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Abstract
Head and neck cancer (HNC) is the sixth most common 
human malignancy worldwide. The main forms of treat-
ment for HNC are surgery, radiotherapy (RT) and che-
motherapy (CT). However, the choice of therapy de-
pends on the tumor staging and approaches, which are 
aimed at organ preservation. Because of systemic RT 
and CT genotoxicity, one of the important side effects 
is a secondary cancer that can result from the activity 
of radiation and antineoplastic drugs on healthy cells. 
Ionizing radiation can affect the DNA, causing single 
and double-strand breaks, DNA-protein crosslinks and 
oxidative damage. The severity of radiotoxicity can be 
directly associated with the radiation dosimetry and the 
dose-volume differences. Regarding CT, cisplatin is still 
the standard protocol for the treatment of squamous 
cell carcinoma, the most common cancer located in the 

oral cavity. However, simultaneous treatment with cis-
platin, bleomycin and 5-fluorouracil or treatment with 
paclitaxel and cisplatin are also used. These drugs can 
interact with the DNA, causing DNA crosslinks, double 
and single-strand breaks and changes in gene expres-
sion. Currently, the late effects of therapy have be-
come a recurring problem, mainly due to the increased 
survival of HNC patients. Herein, we present an update 
of the systemic activity of RT and CT for HNC, with a 
focus on their toxicogenetic and toxicogenomic effects.
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Core tip: The main therapies for head and neck cancer 
(HNC) are surgery, radiotherapy (RT) and chemother-
apy. Considering that both RT and chemotherapeutical 
drugs can interact with the DNA, one of the important, 
late-occurring complications is a therapy-related sec-
ondary tumor resulting from the genotoxic effects of 
the therapy on the healthy cells. This review presents 
an update of the toxicogenetic and toxicogenomic ef-
fects of HNC treatments, highlighting the main mecha-
nisms evolved in the secondary damage caused by RT 
and chemotherapies.
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INTRODUCTION
Head and neck cancer (HNC) is the sixth most common 
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human malignancy[1], representing 3% of  all types of  
malignant tumors. The head and neck are anatomically 
complex regions where a wide variety of  cancers with 
different phenotypes, histologies and invasiveness may 
occur[2]. Approximately 48% of  the cases are located in 
the oral cavity, and 90% of  these cases are squamous cell 
carcinoma (SCC), which affects the lips, mouth, tongue, 
nasopharynx, oropharynx, hypopharynx, larynx and pa-
ranasal sinuses[2,3]. Annually, more than 500000 new cases 
of  SCC are diagnosed[4]. High rates of  morbidity and 
mortality are observed[5], mainly because of  the advanced 
clinical stage at the time of  diagnosis[6]. However, the use 
of  concurrent chemotherapy (CT) and radiation dem-
onstrates that survival has substantially improved over 
the past decades for patients with most of  the forms of  
HNC[7]. Data from some studies have suggested that SCC 
develops through two mechanisms: directly from the nor-
mal mucosa, called “de novo”, and following the sequence 
“dysplasia-carcinoma”[8-10].

Tobacco, alcohol consumption and human papilloma-
virus (subtypes 16, 18 and 33) are responsible for, at least, 
75% of  HNC[11]. However, other factors, such as diet[12], 
mechanical trauma[13], occupational factors, oral hygiene, 
inflammation[14,15] and some gene polymorphisms, are 
also associated[12,16]. Little is known about the molecular 
mechanism of  HNC. Some studies have shown that 
alterations in the PI3K pathways, such as mutations in 
the PIK3A gene, have been reported in HNC[17,18]. The 
PI3K/AKT/mTOR pathway is activated in 57%-81% 
of  SCC patients, and AKT is usually upregulated[19]. 
Moreover, it has been reported that TP53 mutations are 
frequently detected in the tissues of  young adult SCC 
patients[20], and NOTCH mutations have also been found 
in head and neck carcinomas[21]. Furthermore, EGFR ex-
pression has been described in up to 90% of  cases, and it 
is associated with poor prognosis[22].

