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Abstract
Glioblastoma remains as the most common and aggressive malignant brain 
tumor, standing with a poor prognosis and treatment prospective. Despite the 
aggressive standard care, such as surgical resection and chemoradiation, median 
survival rates are low. In this regard, immunotherapeutic strategies aim to 
become more attractive for glioblastoma, considering its recent advances and 
approaches. In this review, we provide an overview of the current status and 
progress in immunotherapy for glioblastoma, going through the fundamental 
knowledge on immune targeting to promising strategies, such as Chimeric 
antigen receptor T-Cell therapy, immune checkpoint inhibitors, cytokine-based 
treatment, oncolytic virus and vaccine-based techniques. At last, it is discussed 
innovative methods to overcome diverse challenges, and future perspectives in 
this area.
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Core Tip: This study aims to review the ongoing status and improvement made in immunotherapy for 
glioblastoma, a malignant brain tumor. Thus, this review goes through the general concepts of the tumor 
microenvironment, standard treatment and its limitations and immune targeting promising methods, such 
as Chimeric antigen receptor T-Cell therapy, immune checkpoint inhibitors, cytokine-based treatment, 
oncolytic virus and vaccine-based techniques. Finally, it is explained some methods to surpass the various 
challenges, and future prospects in this field.

Citation: Rocha Pinheiro SL, Lemos FFB, Marques HS, Silva Luz M, de Oliveira Silva LG, Faria Souza Mendes 
dos Santos C, da Costa Evangelista K, Calmon MS, Sande Loureiro M, Freire de Melo F. Immunotherapy in 
glioblastoma treatment: Current state and future prospects. World J Clin Oncol 2023; 14(4): 138-159
URL: https://www.wjgnet.com/2218-4333/full/v14/i4/138.htm
DOI: https://dx.doi.org/10.5306/wjco.v14.i4.138

INTRODUCTION
Glioblastomas (GBM) are the most common type of malignant tumor affecting the central nervous 
system. It is more common among men and its incidence is significantly related to age, being rare 
among young people and more common among the elderly, especially those aged between 74 and 85 
years. It has a very poor prognosis, with survival of 12 to 15 mo after diagnosis, and, when untreated, of 
only 3 mo[1].

Regarding clinical manifestations, the symptoms are quite diverse and common to other types of 
brain tumors and include manifestations associated with intracranial hypertension such as intense 
headache, which can be accompanied by nausea and vomiting, focal neurological deficits, memory and 
personality changes, and seizures[2].

GBMs are tumors that originate from glial cells and are classified according to their histological 
characteristics as high-grade gliomas by the WHO, and the characteristics that define this denomination 
include hypercellularity, nuclear atypia and dysregulation of mitotic activity, besides microvascular 
proliferation and tumor necrosis[3]. So, they are classified as primary if there is no pre-existing 
involvement or secondary if they have progressed from low-grade astrocytomas; primary GBMs 
represent the majority of cases and secondary GBMs correspond to only 5 to 10% and usually affect 
young people[4].

In addition to histopathological analysis, molecular markers are essential for the understanding of the 
disease, since different genetic alterations can originate this type of tumor and determine subtypes that 
behave differently in terms of evolution and response to treatments used, which makes the identi-
fication of these factors essential for the establishment of therapeutic strategies. In this sense, GBMs can 
be grouped into 4 subtypes according to their molecular characteristics: classic, neural, pro-neural and 
mesenchymal[3,4].

Among the mutations related to the pathogenesis of GBM, we can cite 3 main pathways: receptor 
tyrosine kinase signaling, inhibition of the p53 pathway, and RB, and in most cases all three types of 
alterations are present. These mutations are associated with activation of oncogenes that act mainly in 
neoplastic proliferation, apoptosis disturbances, and cell cycle checkpoint failures that promote tumor 
cell survival[5]. Moreover, when compared to a normal brain, GBMs present a higher expression of 
genes related to immune cell infiltration, especially macrophages, and angiogenesis, noticing that 
hypoxia, which is characteristic of necrotic tumor regions, induces a higher expression of vascular 
endothelial growth factor (VEGF) and, consequently, a higher vascular proliferation[6].

Due to the characteristics of its pathogenesis, there is a diversity of cells that are found in the analysis 
of these tumors, including non-neoplastic components of the immune system. This is related to the 
tumor microenvironment of glioblastoma, since it has an inflammatory and pro-angiogenic charac-
teristic that affects the permeability of the blood-brain barrier and allows the infiltration of defense cells, 
especially tumor-associated macrophages (TAM). The immune system in the early stages of the disease 
is responsible for controlling the development of the cancer, however, as proliferation progresses, the 
tumor cells become able to escape this surveillance and the defense cells not only become unable to 
perform this control, but start contributing to the growth of the tumor[7].

The available treatment is complex and usually requires a combination of different approaches and is 
dependent on a number of factors. Although there are other options and studies for the development of 
new treatments, the therapeutic strategies are still controversial and the prognosis is unsatisfactory with 
a high recurrence rate[8].

In this review, we provide an analysis of the ongoing status and progress in immunotherapy for 
glioblastoma, going through the general information about the tumor microenvironment, fundamental 
knowledge on immune targeting to promising strategies like Chimeric antigen receptor (CAR) T-Cell 
therapy, cytokine-based treatment, oncolytic virus and vaccine-based approaches. Finally, we discuss 
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contemporary methods to prevail distinct challenges, and future perspectives in this field.

CURRENT STANDARD CARE LIMITATIONS
The treatment of primary brain tumors such as GBM is still quite limited and, therefore, a major 
challenge in oncology. Although the treatment is difficult, expensive and subject to therapeutic failure, 
management protocols for patients with GBM consider multimodal therapeutic strategies that act in 
synergy in order to destroy the tumor. For this, such strategies must be individualized based on each 
patient according to their functional status, imaging exam, speed of disease progression, quality of life 
and clinical diagnosis. However, for new methods to be developed and current ones to be improved, it 
is necessary to think about the limitations of existing treatments. The Figure 1 synthesizes the current 
GBM treatment strategies and its advantages and limitations.

Surgical method
The surgical method is based on the maximum safe resection of the tumor and currently comprises the 
backbone of therapy for GBM[9], as in addition to reducing the volume of the neoplastic mass and the 
symptoms associated with parenchymal compression, the histological diagnosis and genetic study of 
the tumor are also possible by surgical intervention[10]. The aim of surgical treatment is to achieve a 
gross total resection as completely and safely as possible without risking the patient's functional status. 
Complete resection has been associated with a greater chance of survival and no progression than 
partial resection or biopsy. In this sense, some tools were developed to maximize the surgical procedure 
and alleviate as much as possible the neurological deficits that may be associated with the method. 
Among these tools, monitoring using fluorescence of tumor tissue with 5-aminolevulinic acid in 
conjunction with functional magnetic resonance imaging shows beneficial results[10,11].

However, GBMs are not cured with surgery alone, as almost all are recurrent and the biological 
pleomorphism of each tumor influences the degree of resectability of the cancer, with less malignant 
brain tumors being the most resectable[12]. Furthermore, the surgical method is extremely complex, 
delicate and expensive, because it demands a qualified neurosurgeon and sophisticated imaging 
equipment, in addition to the fact that the patient has the possibility of developing a neurological deficit 
as a result of the intervention, which may even prevent the following steps of the standard treatment, 
such as radiotherapy and chemotherapy[13]. Thus, it is necessary to accurately weigh the risks and 
benefits of the surgical technique.

