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Abstract
Medulloblastoma (MB) is considered the commonest malignant brain tumor in 
children. Multimodal treatments consisting of surgery, radiation, and chemo-
therapy have improved patients’ survival. Nevertheless, the recurrence occurs in 
30% of cases. The persistent mortality rates, the failure of current therapies to 
extend life expectancy, and the serious complications of non-targeted cytotoxic 
treatment indicate the need for more refined therapeutic approaches. Most MBs 
originating from the neurons of external granular layer line the outer surface of 
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neocerebellum and responsible for the afferent and efferent connections. Recently, MBs have been 
segregated into four molecular subgroups: Wingless-activated (WNT-MB) (Group 1); Sonic-
hedgehog-activated (SHH-MB) (Group 2); Group 3 and 4 MBs. These molecular alterations follow 
specific gene mutations and disease-risk stratifications. The current treatment protocols and 
ongoing clinical trials against these molecular subgroups are still using common chemotherapeutic 
agents by which their efficacy have improved the progression-free survival but did not change the 
overall survival. However, the need to explore new therapies targeting specific receptors in MB 
microenvironment became essential. The immune microenvironment of MBs consists of distinctive 
cellular heterogeneities including immune cells and none-immune cells. Tumour associate 
macrophage and tumour infiltrating lymphocyte are considered the main principal cells in tumour 
microenvironment, and their role are still under investigation. In this review, we discuss the 
mechanism of interaction between MB cells and immune cells in the microenvironment, with an 
overview of the recent investigations and clinical trials

Key Words: Medulloblastoma; Tumour microenvironment; Tumour associated macrophages; Tumour 
infiltrating lymphocyte; Immunotherapies

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Medulloblastoma (MB) is the most common malignant childhood tumor of the brain. Multi-
modal treatments consisting of surgery, radiation, and chemotherapy have reduced the cumulative 
incidence of late mortality. Nevertheless, the recurrence rate remains high. In this review, we discuss the 
mechanism of interaction between tumour cells of MB and immune cells in the microenvironment, with an 
overview of the recent investigations and clinical trials.
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INTRODUCTION
Brain tumors are the leading cause of oncological death during childhood, and medulloblastoma (MB) is 
the commonest malignant tumor of the brain, accounting for 20%-30% of all central nervous system 
(CNS) tumors[1]. Diverse treatment modalities consisting of surgery and chemoradiotherapy have 
improved the patient’s survival. Nevertheless, more than 1/3 of children with MB die within 5-years 
after diagnosis[2]. Late mortality remains a significant problem in disease consequences, which is 
attributed to tumour recurrence[3]. The persistent mortality, the failure of current drug therapies to 
extend life expectancy, and the serious complications of cytotoxic therapies indicate the necessity to 
explore new targeted treatments. Over the past decades, several tumor-centric studies have identified 
mutant genes and signaling pathways dysfunction that encourage MB growth. Most of MBs originate 
from the granular layer of cerebellum, which reside in the external granular layer and line the neocere-
bellum of newborns[4]. The existence of irregular biological signaling pathways created signaling 
dysregulation and genetic mutations affecting cerebellar development. Hence, the anatomical and 
cellular complexity of developing human tissues within the rhombic lip germinal zone produces 
glutamatergic neuronal lineages before its centralization. Molecular signatures encoded within a human 
rhombic-lip-derived lineage trajectory aligned with photoreceptor and unipolar cell profiles that are 
maintained in some medulloblastomas, suggesting a convergent basis. The advanced genomic studies 
over decades led to the assemblage of large amount of genetic information which resulted in four distin-
guishing molecular subgroups of MB including (Group 1) Wingless-activated (WNT-MB); (Group 2) 
Sonic-hedgehog-activated (SHH-MB); and Group 3 and Group 4[5] (Figure 1). Each group is charac-
terized by distinct genetic abnormalities, methylation profiles, and clinical outcome. WNT- and SHH-
type MBs are clearly detached from the other groups with lack of signaling pathway dysregulation 
identified in Group 3 and 4[5].