Several therapies and treatment protocols are used 
for HNC, including surgery, CT[2] and radiotherapy (RT) 
and more recently, immunotherapy[23], gene therapy[24] 
and photodynamic therapy[25]. While treatment for loco-
regionally recurrent HNC may include surgery or RT, 
systemic CT is used in locally advanced tumor, recur-
rence or metastasis[26]. CT may, or may not, be associated 
with surgery and/or RT[27]. The choice of  HNC therapy 
depends on the tumor staging and the approaches for 
organ preservation[28]. Currently, the late effects of  thera-
pies have become a recurring problem, mainly due to the 
increased survival of  HNC patients.

In the following paragraphs, we highlight some toxi-
cogenetic (stable and heritable alterations in the genome 
that are able to influence the relative susceptibility of  
an individual to the adverse effects that may result from 
exposure to an exogenous material) and toxicogenomic 
(relationship between the genome and the biological 
response of  the body after exposure to toxic agents or 
stressors) effects of  HNC therapies.

RT
In recent years, RT has technically and biologically im-

proved, aiming at including only the target, with minimal 
unnecessary irradiation to normal tissue[29,30]. Actually, RT 
fractionation schedules includes more fractions per day 
in order to reduce the overall treatment time (accelerated 
fractionation) and/or the use of  multiple small fraction 
doses (hyperfractionation), which allows a higher total 
dose to be given without enhancing the risk of  morbidity 
induced by radiation[31].

Radioresistance is one of  the main determinants of  
treatment outcome in HNC patients, and it can be related 
to tumor hypoxia and changes in gene expression[32,33]. A 
meta-analysis study showed that when hypoxic modifica-
tion is given in conjunction with curative intended RT re-
sult in a significant improvement in loco-regional control, 
disease specific control and overall survival[34]. However, 
another study showed that RT (5 Gy radiation) had no 
effect on hypoxia-inducible factor-1α (HIF-1α) gene ex-
pression in human oral SCC cell lines (SAS, Ca9-22, TT, 
BSC-OF and IS-FOM). Conversely, SCC cells expressing 
high levels of  HIF-1α were resistant to radiation[35].

Several genes, such as sensors, transducers and ef-
fectors of  DNA damage, have been associated with 
the ionizing radiation-induced cellular response[36]. One 
of  the main molecules is the tumor-suppressor protein 
p53, which acts through the transcriptional control of  
target genes, influences multiple response pathways and 
leads to a diverse response to ionizing radiation in mam-
malian cells[37]. Additionally, one study demonstrated 
that the radiation-resistant capacity of  nasopharyngeal 
tumors was mostly due to changes in the expression of  
genes related to cell Ca2+ homeostasis. This same study 
also showed that cell proliferation induced by extracel-
lular and intracellular factors may maintain the tumor 
size during RT, leading to recurrence after treatment[38]. 
Bøhn et al[39] showed that RT induces a systemic stress 
response, as revealed by the induction of  stress relevant 
gene expression in blood cells. However, the authors dis-
cuss that further studies are still needed to confirm that 
these changes reflect a systemic effect or are biomarkers 
of  the tumor microenvironment. Moreover, a genomic 
(transcriptomic and proteomic) study of  the response 
to radioresistance showed 265 up-regulated and 268 
down-regulated genes, 30 of  which were cancer-related 
genes. The proteomic analysis identified 51 proteins with 
altered expression in the radioresistant cell lines, 18 of  
which were cancer-related proteins. In both method-
ologies, the over-expression of  NM23-H1 and PA2G4 
were identified[33]. The influence of  GP96 protein in 
radioresistance has been also described[40-43]. GP96 is a 
multifunctional protein[44] that acts as a chaperonin for 
peptides and modulates the innate and adaptive im-
mune responses that are mediated by antigen-presenting 
cells and other immune cells[40-43]. Furthermore, GP96 is 
important for protein maturation and protein homeo-
stasis[45]. In patients undergoing RT, it was shown that 
GP96 may serve as a novel prognostic marker of  RT 
and may play important role in radioresistance, favoring 
tumor invasiveness[46].