Radiotherapy
Radiotherapy (RT) became popular in the 1970s and 1980s and is currently a therapeutic strategy based 
on the use of radiation volumes focused on specific regions. This method has become standard for 
GBMs since 2005, as it was in that year that a phase III clinical trial solidified the role of radiotherapy 
and adjuvant chemotherapy in the postoperative period of GBM[14]. After the surgical diagnosis, the 
patient is submitted to doses of 2 Gy for 6 wk until reaching a dose of 60 Gy[13]. It is an effective 
method that increases patient survival in different types of doses provided, especially hypofractionated 
doses, which make this method viable in elderly people (over 65 years old) with glioblastoma[9].

The combination of radiotherapy for 6 wk and chemotherapy with adjuvant Temozolomide 75 mg/
m² for 6 wk and 150-200 mg/m² every 28 d for 6 mo is the gold standard treatment for young patients 
with glioblastoma. This combination of strategies significantly improved the survival of younger 
patients between 2 and 5 years[14].

RT has an important limitation in the sense that its use does not have much favorable evidence in 
recurrent gliomas, although it is extremely useful as a palliative therapy for small recurrent tumors[15]. 
In addition, it is necessary to be wise in the use of radiation, since the treatment protocol requires the 
patient's history of previous radiation, as well as the location of the tumor and the maximum dose for 
the structure in which it is allocated[16]. Finally, the therapeutic algorithm assesses the speed of disease 
progression and the patient's functional status. Thus, the use of chemoradiotherapy is not indicated for 
individuals over 70 years of age who do not have a good functional status, which is measured by the 
Functional Status Score for the Intensive Care Unit scale[15].

Chemotherapy
Temozolomide: Temozolomide (TMZ) is an alkylating agent that is cell cycle independent and is the 
most effective chemotherapy for GBM to current date. This efficiency is due to the ability to cross the 
blood-brain barrier and transportable cytosolic transformation to the cell nucleus[17]. The current 
standard of care in newly diagnosed GBM includes administration of 75 mg/m² of TMZ daily during 
the 6 wk of radiotherapy. Then, 150-200 mg/m² are maintained for 5 d at each 28-d cycle with 6 cycles of 
the drug[13].

However, this therapeutic strategy is variable based on the age of the patient, performance status 
according to the Karnofsky performance score, the promoter methylation status of the repair enzyme 
O(6)-Methylguanine-DNA-methyltransferase (MGMT) and the tumor recurrence[14], since TMZ does 
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Figure 1 Scheme about current glioblastomas treatment strategies and its advantages and limitations. GBM: Glioblastomas; OS: Overall 
survival; PFS: Progression-free survival; TMZ: Temozolomide; VEGF: Vascular endothelial growth factor;

not prevent this event. This enzyme can cause patient resistance to TMZ, and some patients who have 
MGMT gene promoter methylation in the tumor may benefit from reduced drug resistance.

About 55% GBMs[12] have innate or acquired resistance to chemotherapy due to non-methylation of 
the MGMT promoter. In this way, the alkyl groups are removed from the O6 position of the guanine, 
reducing the pharmacological efficacy of the alkylating agents[18]. Another important mechanism of 
resistance to chemotherapy is the reduction of TMZ cytotoxicity by the base excision repair pathway. 
This pathway, mainly composed of poly (ADP-ribose) polymerase-1, is capable of repairing the bases 
methylated by the alkylating agent in the DNA and, therefore, reducing the occurrence of apoptotic 
events in tumor cells[19,20]. Thus, the use of iniparib and velparib is promising, either alone or in 
combination with TMZ, to reduce drug resistance[20,21].

It is noteworthy that the MGMT promoter methylation status is not routinely evaluated for all 
patients with the discussed disease and, if evaluated, the result may not be taken into account for TMZ 
treatment decision making in some clinics, as there may be lower availability of treatment agents, 
presence of severe adverse reactions to chemotherapy, associated comorbidities and preference for 
treatment by the patient.

Carmustine wafers: Carmustine wafers are biodegradable chemotherapy intratumoral implants[22] 
used as an adjunct to surgical resection since 1995 in patients with recurrent GBM, since there is an 
improvement in overall survival (OS) of 7.2 mo in the carmustine group vs 5.4 mo in the placebo group
[23]. However, its combined use with TMZ still divides authors, since some scientists believe that 
concomitant use is associated with an increase in the occurrence of adverse effects[24]. Therefore, it is 
necessary to have a randomized controlled clinical trial to support or refute the safety and efficacy of 
simultaneous use of carmustine wafer with TMZ.

Biological agent: Bevacizumab, a drug containing antiangiogenic monoclonal antibodies that has been 
in use since 2009 against the progressive form of the disease, binds to the VEGF making it difficult for 
recurrent GBM and rapid neurological involvement associated with the tumor, being a well-tolerated 
drug and capable of reducing cerebral edema, which allows a reduction in the use of corticosteroids and 
associated adverse effects[25].

The aforementioned drug is recommended as monotherapy or in association with other 
chemotherapy drugs, such as irinotecan, carmustine, lomustine, carboplatin or temozolomide[26,27], in 
newly diagnosed or recurrent glioblastoma. Several clinical trials over the past decade in patients with 
newly diagnosed GBM have shown improvements in progression-free survival (PFS), although they 
have not shown significant improvement in overall survival (OS). A recent study evaluated the 
combination of lomustine and bevacizumab in recurrent GBM and concluded with a survival of 5.1 mo
[28].
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However, there are genetic variations of VEGF that can determine the success or failure of 
bevacizumab therapy, requiring great care in the administration of this biological agent. Moreover, as 
the anti-VEGF method did not convincingly show improvement in OS as a monotherapy, it is necessary 
to evaluate the combination of this type of drug with other known therapeutic options used in neuro 
oncology.

Alternating electric field therapy
Tumor treatment fields (TTFs) are a therapeutic method that uses alternating currents of low intensity 
(1-2 V/cm) and intermediate frequency through electrodes placed on the skin around the region of a 
malignant tumor to stop growth and to induce apoptosis of mitotically active cells[29,30], which is 
considered a safe method, as it does not affect non-dividing cells.

A 2015 study revealed that the combination of TTFs and TMZ significantly improves median PFS and 
OS compared to TMZ monotherapy during maintenance therapy with less occurrence of electrical 
device-related adverse effects[31]. Current treatment guidelines incorporate TFT into the therapeutic 
regimen of patients with newly diagnosed and recurrent GBM[13].

However, the device is expensive, must be used at least 18 h a day and requires hair shaving of users 
for proper application of electrodes[32]. This can affect the patient's self-esteem and quality of life, in 
addition to causing a possible low adherence to treatment.

PIVOTAL ROLE OF THE TUMOR MICROENVIRONMENT
The central nervous system as an immune-distinct site
The role of the tumor microenvironment in the modulation of antitumor immune responses is becoming 
clearer[33]. The central nervous system (CNS) is usually described as an immune-privileged site, which 
means that it shows attenuated responses to alloantigen challenges[34]. Classically, the property of CNS 
immune privilege has been attributed to two mechanisms: (1) The blood-brain barrier (BBB); and (2) the 
absence of classical lymphatic drainage of CNS antigens[35]. The BBB is a semi-permeable cellular 
barrier composed of specialized endo-thelial cells (non-fenestrated, firmly attached by tight junctions), 
astrocyte end-feet, and pericytes. Its main function is to tightly regulate the movement of ions, 
molecules, and cells (e.g., immune cells) between the blood and the brain[36,37]. The ability to block the 
entry of possibly neurotoxic molecules, primarily through ATP-binding cassette transporter-mediated 
efflux, is one of the main challenges posed to immunotherapy[38]. On the other hand, the lack of profes-
sional antigen-presenting cells in the CNS parenchyma, low expression of MHC class I and II, and the 
first apparent absence of classic CNS lym-phatic drainage also limit the ability of an immune response 
to CNS-derived antigens[39,40]. Given that efficient anti-tumor responses require not only that cancer-
specific T cells be generated, but also that these T cells come into direct contact with the tumor cells, it 
becomes evident that the CNS provides an immune-privileged microenvironment for tumor growth and 
proliferation.