Molecular subgroups of MB
WNT-MB is the least common type, accounting for about 10%-15% of all MB patients. They are 
classically absent in infants and are seen more among children above 10 years of age[6-8] (Figure 1). The 
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Figure 1 Molecular subgroups of medulloblastoma based on 2021 World Health Organization classification of central nervous system 
tumours. SHH: Sonic-hedgehog; MYC: Myelocytomatosis oncogene; LCA: Life cycle assessment; WNT: Wingless.

clinical outcome of the disease under 16-years of age is usually good, with 90% 5-year survival[8]. The 
genetic mutation of the Catenin Beta-1 (CTNNB1) gene is the most common genetic alteration 
accounting for 85% of all WNT-MBs[9,10]. A gene expression with methylation profiling performed on 
several MB cases in 2016 has divided WNT- MBs into two variants: WNT-α, which consists of patients 
with chromosome 6 monosomy and WNT-β, that occurs in adults with chromosomal diploidy[11,12]. 
CTNNB1 mutation usually occurs with other chromatin remodeling mutations such as Cyclic Adenosine 
Monophosphate Response Element Binding Protein (CREBBP), Mediator Complex Subunit 13 (MED13) 
and subunits of the nucleosome-remodeling complex such as SWI Matrix Associated, Actin Dependent 
Regulator of Chromatin, Subfamily A, Member 4 (SMARCA4), At-rich interaction Domain 1A (ARID1A)
[9,10,13]. Most of WNT-MBs carries DEAD-Box Helicase 3 X-Linked (DDX3X) mutations, which 
participates in mRNA translation[12,14]. The germline mutation of antigen presenting cells (APC) on 
chromosome 5 as inherited Turcot syndrome and Anaplastic Lymphoma Kinase (ALK) gene also 
contribute to the development of WNT-MBs[9,15].

SHH-MB accounts for about 25% of all MBs with a 70% 5-years overall survival (OS). It is frequently 
seen in infants and adult patients[16,17]. The majority shows histologically nodular or desmoplastic 
morphology, which predicts a favourable prognosis[18]. TP53 mutation segregates SHH-MBs into 
tumors with TP53-wildtype, often seen in young children and associated with favorable prognosis, and 
TP53 mutant SHH-MB classically seen among older children and associated with poorer prognosis. 
SHH-MB with Protein Patch Homolog-1 (PTCH1) and Suppressor of Fused Homolog (SUFU) mutation 
are associated with Gorlin syndrome[19,20]. In children, TP53 mutations frequently occurs with GLI2 
and MYCN-amplifications[9] (Figure 1).

Group 3 MB, a classical histological variant, accounts for 25% of all MBs and considered the deadliest 
subtype[7,21]. Tumours in this group with MYC-amplification carries a 20% risk of 5-years survival[22]. 
However, the most common cytogenetic abnormalities seen in Group 3 is the 17 ploss followed 16q and 
9q losses[19]. Rare genetic variants in Group 3 MBs include Orthodenticle Homebox-2 (OTX2) and 
Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit (EZH2) amplifications and SMARCA4 
mutations[23] (Figure 1).

Group 4 MB is the most frequent type among all MBs and often occurs in male more than females[6]. 
Isochromosome 17q is the most common cytogenetic aberration seen in this group. Other genetic 
variants include the loss of chromosome 8p, 10q, and the aberrations of 11p and 18q[2,17]. The clinical 
outcome is better in patients with chromosome 11 loss with an OS above 90%[19]. Zhou et al[24] 
reported that around 40% of Group 4 patients showed metastasis and treated as a high-risk disease. As 
we mentioned before, Group 3 and Group 4 MBs are genetically heterogeneous and not associated with 
germline mutations[25].

Current treatment options in MB
The magnitude of surgical resection in MB may not be as significant as earlier. After surgery, patients 
are treated with radiotherapy of the whole spinal axis with an additional boost targeting the tumor 
margins[26]. Radiotherapy usually starts 20-30 d after surgery however, delay of radiation may increase 
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risk of recurrence and is therefore not recommended for patients older than 3 years[27,28]. Post-
operative radiotherapy for children less than 3 years of old may increase risk of cognitive dysfunction
[18]. Postoperative chemotherapy in MB patients is essential strategy to reduce the radiation effects and 
improve the survival, particularly in young children. The treatment varies based on the risk of drug 
toxicity and recurrence rate. Both risks are correlated with MB molecular alterations and considered as 
prognostic factors prior treatment. The risk of toxicity should be taken carefully in infants and children 
younger than three years of age while the recurrence is usually high in metastatic cases or cases 
undergoing subtotal resection. Anaplastic and large cell variants may have poor response and 
worsening outcome[29] (Figure 2). The high-risk group consists of SHH-MBs with MYCN-amplification; 
SHH-MB with metastatic dissemination and wildtype TP53, and metastatic Group 4 MBs[7]. High-risk 
population includes mutant TP53 SHH-MB patients and metastatic Group 3 MBs with MYCN-amplific-
ations[7] (Figure 2).