In addition to gene expression changes, it is well 
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known that ionizing radiation damages the DNA, caus-
ing single (SSB) and double-strand breaksdue to direct 
action or by the generation of  free radicals[47], resulting in 
oxidative stress[48], base damage and DNA-protein cross-
links[49-51]. The oxidative DNA damage arising from RT 
can be responsible for both therapeutic and adverse ef-
fects[52]. In other words, RT may kill the tumor cells, but it 
can also damage normal tissues[53]. A second tumor may 
develop immediately or years after the primary tumor 
treatment[54]. Therefore, the most important dose-limiting 
factor is the tolerance of  the adjacent normal tissue, 
which depends on the stage and location of  the primary 
tumor[55]. Quantification of  chromosome aberrations in 
circulating lymphocytes is used to estimate the effects of  
the RT dose[56].

RT mutagenicity on tumor and healthy tissues de-
pends on the DNA repair capacity[57]. Genomic integrity 
following irradiation is maintained by specific DNA 
repair pathways that are initiated based on the type of  
DNA damage[58]. Double-strand DNA breaks are re-
paired via homologous recombination repair and/or 
non-homologous end joining repair[58]. In HNC, vari-
ants of  the XRCC2, XRCC3 and RAD-5[59] genes were 
found to be associated with acute mucositis[60,61]. The 
alkaline comet assay has become a popular technique 
for detecting a range of  DNA damage types during the 
last decade[62], including the effects of  RT. In this sense, 
DNA damage and repair efficiency were evaluated by 
comparing the peripheral blood lymphocytes, which 
were isolated from tissue biopsies and from metastases 
biopsies of  SCC patients after treatment with gamma 
radiation (Cobalt 60). It was observed that the repair 
mechanisms were less effective in patients with metasta-
sis than in the healthy controls. Thus, the differences in 
radiation sensitivity of  the cancer and control cells sug-
gests that DNA repair might be critical for the treatment 
of  SCC[57]. On the other hand, the 8-oxoGua is one of  
the most common DNA lesions that results from reac-
tive oxygen species (ROS)[63], and this lesion can lead to 
mismatched pairing[64]. The repair hOGG1 glycosylase 
removes 8-oxoGua from the cellular DNA and repairs 
the base excision[52,65,66]. Thus, Cooke et al[65] showed that 
urinary excretion of  8-oxoGua and 8-oxodG can be used 
to measure the activity of  the enzymes that are involved 
in the removal of  oxidative DNA damage. In this sense, 
Roszkowski et al[52] demonstrated that fractionated RT of  
HNC patients resulted in elevated urinary excretion of  
8-oxodG and a significant reduction of  uric acid in the 
blood. The authors suggested that the RT is responsible 
for oxidative stress/oxidative DNA damage throughout 
the whole body and, therefore, may be responsible for a 
significant increase in the level of  8-oxodG in a distinct 
subpopulation of  HNC patients[52]. The lack of  increase 
of  urinary 8-oxoGua in irradiated patients may reflect a 
reduction in the activity of  hOGG1. Recently, it has been 
observed that HNC patients have a significantly reduced 
ability to repair the 8-oxoGua lesion that is generated 
by oxidative stress[67]. However, the decreased activity 