Fortunately, increasing evidence has pointed to the CNS, not as an immune-privileged site, but rather 
as an immune-distinct site that remains accessible to the onset of antitumor immune responses and 
immunotherapy[35]. Recent studies suggest the existence of a functional meningeal lymphatic system 
that drains cerebrospinal fluid (CSF), macromolecules, and immune cells from the CNS into the deep 
cervical lymph nodes[41]. Investigating these antigenic presentation routes will be an important step in 
understanding the immune-distinct properties of the GBM microenvironment.

Immunosuppressive mechanisms in GBM
Although revolutionary in the treatment of cancer patients, immunotherapy is critically dependent on 
the availability of preexisting anti-tumor immunity[42,43]. GBM is widely recognized to induce local 
and systemic immunosuppression, which is a hindrance to the use of immune-modulating therapies
[44].

GBM cells can evade immune surveillance through the release of various soluble mediators that exert 
a variety of immunosuppressive effects[45]. The best-characterized GBM-derived immunomodulatory 
factors are the transforming growth factor β (TGF- β), interleukin 10 (IL-10), and prostaglandin E2 (PGE-
2)[45-48]. In the presence of TGF-β, CD4+ T cells upregulate FoxP3 and differentiate into Treg cells with 
potent immunosuppressive potential. These converted suppressor cells not only do not respond to TCR 
stimulation and produce neither Th-1 nor Th-2 cytokines, but also express TGF-β and inhibit normal T 
cell proliferation in vitro[49,50]. It has also been shown that this cytokine inhibits the expression of five 
cytolytic gene products - specifically, perforin, granzyme A, granzyme B, Fas ligand, and interferon 
(IFN)-γ - which are co-responsible for CD8+ T cell-mediated tumor cytotoxicity[51]. Additionally, there 
is a TGF-β1-mediated downregulation of activating receptor NKG2D on the surface of CD8+ T cells and 
natural killer (NK) cells, thereby precluding cytotoxicity against GBM cells[52]. On the other hand, TGF-
β2 can prevent neoantigen presentation and facilitate immune escape from T lymphocytes through the 
down-regulation of HLA-DR antigen expression on tumor cells[53]. Altogether, these immunosup-
pressive stimuli of T or NK cell activity prevent the effective immune-mediated clearance of tumor cells
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[54,55].
IL-10 also plays a pivotal role in modulating the activity of resident and infiltrating immune cells and 

tumor cells in GBM, predominantly inducing an immunosuppressive phenotype[47]. Upon activation 
by GBM cell-derived IL-10, tumor-microglia and macrophages are then elicited to produce most of the 
IL-10 in the tumor microenvironment[56]. Increased secretion of IL-10 was associated with enhanced 
expression of other anti-inflammatory cytokines, such as IL-4, CCL2, and TGF-β[57]. In the presence of 
IL-10, TAMs downregulate the expression of antigen-presenting molecules, thereby impairing CD4+ T 
cell activation[58]. Along with TGF-β, IL-10 is also able to exert FOXP3-expressing naive T cells differen-
tiation into Treg cells, hence leading to Treg-driven immunosuppression[59-61]. Conversely, recent data 
have shown that a subset of IL-10-releasing HMOX1+ myeloid cells, spatially localizing to 
mesenchymal-like tumor regions, also in-duce T-cell exhaustion and thus contribute to the tumor 
microenvironment[62].

In turn, PGE-2 has been shown as a key mediator of immunosuppressive activity through the 
expansion of myeloid-derived suppressor cells (MDSCs)[48,63]. VEGF, on the other hand, is the most 
important mediator of angiogenesis in glioblastoma, which has made it one of the main therapeutic 
targets in GBM treatment[64]. Finally, through the activation of hypoxia-inducible factor 1- α, hypoxia 
regulates the expression levels of the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), 
programmed death-ligand 1 (PDL-1), and other immunomodulatory surface ligands, which hinder 
effective anti-tumor immune responses[65].

GBM cells can attenuate anti-tumor responses through the expression of a plethora of cell surface 
immunosuppressive factors, including the so-called immune Checkpoint molecules (ICs). Coupled with 
programmed cell death-1 (PD-1) located on the surface of activated T-cells, GBM and immunosup-
pressive (e.g., Treg) cells membrane-bound PDL-1 can exert T-cell exhaustion and anergy[66,67]. Hence, 
PDL-1 upregulation in the tumor microenvironment propitiates resistance against T cell-mediated 
killing, in a protective process termed a “molecular shield”[68]. Conversely, the expression of the CD95 
(Fas) ligand by GBM cells can also attenuate immune attack through the induction of CD95-Dependent 
apoptosis in infiltrating lymphocytes[69]. In turn, CTLA-4 is also an important ICs due to its capacity to 
compete with CD28 for binding to costimulatory molecules (CD80 and CD86) on antigen-presenting 
cells, thereby precluding the activation of T cells[67,68,70,71]. Lastly, indoleamine 2,3-dioxygenase 1 
(IDO) and Lectin-like transcript-1 (LLT-1), are known to increase intratumoral Treg and myeloid-
derived suppressor cells, and to repress NK cell activity, respectively[72,73].

Increasing evidence has reaffirmed the pivotal role of immunosuppressive monocytes, including 
MDSCs, and tumor-derived extracellular vesicles (EVs) in GBM-induced local and systemic immun-
osuppression[74]. EVs are defined as biologically active particles that carry both GBM-derived soluble 
factors and membrane-bound receptors that can be functionally delivered to target cells[74]. In 
combination with the tumor milieu, these particles can induce the conversion of monocytes to an 
immunosuppressive phenotype[75]. The role of EVs in direct T-cell inhibition has also been 
demonstrated. Ricklefs et al[76] recently showed that glioblastoma EVs block T cell activation and prolif-
eration in response to T cell receptor stimulation. This mechanism of immunosuppression and its local 
and systemic effects have great potential for exploration in the context of immunotherapy. The Figure 2 
synthesizes the GBM-induced immunosuppressive microenvironment.

CYTOKINE THERAPY
Cytokine therapy in the treatment of GBM is based on the use of pro-inflammatory cytokines, in order 
to promote reversal of the immunosuppressive microenvironment triggered by this tumor and 
subsequent activation of the immune response[76,77]. Mainly, IFN-α, TNF-α and IL-12 have been 
assessed as possible therapeutic options for glioblastoma[78,79]. In this sense, IFN-α is related to 
increased activity and reduced exhaustion of T cells and macrophages, besides inhibiting tumor 
angiogenesis and immune suppression-related gene expression[79]. On the other hand, TNF-α promotes 
dendritic cells maturation and, consequently, T cell stimulation, while IL-12 is related to enhanced CAR-
T cell efficacy, increased infiltration of CD4+ T cells and decreased frequency of T-regulatory cells in the 
tumor microenvironment[80,81]. Nevertheless, the therapy with IFN-α presents high toxic systemic 
potential and low efficiency in maximum tolerated doses[82]. The possibility of collateral effects implies 
a damage to the user, clinical trials reveal hyperthermia, shivering, headaches, gastrointestinal 
symptoms, decline in systolic and diastolic blood pressure and associated orthostatic hypotension[83]. 
This means that the therapy is a resource with limited use at least at this moment. It is expected that, in 
the future, this route will be used in conjunction with other therapeutic forms, such as inhibitors of anti-
apoptotic proteins, to increase efficacy and tolerability[84]. In another perspective, glioma cells infected 
by a vector capable of transducing TNF-α decreased tumor growth rate in a mouse animal model, which 
constitutes a different therapeutic strategy for the treatment[82]. Additionally, the administration of 
TNF-α is also a problem to solve because the intravenous administration is known for the capacity to 
induce toxicities for the patients[76]. Recently, the discover of a interleukin-7 agonist had shown the 
ability to repair the lymphopenia caused by the standard treatment for GBM and also improved the 
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Figure 2 Simplified scheme of glioblastomas-induced immunosuppressive microenvironment. MDSCs: myeloid-derived suppressor cells; NK: 
Natural killer. The Figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.

immune system by elevating the CD8 serial lymphocytes in murine models, but this discover needs 
more studies to be apply for patients with this primary glioma[85].