Multi-modality treatments have been used in multiple clinical trials for ten years. The standard 
protocols included different chemotherapeutic agents with long-term or maintenance dose-related 
regime including ifosfamide, etoposide, methotrexate, cisplatin, and cytarabine, lomustine, and 
vincristine[30]. The maintenance regimen has improved the overall survival compared to the sandwich 
approach among patients with M0 or M1 disease[30,31]. Nonetheless, the most frequent and current 
treatment strategy includes risk-adapted radiotherapy followed by 4 cycles of cyclophosphamide, and a 
high dose of chemotherapy such as cisplatin, vincristine, followed by autologous stem cell 
transplantation. This protocol has improved the 5-year OS into 95%[16]. Additional clinical trials are 
ongoing to explore the efficacy of different treatment regimes in newly diagnosed MBs (Clini-
caltrials.gov). The current treatment protocols and ongoing clinical trials are still using the same 
circulating chemotherapeutic agents but with different regimes. Multiple clinical trials have tested new 
therapies. Those trials were completed with positive and negative results (Clinicaltrials.gov). For 
example, a combined everolimus and ribociclib (cyclin D and CDK6 inhibitors) has been tested as a 
phase I trial (NCT03387020) in children with recurrent MBs. Some novel therapeutic strategies are 
currently recruiting, and their target are to reduce recurrence and to avoid the cytotoxic effects of 
chemoradiation (Table 1). For example, the usage of Entrectinib, a TRK inhibitor, and ALK inhibitor has 
been studied in a phase I/II trial (NCT02650401). There is a high tendency to discover the efficacy of 
molecularly targeted agents for MBs with dominant genetic alterations, regardless of the tumor 
subgroup. Patients with FGFR-gene mutation can be treated with erdafitinib (NCT03210714); MBs with 
TSC-gene mutations can be treated with samotolisib (NCT03213678); SMARCA4-gene mutations can be 
treated with tazemetostat, an EZH2 inhibitor.

Immune microenvironment of MB
All the previously mentioned clinical trials are stratified based on disease risk, molecular subgroups, 
patients age, and all are targeting tumour cells. The necessity to explore MB microenvironment is 
encouraged to help discovering new targeted receptors. The immune microenvironment of any cancer 
represents all types of cells surrounding the tumour cells including immune and none-immune cells. 
The relationship between these cells is mechanical and heterogeneous, by which they can facilitate in 
promoting or inhibiting tumor growth[32]. Because some studies have indicated that MBs have fewer 
immune cells than glioblastoma[33,34], the role of immune microenvironment in promoting or 
suppressing MB progression was found to be difficult to understand. Some cellular factors in tumour 
microenvironment may act against immune reaction and can promote tumour growth progression and 
angiogenesis. The infiltration of immune cells in MB might be limited due to the blood–brain barrier 
(BBB), which acts as physical barrier for immune cells infiltration[35]. Despite of some immune cells 
bypass across BBB, there may be an increase in trafficking toward the brain under certain conditions 
due to destruction of the BBB[36]. Some experimental models showed that the reactive astrocytes 
surrounding the tumour microenvironment form perivascular barriers to restrict the immune cells infilt-
ration to the brain through BBB[37].

The presence of inflammatory cells in the tumor microenvironment has been scientifically accepted as 
an essential element in tumour progression. A study done by Gururangan et al[38] found that treated 
MB patients exhibited more CD4+T-cell lymphopenia. We can also presume that pre-operative and 
post-operative steroid treatment may induce systemic immunosuppression which prevents antitumor 
immunity in MB patients. Tumours with a low mutational burden respond less efficiently to immune 
checkpoint inhibitor compared to tumors with a high mutational burden[39]. Moreover, the acidification 
of the tumour microenvironment causing glycolytic activity can encourage macrophages infiltration 
through G protein coupled receptor, which in turn enhances vascular endothelial growth factor, thus 
promoting M2-like features of tumor-associated macrophage (TAM)[40].

