed an excellent agreement with 
cluster (k = 0.93, 95%CI: 0.90-0.96). This study shows that ML models detect patterns and clusters not 
detectable to humans using traditional statistical techniques[38]. In this study, AI was able to detect a 
group of high-risk patients otherwise undetectable. These groups benefit the most from additional 
neoadjuvant therapy prior to resection as they have a high recurrence[37,38].

CT imaging
Another example of tight interrelation between prognosis and treatment is by Jeong et al[39] who 
elaborated a ML algorithm using the combination of serology, patient characteristics, and CT images of 
1421 CCA patients to classify patients to stable and latent risk group. The model was able to predict the 
disease-free survival between latent and stable groups and response to adjuvant therapy in latent group 
with excellent ability proven by hazard ratios (HR) of 3.56 and 0.46, respectively (P < 0.001 for both)
[39]. Tang et al[40] drew up a predictive model of CCA survival after studying 101 patients with CCA. 
Their AI model analyzed radiologic characteristics of the CT scan, tumor markers, and past clinical 
history like cirrhosis with AUC of 78% and 75% for 3-year and 5-year overall survival, respectively[40].

CA 19-9
CA 19-9 as a tumor marker has shown promise in prognosis of CCA. Li et al[41] and Müller et al[42] each 
validated an AI model to prognosticate the CCA tumors based on clinical, tumor markers such as CA 
19-9, serologic like albumin level, and clinical data like nodal metastasis. Li et al[41] model 
retrospectively studied a total of 1390 patients and achieved a Concordance Index (C-index) superior to 
the staging system proposed by the 8th edition of the American Joint Committee on Cancer (C-index: 
0.693, 95%CI: 0.663-0.723). Müller et al[42] model was able to predict the 1-year survival of patients with 
an AUC of 89% and 80% for the training and validation sets, respectively.

Palliative measures
Palliative measures like stent placement recommended for inoperable hilar CCAs, are also analyzed by 
AI models. Shao et al developed an ANN model based on data of 288 CCA patients requiring stent 
placement that can predict stent occlusion with high AUC of 96% (95%CI: 94-99%)[43].

FUTURE DIRECTIONS 
The literature review showed a wealth of studies utilizing AI in CCA, however there is room for much 
improvement. First, there is need for larger prospective studies including different races, nationalities, 
and socioeconomic statuses to validate role of AI in diagnosis, treatment, and prognosis of CCA. As 
study from Stanford showed the AI may not prove to be beneficial in all cases in real life; therefore, in 
some cases there is need for prospective studies showing AI effectiveness in practice[26]. This 
precaution is accentuated since there was a lack of negative studies in our review of the literature which 
can potentially bias toward increased efficacy of AI. Furthermore, the prognostic data should be 
validated by implementing the data into treatment strategies and seeing an increase in not only survival 
but also quality of life in CCA patients. One last recommendation for medical field is that healthcare 
professionals’ education should be improved to prepare them for the ever-increasing role of AI in daily 
diagnosis, treatment, and prognosis of CCA and at the same time informing them of the current limits 
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Table 3 Studies utilizing artificial intelligence in the treatment and prognostication of cholangiocarcinoma

Ref. Year of 
publication Title of study AI variables AI model

Jeong et al[39] 2020 Latent Risk Intrahepatic Cholangiocarcinoma Susceptible to Adjuvant 
Treatment After Resection: A Clinical Deep Learning Approach

CT, albumin, platelets, 
Diabetes, CA 19-9

ML

Ji et al[55] 2019 Biliary Tract Cancer at CT: A Radiomics-based Model to Predict Lymph Node 
Metastasis and Survival Outcomes

CT reported LN features ANN

Li et al[41] 2020 A Novel Prognostic Scoring System of Intrahepatic Cholangiocarcinoma With 
Machine Learning Basing on Real-World Data

CEA, CA 19-9, tumor 
stage

ML

Muller et al
[42]

2021 Survival Prediction in Intrahepatic Cholangiocarcinoma: A Proof-of-Concept 
Study Using Artificial Intelligence for Risk Assessment

Tumor size, tumor 
boundary, serology

ANN

Shao et al[43] 2018 Artificial Neural Networking Model for the Prediction of Early Occlusion of 
Bilateral Plastic Stent Placement for Inoperable Hilar Cholangiocarcinoma

Tumor size, nodal 
involvement

ANN

Tang et al[40] 2021 The preoperative prognostic value of the radiomics nomogram based on CT 
combined with machine learning in patients with intrahepatic cholangiocar-
cinoma

Tumor size, cirrhosis in 
CT

Radiomics

Tsilimigras et 
al[37]

2020 A Novel Classification of Intrahepatic Cholangiocarcinoma Phenotypes Using 
Machine Learning Techniques: An International Multi-Institutional Analysis

Tumor size, nodal 
involvement, serology

ML

AI: Artificial intelligence; ANN: Artificial Neural Network; CA 19-9: Carbohydrate antigen 19-9; CCA: Cholangiocarcinoma; CEA: Carcinoembryonic 
antigen; CT: Computed tomography; ML: Machine learning.

and future potentials of the AI technology.

CONCLUSION
In the recent years, we have seen an increase in CCA incidence and, in parallel, a more exponential rise 
in AI utilization in medicine. AI will be able to utilize the vast amount of data to assist healthcare 
professionals in addressing CCA. Currently the AI models are showing potential in diagnosis, 
treatment, and prognosis of CCA. Nonetheless, AI has limits that should be considered; further research 
is needed to validate use of AI models in real life in use by medical professional to determine their 
effectiveness and acceptance as auxiliary tools to augment human intelligence. Finally, ethical issues 
regarding AI including equity and transparency will also need to be addressed to improve acceptance of 
the technologies by healthcare industry and, more importantly, the patients.
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