IMMUNE CHECKPOINT INHIBITORS
Immune checkpoints are molecular receptors that perform an inhibitory function in order to control 
exacerbated immune activity and prevent uncontrolled activity of this system[86]. These receptors are 
found on T cells (CD4 and CD8), dendritic cells (DC), NK cells and B cells[87].

Cancer cells have some mechanisms that allow them to reduce the effectiveness of the immune 
system during the attack on mutated cells[88]. One of these mechanisms is the expression of molecules 
that interact directly with the immune checkpoint receptors resulting in reduced immune activity from 
the inhibition of essential cells of the protection system. Thus, immune checkpoint inhibitors have 
emerged as a therapeutic alternative, in order to prevent the occurrence of inhibition of immune cells 
from the interaction of receptors of these cells and molecules produced by glioblastoma cancer cells[87].

In this regard, studies have identified the main receptors of immune checkpoints and that have 
physiological importance in glioblastoma. PD-1, T cell immunoglobulin and mucin domain 3 (TIM3), 
CTLA4, lymphocyte activation gene 3 (LAG3), T-cell immunoglobulin and ITIM domain (TIGIT) and 
CD96 are inhibitory receptors expressed on immune system cells, such as lymphocytes (T and B) and 
NK, and have corresponding ligands produced by cancer cells[87].

Thus, studies aimed at blocking the immune checkpoint in glioblastoma have been initiated[89,90]. A 
study conducted in murines, associated anti-PD-1 and temozolomide (chemotherapeutic agent used in 
the treatment of GBM) in the treatment of glioblastoma and obtained a good antitumor efficacy[89]. 
However, the response in humans did not show the same efficacy, as evidenced by the randomized 
phase III clinical trial of 369 patients diagnosed with GBM who were treated with nivolumab (anti-PD-1) 
and did not show improved survival compared to the control group[90]. However, the preclinical trials 
are promising and the therapeutic model is still recent. This means that therapy based on blocking ICIs 
may yet yield an important efficiency in the lives of patients diagnosed with GBM. In Figure 3, there is a 
representation of immune checkpoint inhibition targets: TIM-3/Galactin 9 (GAL-9), PD-1/PDL-1, and 
CTL-4/CD80 or CD86.

PD-1/PD-L1
The PD-1 receptor is expressed on T cells, B cells, TAMs, MDSCs and NK cells[91]. For inhibition of 
these cells to occur the PD-1 receptor interacts with PD-L1, which is expressed on GBM tumor cells. This 
interaction results in T-cell apoptosis, inhibition of T-cell cytotoxicity, and blockage of inflammatory 
mediator production. Thus, immunotherapy aims to target the PD-1/PD-L1 pathway and generate an 
antitumor response[87].
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Figure 3 Immune checkpoint inhibition targets: T cell immunoglobulin and mucin domain 3/ Galactin 9, programmed cell death-
1/programmed death-ligand 1, and cytotoxic T-lymphocyte-associated protein 4 /CD80 or CD86. A: T cell immunoglobulin and mucin domain 3/ 
Galactin 9; B: programmed cell death-1/programmed death-ligand 1; C: cytotoxic T-lymphocyte-associated protein 4/CD80 or CD86. TIM-3: T cell immunoglobulin 
and mucin domain 3; GAL-9: Galactin 9; PD-1: Programmed cell death-1; PDL-1: Programmed death-ligand 1; CTLA-4: Cytotoxic T-lymphocyte-associated protein 4. 
The Figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.

The anti-PD-1/PD-L1 class is a category that includes pembrolizumab, nivolumab, durvalumab and 
atezo-lizumab[92]. These ICIs have shown good results in some types of cancer, such as melanoma and 
non-small cell lung cancer[93,94], but for GBM, the overall efficacy is not yet optimal, especially in 
monotherapy, since GBM is a disease with unique peculiarities. However, studies using combination 
therapy with other ICIs are ongoing and have brought positive preliminary results, despite difficulties 
that still need to be overcome[92]. One of these challenges is the need for these ICIs to cross the blood 
brain barrier, which is very peculiar to brain tumors and makes chemical therapy of this type of cancer 
difficult[95].

TIM3/GAL9
TIM3 is a membrane protein, normally found on CD4+ and CD8+ T lymphocytes, and is also an 
inhibitory receptor for antitumor T cell activity[11]. GAL9 is a binding protein to TIM3. This binding 
results in the activation of the TIM3/GAL9 pathway, which induces T cell apoptosis, a fact that directly 
impacts antitumor immune activity[96,97].

The expression of GAL9 is higher in tissues from glioma patients and the TIM3/GAL9 interaction is 
involved with a higher malignancy of this type of CNS tumor. Thus, TIM3 has also become a potential 
target of immune checkpoint inhibitors in an attempt to boost immune activity against tumor invasion 
and result in a better prognosis for the patient[97].

CTLA4
CTLA4 is an inhibitory receptor expressed on T cells and has relevance when dealing with GBM and a 
worse prognosis of this disease from the activation of this receptor[70]. The process is based on the 
interaction of T cells with antigen-presenting cells in the peripheral lymphatic tissue through co-
stimulatory and coinhibitory receptors, such as CTLA4[98]. CTLA4 binds to CD80/CD86 receptors on 
antigen-presenting cells. Thus, this receptor is involved with the initial process (antigen presentation) of 
immune activity and its activation reduces the activation and proliferation of antigen-specific T cells 
that will act directly on the CNS and tumor cells[87].

CTLA4 has a higher expression in more serious gliomas and is related to a worse disease prognosis, 
as it is related to reduced antitumor immune activity[71].

Based on this, in 2011, the Food and Drug Administration approved the use of ipilimumab in the 
therapy of some tumors. Ipilimumab is a monoclonal antibody that binds to CTLA4 receptors and 
blocks the inhibition of T cells that occurs through this molecule[87].
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LAG3
LAG3 is a regulatory protein expressed on the membrane of T cells and when activated by specific 
ligands, it generates an inhibitory effect on immunity. It is believed that one of these ligands is FGL1 
and that it is expressed by cancer cells and induces a decrease in antitumor activity, but this mechanism 
is still not well known, especially in relation to gliomas[99].

In addition, it is possible that LAG3 generates immunosuppression by acting in conjunction with 
other immune checkpoints, such as PD-1[99]. A process that has already been reported in breast cancer 
studies, which identified a co-expression of LAG3 and PD-1 in the tumor process, generating T-cell 
inhibition[100].

TIGIT/CD96
TIGIT and CD96 are co-inhibitory receptors[87]. TIGIT is expressed on various immune cells such as T 
cells, regulatory T cells (Tregs) and natural killer (NK) cells[101]. CD96, on the other hand, has been 
found mainly on conventional T cells, NK cells and NKT cells[87].

High expression of PD-1 and TIGIT was found in CNS infiltrating lymphocytes, acting at the site of 
GBM[101]. Thus, a combined blockade therapy for PD-1 and TIGIT has shown improved efficacy and 
survival for patients with GBM[101].