APC, the immune cells in microenvironment, were proven to infiltrate malignant brain tumours in 
children. APCs is expressed by Major Histocompatibility Complex (MHC) class-I on tumor cells to allow 
them to be identified and killed by CD8 cytotoxic T- cells. MBs and atypical teratoid/rhabdoid tumors 
showed the lowermost cellular infiltration of this type among all malignant brain tumors[34]. Microglia, 
resident macrophages in the brain, are the most dominant APCs in brain tumors[35]. It is not clear if 
microglia promote anti-MB immune response. Mundt et al[41] showed that microglia are dispensable for 
T-cell entry into the brain and for local reactivation of T-cells. The loss of MHC class-I expression on 
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Table 1 The most recent active and recruiting clinical trials of medulloblastoma that are targeting immune receptors or using different 
chemotherapeutic agents

Clinical Trial Trial objective Samples Targeted subgroup Completion date

NCT01878617 Clinical and molecular risk directed therapy of 
newly diagnosed MB

660 WNT, non-WNT, SHH 2028

NCT00089245 Intrathecal radioimmunotherapy using I-8H9 120 8H9 reactive MB confirmed by IHC 2024

NCT02905110 Simultaneous methotrexate/etoposide infusion 10 All MB subtypes 2023

NCT02962167 Modified measles virus (MV-NIS) 46 All MB subtypes 2024

NCT02271711 Expanded NK cells infusion with recurrent 
medulloblastoma

12 All MB subtypes 2023

NCT02359565 Pembrolizumab in patient with recurrent 
medulloblastoma

45 All MB subtypes 2023

NCT03389802 APX005M, a humanized IgG1κ monoclonal Ab 
that binds to CD40

45 MB with CD40 activity 2023

NCT03299309 PEP (CMV)-specific peptide vaccine in 
medulloblastoma

30 All MB subtypes 2024

NCT03598244 Volitinib, a small molecule inhibitor of c-Met in 
recurrent MB

50 All MB subtypes 2023

NCT03173950 Nivolumab, Immune check point inhibitor, in 
refractory MB

180 All MB subtypes 2024

NCT03500991 HER2-Specific CAR T-cell locoregional 
immunotherapy

48 Her-2 expressed medulloblastoma 2039

NCT01356290 Antiangiogenic therapy for recurrent medullo-
blastoma

100 All MB subtypes 2026

NCT03911388 G207, an oncolytic herpes simplex virus-1 
(HSV)

15 All MB subtypes 2025

NCT03638167 EGFR806-specific CAR T-cell locoregional 
immunotherapy

36 EGFR positive tumours 2040

NCT03893487 Fimepinostat, a small molecule inhibitor in 
young MB

30 All MB subtypes 2027

NCT03709680 Palbociclib in combination with temozolomide 
and irinotecan

184 All MB subtypes 2028

NCT03904862 CX-4945 inhibitor of casein kinase II (CK2) 
tolerability 

60 SHH-medulloblastoma 2028

NCT03936465 BMS-986158, a bromodomain inhibitor 66 MYCN amplification or BRD3 
translocation MB

2024

NCT02650401 Entrectinib (RXDX-101), a TRKA/B/C, ROS1, 
and ALK inhibitor

68 MB harboring- NTRK1/2/3, ROS1, 
ALK fusions

2027

NCT03210714 Erdafitinib, an oral pan-FGFR inhibitor 49 Mutations in the FGFR1/2/3/4 
pathway

2024

NCT03213678 Samotolisib, a PI3K/mTOR inhibitor 24 PI3K/MTOR activating mutations 2024

NCT03213704 Larotrectinib, NTRK fusion inhibitor for 
medulloblastoma

49 MB with NTRK fusions 2024

NCT03213665 Tazemetostat, a small molecule EZH2 inhibitor 20 EZH2, SMARCB1, or SMARCA4 
mutations

2023

NCT03233204 Olaparib for refractory or aggressive medullo-
blastoma 

29 Defects in DNA damage repair 
genes

2024

NCT04023669 LY2606368, a molecularly targeted CHK1/2 
inhibitor

21 Group3/Group4; SHH; 
indeterminate types

2026

NCT03526250 Palbociclib (Pediatric MATCH treating trials 49 Rb positive solid tumours 2025

NCT02444546 Wild-Type Reovirus in Combination with 
Sargramostim 

06 All MB subtypes 2026

NCT04185038 B7-H3-Specific CAR-T Cell Locoregional 
Immunotherapy 

90 All MB subtypes 2041
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NCT01601184 Vismodegib combined with Temozolomide 24 SHH-MB group 2023

NCT03155620 Targeted therapy directed by genetic testing 2316 All MB subtypes 2027

NCT00089245 Iodine I 131 monoclonal antibody 8H9 120 All MB subtypes 2025

NCT02271711 Natural killer cell therapy 12 All MB subtypes

NCT04315064 Infusion of Panobinostat (MTX110) 5 All MB subtypes 2024

NCT04743661 131I-Omburtamab in recurrent medullo-
blastoma 

62 All MB subtypes 2030

NCT03257631 Pomalidomide onotherapy for recurrent or 
progressive MB

53 All MB subtypes 2023

NCT04320888 Selpercatinib for treatment of advanced 
medulloblastoma 

49 Tumour with activating RET 
alteration

2027

ALK: Anaplastic Lymphoma Kinase; CMV: Cytomegalovirus; EGFR: Epidermal Growth Factor Receptor; MB: Medulloblastoma; PEP: Post-exposure 
prophylaxis; SHH: Sonic-hedgehog; IHC: Immunohistochemistry; RET: Rearranged in transfection; NK: Natural killer; WNT: Wingless.

Figure 2 Risk groups and categories of medulloblastoma with their molecular profiles and the 5-years survival associated with each 
group. The information presented in this figure were taken with permission from the reference: Luzzi et al[91], 2020. SHH: Sonic-hedgehog; MB: Medulloblastoma; 
MYC: Myelocytomatosis oncogene; OS: Overall survival; WNT: Wingless.

tumor surface is also a common mechanism of immune escape in MB[42,43]. Because MHC class-I helps 
in the activation of CD8 cytotoxic T-cells, it acts as a passive regulator of natural killer (NK) cells. Thus, 
the loss of MHC-class I in tumor cells may increase tumour cell evasion[42,43].

Tumour associated macrophages in immune microenvironment 
TAM is considered the major immune cell in the tumor microenvironment that can either support or 
inhibit tumor growth[44,45]. TAMs interact with tumour cells to promote tumour progression and 
invasion[46]. They are subclassified into two groups: (1) TAMs with M1 polarization, are induced by 
IFN-γ to release proinflammatory particles and are associated with some inflammatory response; and 
(2) TAMs with M2 polarization, are induced by interleukin-4 to release growth factors (e.g., epidermal 
growth factor, fibroblast growth factor-1, vascular endothelial growth factor) and involved in tumour 
progression and immunosuppression[47-49]. Uncontrolled activation of M1-polarzed TAM can shift 
towards M2-polarization in long term. However, the M2-like macrophages, which mimic TAMs in the 
tumour microenvironment, can be stimulated by cytokines[50]. EGF released by TAMs stimulate 
carcinogenesis, while VEGF regulates angiogenesis. These processes emphasize the actual immune-
suppressive function of TAMs[51]. TAMs infiltration in the tumour microenvironment was proven to be 
a poor prognostic factor[50]. Clinical data have indicated that a large number of M2-polarized TAMs 
expressing CD163 and CD204 were correlated with a poor outcome of several body cancers[47] 
(Figure 3). Moreover, the presence of TAMs, mainly M2- type, has been also noted in many adult 
malignancies including CNS tumors[52-54]. In response to hypoxia, TAMs overexpress the PD-1 ligands
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Figure 3 The signaling interaction between tumour cells, tumor-associated macrophages, and tumour infiltrating lymphocytes in 
medulloblastoma microenvironment. Tumour microenvironment represents diverse cellular heterogeneities including immune and none-immune cells. The 
targeted receptors linked between immune cells represent a potential targeted therapy. CAF: Cancer-associated fibroblasts; MB: Medulloblastoma; NK: Natural killer; 
TAM: Tumor-associated macrophage; TIL: Tumour infiltrating lymphocytes.