CD96 is directly linked to the inflammatory response in GBM and additionally, a direct and 
synergistic correlation of this receptor with other immune checkpoints such as PD-1, CTLA-4, TIGIT and 
TIM-3 has been described[102]. With this, it was found that a simultaneous blockade of CD96 and other 
ICIs results in enhanced antitumor immunity and better prognosis[102].

CAR T-CELL THERAPY
Chimeric antigen receptors are synthetic receptors capable of redirecting the immune functions of T 
lymphocytes to a specific target antigen and thus, T cells exert short and long-term effects by triggering 
complex antitumor responses[103]. CAR-Ts have an extracellular domain with a tumor binding site as 
the single-chain variable fragment (scFv), a flexible hinge, a transmembrane region, and an intracellular 
signaling domain of T cells. In addition, CARs can be subdivided, according to the amount of CD3ζ 
stimulatory domains, into first, second and third generation, and the most modern CARs have two 
costimulatory domains linked to CD3ζ in order to potentiate its ability of signaling activation[104]. Since 
CAR-Ts has been used effectively against hematological tumors, the objective is to adapt the method for 
solid tumors such as GBM so that the activation of T cells in the tumor microenvironment promotes 
targeted immunological mechanisms of cell death to specific targets in the tumor, achieving the same 
success as the treatment in non-solid tumors, regardless of the presentation of the peptide by histocom-
patibility complexes[105]. The most promising studies addressing T cell therapy against GBM have 
explored CAR-T cells targeting human epidermal growth factor receptor 2 (HER2), variant epidermal 
growth factor receptor III (EGFRvIII) and alpha receptor 2 of IL-13 (IL-13 Rα2) mainly, as well as 
evaluating the different forms of therapy administration (local or systemic)[106-108].

EGFRvIII consists of an oncogenic mutation pattern existing in human tumors that allows the identi-
fication of specific tumor antigens by the immune system. EGFRvIII is relatively common, especially 
when it comes to GBM, in which the mutation is present in approximately 30% of scenarios[109]. 
EGFRvIII expression in patients with GBM is considered a marker of poor prognosis probably because 
the receptor enhances tumor oncogenic signaling[110]. In this sense, the first clinical study that invest-
igated CAR-Ts therapy directed at EGFRvIII was conducted by O'Rourke et al[107] and evaluated 10 
patients with recurrent EGFRvIII + GBM. The results demonstrated that the administration of CAR-Ts 
Cells by infusion is a safe route to be used, as there was no evidence of toxicity outside the tumor 
microenvironment or cytokine release syndrome. Although the study did not have the objective of 
evaluating the effectiveness of the therapy, it was observed that no patient had GBM regression and one 
patient remained in stable disease for more than 18 mo. Therefore, the assay also revealed a consistent 
response with immunological checkpoints and immunosuppressive molecules such as IDO 1, PD-L1, 
TGF–β and IL-10 and this indicated that EGFRvIII+ led to an antitumor response[107]. Comple-
mentarily, a recent study evaluated apheresis and infusion products from the previous study to explore 
EGFRvIII as a therapeutic target for GBM and concluded that PD1 is a predictive marker of peripheral 
graft and progression-free survival in transduction products of patients with targeted CAR-Ts to 
EGFRvIII. Furthermore, it was also observed that PD1 was expressed concomitantly with ICIs (CTLA4, 
TIM3, LAG3) and activation markers (GRZB, HLA-DR) suggesting that PD1 is the protagonist of these 
correlations with the clinical response surrogates in the study. However, the aforementioned correl-
ations were not present before the generation of CAR-Ts. Therefore, it has been proposed that the PD1 
marker may predict better response to therapy against recurrent GBM and that the preparation of the 
infusion product is responsible for the differences in therapeutic results found in the study[111].

HER2 is also a tumor-associated antigen that is expressed by about 80% of GBM, however, the 
receptor is also expressed in physiological host cells and this gives HER2 the potential to generate 
autoimmunity when used as a specific target antigen[112]. An early trial involving HER2 CAR T Cells in 
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cancer patients did not produce positive effects. The study was associated with acute toxicity with fatal 
outcome in one patient[113]. However, a subsequent preclinical study yielded a more favorable 
outcome as CD28-costimulated HER2-CER T cells were tolerated by 17 patients with GBM without 
dose-associated toxic effects. Trial findings showed that one patient had a partial response to therapy for 
9 mo, 7 remained with stable disease for 8 wk to 29 mo, and 8 had tumor progression. Additionally, 
patients had an overall survival of about 11 mo from T cell infusion (95%CI: 4.1–27.2 mo) and HER2 
CAR T cells were present in blood at up to one year of follow-up[106]. IL-13Rα2 is another tumor-
associated antigen that is expressed in up to 50% of GBM and despite being expressed in normal tissue, 
it is not expressed at significant levels in normal brain tissue[114,115]. Interestingly, the first trial that 
evaluated the safety and feasibility of CAR-T-s targeting IL-13Rα2 for the treatment of recurrent GBM 
was done by Brown et al[116] and included three patients with the malignancy. Among the three 
patients included, one had reduced global expression of IL-13Rα2 in the tumor after treatment and 
another patient showed an increase in the necrotic portion of the tumor where IL-13-zetacin + T cells 
had been administered. Despite the small sample, the findings of the work were favorable and were 
fundamental for the advancement in knowledge about the therapeutic method[116]. In this regard, new 
initial studies, albeit promising, have emerged with the aim of improving the CAR-Ts. Some works, for 
example, such as that of Muhammad et al[117], validated a new TanCAR [IL-13 (4MS) and EphA2 scFv] 
that proved effective in destroying GBM cancer cells recognizing IL-13Rα2 or EphA2 receptors and did 
not damage normal IL-13Rα1/ IL-4Rα. Therefore, it proved to be an option with the potential to remedy 
difficulties in current therapy by preventing antigen escape and reducing extra tumor toxicity[117]. In 
addition, another initial work constructed an IL-13Rα2 directed to humanized third-generation CAR 
and evaluated its efficacy against GBM in vitro and reported that the receptor achieved satisfactory 
results that support its use in clinical trials[118].

Therefore, CAR-T-s therapy targeting specific antigens is very promising and has the potential to 
become a therapeutic option for solid malignancies with poor prognosis such as GBM. However, the 
evidence is still limited, which creates a series of challenges to be overcome by the therapeutic method. 
The main obstacles to a safe and effective CAR-Ts therapy are the access of immune cells to the CNS and 
the heterogeneity of the tumor microenvironment. The first is mainly due to the existence of the 
endothelial blood-brain barrier and the epithelial blood-brain barrier[119]. The second occurs because 
GBM is characterized by a complex and active tumor microenvironment capable of evading the 
functionality of CAR-T-s, as well as hindering the recognition of a single specific target antigen[120]. In 
this regard, one way to improve access to the CNS would be to add property to CAR-T cells through 
gene editing. The development of innovative CAR-Ts that can target different tumor-associated antigens 
or program different CAR-Ts to recognize a single tumor-associated antigen is a possible solution to 
immune escape or target antigen escape. A recent study targeted 3 antigens using a single universal 
tricistronic (U) transgene product of CAR-T-s specific for HER2, IL-13Rα2 and EphA2 showing an 
effective alternative to the interpatient variability that is one of the obstacles to therapy. The in vitro test 
of the study showed an improvement in the survival of the animals, corroborating the initial hypothesis
[121]. The work by Muhammad et al[117], cited above, starts from the same premise that the new 
TanCAR destroyed tumor cells by recognizing both IL-13Rα2 and EphA2 alone or together, also corrob-
orating for a more effective therapy by avoiding immune escape and recognition of non-target antigens. 
Another possibility to deal with difficulties in therapy with CAR-Ts cells is the remodeling of immune 
cells in the tumor microenvironment. This technique is based on the use of CAR-T cells with the 
objective of recruiting pro-inflammatory cytokines, mainly OL-7, IL-8 and IL-12, enhancing the death of 
GBM cells[122-124]. In addition, the blocking of immune suppression signals through chimeric decoy 
and switch receptors has also been explored. For example, Liu et al[125] added genetically modified 
switch receptors including the extracellular domain of PD1 and the transmembrane and cytoplasmic 
signaling domains of CD28 in order to stimulate the performance of CAR-T cells in solid tumors and the 
study data revealed a strategy potentially efficient therapy. Finally, the expansion of the use of bispecific 
T cell couplers (BiTE) in combination with CAR-T cells as a new artifice for the recognition of multiple 
antigens has also been discussed[126]. Bearing in mind that EGFRvIII-specific CAR-T cells may not be 
satisfactorily efficient in view of the heterogeneity of the GBM tumor microenvironment, Choi et al[127] 
proposed the use of CARBiTE cells capable of secreting wild-type EGFR-specific BiTEs. The results of 
the initial study were positive and showed that BiTE cells annihilated heterogeneous GBM tumors in 
mice and did not promote toxicity against human skin grafts in vivo.