[55]. PD-L1 overexpression in TAM has been reported in glioblastoma[56] but it has never been 
explored well in other brain tumours such as medulloblastoma.

The current role of TAMs in the prognosis of MB is still controversial. Despite of the molecular 
insights provided by MB subgroups, less information were reported about the role of TAMs in MBs[33]. 
The genetic alterations and the disease risk would make diverse effects on immune microenvironment
[57]. Because TAMs are composed of variable amounts of microglia and macrophages, the composition 
of TAMs are different in all MB subgroups. Margol et al[58] and Zhang et al[59] reported that TAMs 
were significantly higher in SHH-MB compared to other MB subgroups. This may be due to the high 
expression of monocyte chemotactic protein-1 (MCP-1], which helps in TAM recruitment and M2 
polarization[60]. Another possibility, SHH-MB may exhibit molecular signatures predictive for 
fibroblast, T-cells, and macrophage infiltration[34]. Nevertheless, the role of TAMs in this era is not clear 
and the previous reported studies did not reveal the prognostic connotations of TAMs in SHH-MBs[58].

CD163 expression was observed in the small number of SHH-MBs, which suggested that TAMs may 
play a dynamic role in SHH-MB formation[58,61]. Another study done by Crotty et al[62], revealed that 
less TAMs in microenvironment was associated with a low recurrence and low risk of metastasis. Lee et 
al[63] suggested that a large number of M1-polarized TAMs was associated with worsening outcome in 
SHH-MB patients. Lee and his group has also investigated the correlation between TAM recruitment 
and outcome, and they revealed that expressed M1-polarized TAMs predicted better progression-free 
survival but, TAMs showed no significant effect on OS[59]. Few studies showed that the immunore-
activity in MB microenvironment, regardless the subtype, is age-related[64]. In a study done by Zhang et 
al, they divided the patients into three age groups. They found that the group between 0-3 years of age 
and the group between 11-18 year of age had more TAMs than the group aged between 4-10 years. It 
implies that TAMs in MBs are crucial in different age groups[59]. Zhang et al[59] also found that TAMs, 
mainly M1-polarized type, are prevalent in MBs with metastatic disease.

Tumour recurrence and metastases are the major obstacle for treatment success, and the disease 
recurrence is responsible for 90% of MB mortality[65]. Group 3 and 4 patients develop spinal metastases 
regardless of the type of chemotherapy given after resection[2]. The presence of TP53-MYCN-alteration 
in these groups is associated with rapid tumour progression[66]. The ability of Group 3 and 4 to 
metastasize indicates that these tumor cells participate in the epithelial-to-mesenchymal transition 
(EMT), thus warranting additional investigations into EMT[67]. It is not yet known why tumor cells 
enter the EMT phase. A study done by Bonde et al[68] showed that TGFβ triggers the EMT phase, 
shifting the cancer cells to gain a mesenchymal phenotype. The lack of local nutrients, loss of supportive 
cells in microenvironment, and repeated mutations can all be reasons for this aggressive behavior. 
Funakoshi et al[69] found that loss of CDH1 allows tumour cells to detach from each other and can 
invade and metastasize.

Tumour infiltrating lymphocyte in immune microenvironment 
Generally, increased T-cells trafficking in the brain has been reported in some neurological diseases. The 
activated T-cells have the role to alter the BBB, allowing for immune cells recruitment and entry to the 
brain parenchyma[70]. Tumour infiltrating lymphocytes (TIL) are considered signaling interacted cells 
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between TAMs and tumour cells in the tumour microenvironment (Figure 3). The number of T-cells 
present in MB was found to be not significantly high compared to other control tissues[33]. Small 
amount of CD8 cytotoxic T-cells and NK cells suggest a less antitumor activity in MB[34]. However, a 
small percentage of helper T-cells (Th17) cells was also found at the site of the tumor but with uncertain 
significance[11]. Some experimental trials revealed that MB cells stimulate the release of the T-cells 
attractant (RANTES) from the endothelium, causing T-cell immigration[71]. Hence, increasing numbers 
of T-helper lymphocytes correlate with favourable prognosis in MB patients receiving chemotherapy
[44].

T-regulatory cells (Tregs) control the activity of immune cells by releasing some anti-inflammatory 
cytokines such interleukin-10 (IL-10), and CTLA4-mediated trogocytosis[44]. Treg infiltration in MB 
microenvironment has been described by Gate et al[44]. Consequently, TGFβ drives the CD4 helper T-
cells to Tregs, which in turn releases high levels of TGFβ. This process generates a feeding circuit to 
support immunosuppression. Elevated Treg in MBs can be therapy-induced, as Treg has been detected 
in the peripheral blood of some treated patients[38].

Interaction between TAMs and TILs in MB microenvironment
The interaction between TAMs and TILs were not scientifically explored in MB microenvironment 
(Figure 3). Kurdi et al[54] has explained the crosstalk between tumour cells, TAM sand TILs in 
glioblastoma. TAMs encircle cancer cells and supresses the killing action of T-cell thus, T-cells will not 
be able to help tumour cells against immune evasion. The TAMs accumulate in the microenvironment 
with less T-cells evolution[54]. Salsman et al[71] revealed that MB cell lines can interact with tumor 
endothelium to recruit T-cells to MB microenvironment, in particular macrophage migration inhibitory 
factor (MIF). MIF is the key molecule released by MB to stimulate the endothelial cells in the microenvir-
onment to release more potent T-lymphocyte attractants[71].

Current immunotherapy in MB and possible targeted receptors 
Immune checkpoints represent a family of proteins on T-cells surface that interact with some ligands on 
APCs or tumour cells while they inhibit TCR-mediated ligands. Certain cancers (colorectal, ovarian and 
brain cancers) are resistant to immune checkpoint inhibitor[72]. The number of studies utilizing 
immunotherapy in the treatment approach of MB is limited. The approach had few selected options. 
Most of studies were observational and contained a small sample size. There are two clinical trials 
currently investigating the blockade of inhibitory checkpoint pathways in MB including pembrolizumab 
and nivolumab (NCT02359565) (NCT03173950). CD276, another immune check point inhibitor on T-cell, 
is also under investigation[73]. CD40 [a TNF receptor] expressed by antigen presenting cells and B-cells 
expresses cytokines, activates T-cells, and in turn timulate programmed cell death[74]. CD40 has a 
significant cytotoxic effect on tumor cells. APX005M, a humanized IgG1κ monoclonal antibody agonist 
of CD40 is currently evaluated in a phase I trial (NCT03389802) in patients with recurrent MBs. The 
recent actively recruiting clinical trials are summarized in (Table 1).

Numerous studies revealed that TAMs may interfere with some anti-tumor treatments such as 
chemotherapies and other antibody-based immunotherapies targeting some molecules such as PD-1/
PD-1[50,72]. These findings emphasize that TAMs might be a promising target of novel anti-tumor 
treatment particularly in patient not responding to the standard treatment. The ability of TAMs to limit 
the efficacy of immune check point blockade has been previously investigated in several cancers[75,76]. 
TAMs express multiple ligands for checkpoint receptors, such as PD-L1/2, CD80/86, and CD204/
CD206, and the current checkpoint inhibitors are different from the targeted receptors as they maintain 
a state of effective immunosuppression[77] (Figure 3). These legends, representing M2-polarized TAMs, 
have not been investigated in MB microenvironment. Martin et al[78] showed that MBs expressing 
reduced levels of PD-L1 can help tumour cells to evade from the immunity, suggesting that an inflamed 
tumor microenvironment is necessary for PD-1 pathway stimulation. However, the efficacy of PD-PD-
L1 inhibitor has not been yet proven to be formally used in MB treatment.