ONCOLYTIC VIRUSES
Over the last few years, oncolytic viruses (OVs) have gained prominence in tumor treatment, including 
GBM. OVs are particularly suitable for GBM therapy due to its privileges, such as lack of distant 
metastasis and tumor’s limitations, allowing the use of viruses at this site as a promising form of 
immunotherapy[128]. They are administered intravenously or intratumorally to achieve its neutralizing 
effects.
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OVs can be defined as weakly pathogenic viruses that can selectively infect, replicate in, and kill 
cancer cells without damaging normal cells and leading to tumor cells apoptosis[129]. This occurs 
through antitumor reactions of tumor-specific cell killing and the induction of the host's systemic 
antitumor and/or antiviral immunity. Thus, OVs activate the innate immune system via pattern 
recognition receptors and pathogen-associated molecular patterns, leading to a physiological response 
of immune cells recruitment, such as neutrophils, natural killer cells, macrophages, Th1 cells and its 
associated cytokines that promotes cell lysis[128,130]. Moreover, this response induces an adaptive 
immune reaction to new cancer antigens and may possibly develop a long-term immunotherapy 
repercussion[131]. Besides this, OVs can also be used as non-replicating viral vectors to deliver 
therapeutic genes, serving as vehicles to efficiently achieve tumor cells[104]. In Figure 4, there is a 
graphical representation of how OV therapy for GBM works.

Currently, OVs are being tested for their effectiveness against GBM in leading clinical trials using 
over 20 distinct viral strains like herpes simplex virus[132], adenovirus[133], measles virus[134], 
parvovirus[135], Newcastle disease virus[136], reovirus[137], poliovirus[138] and zika virus[139]. In 
Table 1, the clinical trials using virotherapy for GBM are summarized.

As aforementioned, the cooperation of the innate and adaptive immune systems is crucial in oncolytic 
virotherapy response, and matching it with other immunotherapy strategies such as checkpoint 
inhibitors increases the immunological response and tumor regression[140-142].

VACCINE-BASED THERAPY
In recent years, it has been discussed the great possibility of combating and stabilizing oncological 
conditions through immunotherapy, and the proposal of vaccine therapies is a remarkable point. In this 
sense, when thinking about GBM, the proposal of an alternative therapy that generates a more positive 
prognosis for patients, through vaccination, is a matter of much research and debate.

Many vaccines with a variety of immunological bases have been developed and tested in the 
treatment of GBM. There are four commonly used approaches to base GBM vaccines on: Peptide and 
DNA vaccines, which use genetic information from the tumor itself, and are more specific in their use. 
Cellular vaccines, based on dendritic cells prepared also with tumor antigens, and mRNA-based ones, 
with viral vectors[143]. In general, the principle behind this bet is on the immune response, thinking 
about the ability of the tumor to evade the individual immune response.

Thus, one of the ways found to "combat" this disease is to use the immune system itself, more 
specifically, a response coordinated by T lymphocytes capable of recognizing tumor antigens and 
reacting against them. In this sense, the initial proposal aims to use specific tumor antigens (TSAs) to 
obtain an immune response, having as a basis for this process peptides based on the tumor character-
istics that trigger an anti-tumor immune response by mimicking neoantigens in glioblastoma cells[144,
145].

Personalized neoantigen vaccines are a different approach to anti-tumor vaccine development, with 
trials already showing increased survival in patients with a recent diagnosis of GBM, demonstrating a 
potential to alter the immune environment in GBM[85].

However, there are some points of conflict within this vaccine therapy, since the tumor heterogeneity, 
with factors expressed differently among individuals, which would generate a high specificity in the 
manufacture of the vaccine, a need for customization, not being extremely effective on a large scale, 
hindering the inclusion of patients[146]. This treatment also has a limitation, generated by antigenic 
escape in the face of tumors that do not express this antigen. In addition, the collection of peptides for 
the vaccine base, meets a barrier, since the association of a disparate tumor profile, with possible 
formations of nonspecific epitopes - a tumor formation not from mutations, but from exacerbated 
expressions of factors that are expressed in normal tissues - raises a predisposition to responses beyond 
the tumor affection, such as autoimmune responses and inflammatory processes in other regions[146].

Another point of study that has been gaining prominence are DC vaccines, being considered one of 
the most promising at the moment. This is due to the role they play in immune regulation and in the 
GBM picture. Thus, they are extremely important for the induction of acquired immunity, also 
influencing the lymphocytic response, its differentiation, and antigen presentation. With this in mind, 
within GBM pictures, DCs are found with reduced function, being in an inhibited or immature state, 
which can be related to the severe tumor microenvironment, DCs are kept with low function due to the 
inhibitory effect of the immune microenvironment, and this status is problematic for body function, but 
reversed by DC vaccines[147]. This is due to the fact that the advantages of DCs vaccines are based on in 
vitro matured dendritic cells, usually from the affected individual himself, which can activate previously 
inhibited Ts lymphocytes, increasing the patient's adaptive response, increasing the expression of 
MHCs, cytokines and chemokines, and promoting an intense migration of immune cells to the 
immunosuppressive microenvironment found in GBM[147].

Currently, some studies have shown that DC vaccines can improve the picture of GBM, with some 
age-related factors seeing a better prognosis in younger patients. Another study, in phase II clinical trial, 
showed that the use of the vaccine after tumor resection, obtained a median overall survival of 23.4 mo, 
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Table 1 Ongoing and completed clinical trials of oncolytic virus therapy in glioblastoma

NCT 
Number Title Status Enrolled 

patients Interventions Country Phase

NCT03714334 DNX-2440 Oncolytic Adenovirus for 
Recurrent Glioblastoma

Unknown 
status

24 Drug: DNX-2440 injection Spain Phase 1

NCT03294486 Safety and Efficacy of the oncolytic virus 
Armed for Local Chemotherapy, 
TG6002/5- FC, in Recurrent Glioblastoma 
Patients

Unknown 
status

78 Drug: Combination of TG6002 and 5- 
flucytosine (5-FC, Ancotil®)

France Phase 1 
and 2

NCT02197169 DNX-2401 With Interferon Gamma (IFN-#) 
for Recurrent Glioblastoma or Gliosarcoma 
Brain Tumors

Completed 37 Drug: Single intratumoral injection of 
DNX-2401; Drug: Interferon-gamma

United 
States

Phase 1

NCT01956734 Virus DNX2401 and Temozolomide in 
Recurrent Glioblastoma

Completed 31 Procedure: DNX2401 and Temozo-
lomide

Spain Phase 1

NCT05095441 A Clinical Study of Intratumoral MVR-
C5252 (C5252) in Patients With Recurrent 
or Progressive Glioblastoma