Trogocytosis is a process involved in immune microenvironment concerned with the transfer of 
membrane fragments and cell surface proteins between cells. It is not known if induced iTregs can 
undergo trogocytosis. The trogocytosis of CD80/CD86 occurring in CTLA-4 or PDL1-independent 
approach plays a significant role in the immune suppression[79]. CD80/86 expression and trogocytosis 
have never been explored in MB microenvironment. As a key mechanism, Treg-linked CTLA-4 inhibits 
the CD80/CD86 molecules expression on APCs. Tekguc et al[80] revealed that blockade of CTLA-4 and 
PD-1/PD-L1 pathways may impede Treg-mediated immunosuppression, which in turn enhances anti 
tumour activity response. This novel exploration has not been investigated in MB. Several investigations 
have demonstrated that activation of PI3Kγ signaling in macrophages suppresses NF-κB, thereby 
stimulating immunosuppression. TAMs in cancers treated with chemotherapies are often responsible 
for chemoresistance as they are more susceptible to the cytotoxic effect of macrophages[81]. This process 
occurs when there is excessive recruitment of anti-apoptotic process in tumour microenvironment[82].

Understanding the molecular events in the mechanism of TAMs activation allows for the deve-
lopment of anti-tumor treatment strategies. TAMs can be targeted to inhibit their infiltration in microen-
vironment through direct killing or through a TAM-polarization reprogramming. TAMs accumulate in 
tumour microenvironment because of the continuous recruitment of monocytes from the blood 
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circulation to TAMs through multiple tumour derived mediators. These mediators play a connection 
role between macrophages and tumour cells. CCL2 has been described as the main mediator involved in 
TAM recruitment. Indeed, the blockage of this pathway would cause less TAMs accumulation in 
tumour microenvironment[83]. Another pathway involved in monocytic recruitment into TAMs is the 
CXCL12/CXCR4 pathway[84]. It has been used in different trials of different cancers such as myeloid 
leukemia but never been tried in brain cancers.

CSF-1, a colony stimulating factor involved in the proliferation and the recruitment of monocytes-
macrophages, is an essential target against TAM in tumour microenvironment. The expression of CSF-1 
in tumour microenvirment was proven to be a poor prognosticator in multiple body cancers[85]. After 
treatment with CSF-1 inhibitor in one of clinical trials, the number of TAMs have depleted and there 
was an infiltration of CD8 cytotoxic T-cells in the tumor[86,87].

Reprogramming of TAM is another possible strategy to inhibit TAM activity. Several approaches 
attempted to switch M2-polarized TAMs into antitumor M1-like macrophages through monoclonal 
antibody inhibitors and Toll-like receptor (TLR) blockers. Alvarez-Arellano et al[88] revealed that TLR7 
is a prognostic factor of survival in MB. Resiquimod, an agonist to TLR7/8, has shown an attention 
couple years ago for its efficacy to reprogram macrophages[89]. The CD47–SIRPα, involved in the 
regulation of phagocytosis, has never been used to reprogram TAMs. CD47 is expressed by tumor cells 
and interacts with the signal regulatory protein-α. Substantial evidence assumed that overexpression of 
CD47 in many cancers had a role in the phagocytic resistance[90]. However, this investigation has never 
been investigated in MB patients. Promising results were obtained in lymphoma patients in a 
combination of anti-CD47 with anti-CD20. Despite these results, the in vivo application of CD47 for the 
treatment of cancer is still limited.

CONCLUSION
Medulloblastoma is the most common malignant pediatric tumour in CNS that are subclassified into 
four distinguishing molecular subgroups. The current treatments failed to improve the patient’s 
survival significantly while the serious complications associated with these cytotoxic therapies warrant 
for exploring new therapeutic approaches targeting different immune receptors. The identification of 
tumour microenvironment has facilitated the scientists understanding how tumor growth and 
progression are regulated. TAMs and TILs, the main dominant immune cells in microenvironment, 
seem to have a major role in immune mechanism and tumor progression. Their infiltration in microen-
vironment has prompted researchers to evaluate the interaction of new targeted immune receptors with 
the current signaling pathways. Their infiltration in microenvironment may also be targeted through 
different reprogramming mechanisms. However, the ability of TAMs to limit the efficacy of immune 
check point blockade in MB requires further investigations. These strategic thoughts emphasize that 
TAMs might be a promising targeted treatment particularly in patients with recurrent or progressive 
MB. Further studies to explore new targeted receptors in tumour microenvironment and understanding 
the conventional relationship between TAMs, TILs and tumour cells are essential to develop new 
therapeutic approaches.
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