Not yet 
recruiting

51 Biological: C5252 United 
States

Phase 1

NCT01174537 New Castle Disease Virus (NDV) in 
Glioblastoma Multiforme (GBM), Sarcoma 
and Neuroblastoma

Withdrawn 0 Biological: New castle disease virus Israel Phase 1 
and 2

NCT01491893 PVSRIPO for Recurrent Glioblastoma 
(GBM)

Completed 61 Biological: Recombinant 
nonpathogenic polio-rhinovirus 
chimera (PVSRIPO)

United 
States

Phase 1

NCT00028158 Safety and Effectiveness Study of G207, a 
Tumor-Killing Virus, in Patients With 
Recurrent Brain Cancer

Completed 65 Drug: G207, an oncolytic virus Not 
provided

Phase 1 
and 2

NCT03896568 MSC-DNX-2401 in Treating Patients With 
Recurrent High Grade Glioma

Recruiting 36 Biological: Oncolytic Adenovirus 
Ad5- DNX-2401; Procedure: 
Therapeutic conventional surgery

United 
States

Phase 1

NCT01582516 Safety Study of Replication competent 
Adenovirus (Delta-24-rgd) in Patients With 
Recurrent Glioblastoma

Completed 20 Biological: Delta-24- RGD adenovirus Netherlands Phase 1 
and 2

NCT03072134 Neural Stem Cell Based Virotherapy of 
Newly Diagnosed Malignant Glioma

Completed 13 Biological: Neural stem cells loaded 
with an oncolytic adenovirus

United 
States

Phase 1

NCT01301430 0 Parvovirus H-1 (ParvOryx) in Patients 
With Progressive Primary or Recurrent 
Glioblastoma Multiforme.

Completed 18 Drug: H-1PV Germany Phase 1 
and 2

NCT05084430 Study of Pembrolizumab and M032 (NSC 
733972)

Active, not 
recruiting

28 Drug: M032; Drug: Pembrolizumab United 
States

Phase 1 
and 2

NCT02031965 Oncolytic HSV-1716 in Treating Younger 
Patients With Refractory or Recurrent High 
Grade Glioma That Can Be Removed By 
Surgery

Terminated 2 Biological: Oncolytic HSV-1716; Drug: 
Dexamethasone; Procedure: 
Therapeutic conventional surgery

United 
States

Phase 1

NCT02798406 Combination Adenovirus + Pembrol-
izumab to Trigger Immune Virus Effects

Completed 49 Biological: DNX-2401; Biological: 
Pembrolizumab 

United 
States

Phase 2

NCT03657576 Trial of C134 in Patients With Recurrent 
GBM

Active, not 
recruiting

24 Biological: C134 United 
States

Phase 1

NCT03152318 A Study of the Treatment of Recurrent 
Malignant Glioma With rQNestin34.5v.2

Recruiting 62 Drug: rQNestin; Drug: Cyclophos-
phamide Procedure: Stereotactic 
biopsy 

United 
States

Phase 1

NCT03043391 Phase 1b Study PVSRIPO for Recurrent 
Malignant Glioma in Children

Active, not 
recruiting

12 Biological: Polio/ Rhinovirus 
Recombinant (PVSRIPO)

United 
States

Phase 1

NCT05139056 Multiple Doses of Neural Stem Cell 
Virotherapy (NSC-CRAdS-pk7) for the 
Treatment of Recurrent High-Grade 
Gliomas

Withdrawn 0 Biological: Neural Stem Cells 
expressing CRAdS-pk7; Procedure: 
Resection

Not 
provided

Phase 1

NCT02062827 Genetically Engineered HSV-1 Phase 1 
Study for the Treatment of Recurrent 
Malignant Glioma

Active, not 
recruiting

24 Biological: M032 (NSC 733972) United 
States

Phase 1

HSV G207 With a Single Radiation Dose in 
Children With Recurrent High-Grade 

NCT04482933 Not yet 
recruiting

40 Drug: Biological G207 United 
States

Phase 2
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Glioma

NCT02986178 PVSRIPO in Recurrent Malignant Glioma Active, not 
recruiting

122 Biological: PVSRIPO United 
States

Phase 2

NCT03911388 HSV G207 in Children With Recurrent or 
Refractory Cerebellar Brain Tumors

Recruiting 15 Biological: G207 United 
States

Phase 1

NCT02457845 HSV G207 Alone or With a Single 
Radiation Dose in Children With 
Progressive or Recurrent Supratentorial 
Brain Tumors

Active, not 
recruiting

13 Biological: G207 United 
States

Phase 1

NCT00528684 Safety and Efficacy Study of REOLYSIN® 
in the Treatment of Recurrent Malignant 
Gliomas

Completed 18 Biological: REOLYSIN® United 
States

Phase 1

NCT03973879 Combination of PVSRIPO and Atezol-
izumab for Adults With Recurrent 
Malignant Glioma

Withdrawn 0 Biological: PVSRIPO; Drug: Atezol-
izumab 

Not 
provided

Phase 1 
and 2

NCT00314925 Safety Study of Seneca Valley Virus in 
Patients With Solid Tumors With Neuroen-
docrine Features

Unknown 
status

60 Drug: Seneca Valley virus (biological 
agent)

United 
States

Phase 1

Most data were obtained from findings from www.clinicaltrials.gov using the search terms “glioblastoma” and “oncolytic” filter.

Figure 4 Simplified scheme of oncolytic virotherapy for glioblastomas. GBM: Glioblastoma; OV: Oncolytic virus; PAMPs: Pathogen-associated 
molecular patterns; DAMPs: Damage-associated molecular patterns. The Figure was partly generated using Servier Medical Art, provided by Servier, licensed under 
a Creative Commons Attribution 3.0 unported license.

among some patients[85]. However, a meta-analysis of randomized controlled trials on the efficacy of 
DC vaccines demonstrated that the use of the vaccine in newly diagnosed glioblastoma patients did not 
show a substantial effect on overall patient survival[148]. Thus, it is still an area that needs more studies 
and trials with more advanced phases, and the ability to inhibit glioma is still a point to be better tested 
in future studies.

Some other vaccine ideas have already been proposed, such as using isocitrate dehydrogenase as the 
basis for the vaccine, since mutation in this enzyme occurs purely in tumor cells, making it an 
interesting tumor-specific antigen to use[146]. In addition, vaccines that inactivate tumors are also an 
attraction for research, given their success in other pathologies, not only in treatment but also in 
prevention, but there is still a low efficiency for the treatment of neoplasms, requiring more research for 
the development and application in GBM. More advanced research is needed for the use of these other 

http://www.clinicaltrials.gov


Rocha Pinheiro SL et al. Immunotherapy in glioblastoma treatment

WJCO https://www.wjgnet.com 151 April 24, 2023 Volume 14 Issue 4

vaccine approaches.
Another alternative attempt for the treatment of GBM, are oncolytic virotherapies, using previously 

known viruses, which would be injected intratumorally, enabling an inflammatory reaction and an 
immune response against the tumor-virus unit. Many researches and vaccines have already been 
approved with this type of technology, and it is a promising therapy that acts both by selectively 
infecting tumor cells, replicating and leading to tumor death, and by being used to transport factors for 
gene therapy, through viruses with alterations in their replication[104]. Regarding GBM, some vaccines, 
such as DNX-2401, have already gone through initial testing phases and showed positive results. 
However, updates of the studies are needed to better understand the spectrum and efficiency of the 
action of this vaccine. In addition, other vaccines are under study such as ParvOryx, Toca 511, Reovirus, 
and HSV type 1, being tested in patients with GBM, but still in early stages of testing[86].

Furthermore, vaccination focused on eliminating EGFRvIII is also an important resource against 
GBM, as it is an important TSA in this pathology[146]. Thus, the EGFRvIII anti-tumor vaccine is another 
interesting therapy. Some late stage studies were able to observe a good humoral induction and 
cytotoxic T response with the use of this TSA, after good conduct in animal studies. However, the 
results were not as significant as expected in survival and remission rate, in human trials[146]. Besides 
that many adverse effects have been found such as seizures, edema, thrombocytopenia and pulmonary 
embolism, and these complications when coupled with the fact that not all GBM patients express 
EGFRvIII, become a limitation for this therapy, since not all patients could use this vaccine[140].

The benefits of vaccination are already found in some studies, demonstrating an increase in patient 
survival when compared to other measures used, including the surgical approach, demonstrating the 
advances in this research[148,149]. However, only 3 vaccination agents have reached phase III clinical 
trial: Rindopepimut, DCvax and PPV[143].

Thus, the key point for vaccine therapy is the choice of the appropriate immune target with a 
reduction of vaccine toxicity. The search for TSA and possible alternatives must take into account the 
immune alterations caused by the tumor microenvironment, the immune status of the affected 
individual and possible adverse effects, which need to be reduced to their maximum. Moreover, there is 
a very important factor, even with the momentary trend towards personalized vaccines, the questioning 
of how to make this new reality feasible, generates a need to search for a combination of antigens of 
greater spectrum, having in mind also, how the vaccine process will reverberate in the organism, 
thinking about a long-term immune response, and what are the predictions for the future, which makes 
the development of studies with more solid results indispensable[143]. In addition, the possibility of 
combining vaccines with other immunotherapies has shown considerable benefit when compared to the 
use of some vaccines alone, and needs to be further investigated as an approach to be considered in 
patient management[86,104].

IMMUNOTHERAPY LIMITATIONS AND CHALLENGES
Immunotherapy options currently available for the treatment of GBM are vast. These include vaccines, 
oncolytic viruses, immune checkpoint inhibitors, and genetically modified T cells[85]. In this sense, the 
various ongoing studies and clinical trials may provide favorable outcomes in expanding the use of 
these therapies in the near future, and, given the potential to manipulate or enhance the immune system 
apparatus to attack and kill tumor cells, immunotherapy has enlightened and generated a lot of 
excitement in the treatment of GBM. However, so far, there are some limiting factors that hinder the 
applicability of immunotherapy in the treatment of glioblastoma, whether related to individual 
anatomical and immunological factors or to routes of administration and adverse effects[140-142].

The blood-brain barrier is one of the major limitations to GBM immunotherapy. These specialized 
endothelial cells attached to astrocytes and pericytes hinder drug delivery, leading to inefficient 
therapeutic action[104,150]. Also, GBM is able to induce alterations in the BBB, forming a structurally 
different barrier (i.e., brain tumor barrier) that also contributes to poor penetration of therapeutic agents
[77]. Furthermore, intratumoral heterogeneity plays a pivotal role in immunotherapy resistance, given 
the rapid growth of resistant clones after the selective destruction of susceptible ones[151]. The 
immunosuppressive microenvironment of this tumor also poses a challenge in the immunotherapeutic 
approach[152]. Treg cell upregulation leads to inhibition of effector T cells, thus impairing the use of 
CAR-T cells[145]. Regarding cytokine therapy, despite its ability to modulate the microenvironment of 
GBM, leading to increased DC cells maturation, T cell infiltration and reduced exhaustion[81], its 
systemic use presents severe toxicity and poor absorption, which greatly hampers the use of this 
therapy[78]. In this regard, future studies on the topic might provide further options for these 
limitations to be overcome in the near future.

In order to increase the therapeutic effectiveness of the current immunotherapy approaches, various 
strategies have been developed to increase drug penetration and decrease the occurrence of adverse 
effects. Of note, we highlight (1) the use of combined therapies, for synergistic action[153]; (2) targeted 
drug delivery, which increases pharmacokinetic properties and reduces toxicity[79]; and (3) intrathecal 
administration, to overcome the blood-brain barrier[140-142].
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Furthermore, given the intrinsic heterogeneous nature of GBM and its ability to evade and resist 
single treatments, it is crucial that future interventions should explore the combination of biological 
(immunomodulators and cell based delivery systems), physical (ultrasound, 3D printed implants, heat) 
and chemical (delivery technologies, radiation, chemotherapy) approaches to not only treat GBM more 
adequately but also improve the patient’s prognosis, selecting ideal combination strategies to overcome 
the limiting barriers. In this regard, techniques using anti-PD-1/PD-L1 antibodies combined with 
antibodies targeting CTLA-4, TIM-3, LAG-3, 4-1BB, or OX-40 are under study[154]. Furthermore, anti-
PD-1/PD-L1 therapy combined with tumor-specific peptide vaccination or CAR-T cell therapy is also 
worth exploring, and can provide a harmonious combination approach to surpass the obstacles[155,
156].

Finally, exploring effective predictive biomarkers of clinical efficacy, combined with other therapeutic 
strategies, is a critical issue to avoid treatment delay and early mortality[157,158]. In this sense, there is a 
demanding need to incorporate the status of known biomarkers into daily clinical practice, which may 
assist not only in patient selection, but also in the adjustment of treatment schedule based on the 
patient-specific diagnosis.

With various ongoing clinical trials for new molecular targeted therapies, cancer vaccines and 
immune-modulators, it can be expected that in the near future more compelling interventions against 
GBM will become available.

CONCLUSION
In this way, it is possible to see that the treatment for GBM is advancing and discoveries are being made. 
However, the immunosuppressive nature of this primary glioma and the pleomorphism presented by 
the constitutional cells represents important challenges to implant a successful therapy with less harm 
for the patient. The need for resolutions to prevent the collateral damage caused by the current standard 
treatment and for the alternative immunotherapies, which are being developed, demonstrates potential 
to be the next stage in this field alongside the increase of searching for other approaches. The main 
objective is to better manage this aggressive malignant brain tumor to modify the current prognostic 
perspective. This review shows an overview of this reality and it is stated that, based on particular 
pathogenesis of GBM, it is necessary an individualized treatment according to the tumor progress 
follow-up.

The potential of the immunotherapy presented by previous and current clinical trials reveals a 
hopeful perspective for patients with GBM. It is expected that a combination of therapies would be used 
to avoid collateral damages and improve the recovery. Risks and costs of the surgical method, 
radiotherapy and chemotherapy suggest several issues that alternative approaches do not have and it is 
more favorable as a palliative therapy than as a healing mechanism, and still usage problems must be 
solved for them to be applied. Biological agents and Tumor treatment fields also have benefits, even 
though they are, respectively, susceptible to genetic variabilities and need expensive devices to put into 
practice as the Figure 1 illustrates. The intervention with cytokine therapy and agonists are a recently 
explored field and demonstrates the ability to use different inflammatory cytokines to remodel the 
immune response, nevertheless there are also problems with the form of administration and the doses 
due to systemic toxicity. Immune checkpoints inhibitors reveal the ability to curb the immunosup-
pressive strategies of GBM, but the response in humans has not shown yet the same efficacy 
demonstrated in animal models. Chimeric antigen receptor T cell therapy is also a hopeful route of 
treatment due to its potential to redirect the immune response for specific targets, however the difficult 
to transpass the BBB and the microenvironment possessed by the active tumor, which enables evasion 
and difficult to recognize, are also challenges to be solved for highly functional deployment. Vaccine-
based therapy is also being developed and four approaches are more currently discussed. In summary, 
the immunotherapy options display advantages and limitations. Thus, more advancements in ways to 
prevent toxic activity or/and ineffectiveness of the hopeful new recently discovered immunotherapies 
are fundamental to increase life expectancy and reduce suffering for the patients.
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