of  the main enzyme responsible for 8-oxoGua removal 
should result in the accumulation of  the lesion in cellular 
DNA[52]. Some authors have also shown different inter-
individual responses in patients after RT. Kadam et al[68] 
studied gamma radiation-induced SSBs in peripheral 
blood leukocytes of  SCC HNC patients with different 
lifestyles, both during and after RT. The results indicated 
that gamma radiation caused considerable DNA damage 
in all of  the dose intervals of  the treatment. However, a 
comparison between the smokers and non-smokers re-
vealed the significantly greater DNA damage in the smok-
ing patients at the pre-therapy level (10 Gy and 60 Gy of  
irradiation), indicating a higher sensitivity of  the smokers 
to gamma radiation at these doses. At doses of  20-50 Gy, 
gamma irradiation failed to cause increased DNA damage 
in smokers, indicating the radio-protective or shielding 
effect of  the tobacco (nicotine) that is possibly related to 
the antiapoptotic property of  nicotine in the targeted/
non-targeted cells. This may have important implications 
for RT that could indicate less effective treatment in 
smokers. Prolonged exposure to gamma radiation (40-60 
Gy) led to a gradual decline in the intensity of  the DNA 
damage, suggesting saturation of  DNA damage in the 
peripheral blood leukocytes[68].

One of  the cytogenetic biomarkers that is widely 
used to predict cancer risk in humans is the presence of  
micronuclei (MN)[69,70]. MN are chromosome fragments 
or whole chromosomes that are not incorporated into 
the main nucleus during mitosis. Therefore, they only 
appear in cells that have undergone a nuclear division[71]. 
The MN test is being applied to cytokinesis-blocked pe-
ripheral blood lymphocytes and exfoliated cells to moni-
tor human exposure to mutagens[72-74]. The evaluation of  
cytogenetic damage by measuring the frequency of  mi-
cronucleated cells (MNC) in peripheral blood and buccal 
mucosa of  HNC patients undergoing RT showed a sig-
nificant increase in the number of  MNC during RT. The 
number of  micronucleated lymphocytes remained high 
30 to 140 d after the end of  treatment. These data con-
firmed the clastogenic potential of  RT in the circulating 
lymphocytes and buccal cells of  HNC patients[75] (Figures 
1 and 2).

The severity of  radiotoxicity can be directly associ-
ated with the radiation dosimetry and the dose-volume 
differences[76]. While epidemiological studies have dem-
onstrated the correlation between the formation of  a sec-
ondary tumor with exposure to moderate-to-high doses 
of  ionizing radiation, a statistically significant increase 
has hardly been described with low doses of  radiation[77]. 
The principal RT effects in normal tissue are acute radio-
toxicity (mucositis, dysphagia and dermatitis) that occurs 
in tissues with rapid turnover rates and late radiotoxic-
ity [subcutaneous skin fibrosis and osteoradionecrosis 
(ORN)] in tissues with slower turnover rates; these effects 
may become evident months or years after therapy[78]. 
There are variable normal tissue responses to RT[79], and 
this may be due to the stochastic or deterministic varia-
tion effects in radioresponsiveness[76]. Mucositis, for in-
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C > T) and the G allele of  XRCC6 (1310 C > G), and 
severe acute dermatitis was associated with the T allele 
of  RAD51 (3392 G > T). The G allele of  XRCC1 (1196 
A > G) was associated with a lower grade of  subcutane-
ous fibrosis, suggesting that the wild-type alleles were the 
risk alleles[86]. ORN was found to be associated with the 
T allele of  the TGFb1 (509 C > T) polymorphism, while 
the CC genotype was significantly associated with post-
extraction related ORN[78] (Figure 3).

In addition to gene expression changes and DNA 
damage, microRNAs have been associated with the RT 
response. In oral SCC cells, it was observed that ICAM2 
gene inhibition by miR-125b expression downregulation 
induces radiosensitization, suggesting that this miRNA 
was associated with proliferation and radioresistance 
mechanisms. Therefore, the control of  the expression or 
activity of  miR-125b might contribute to the suppres-
sion of  proliferation and overcoming radioresistance in 
OSCC[87].

CT
Cisplatin-based CT is still the standard protocol for treat-
ing SCC[26,88]. However, simultaneous treatment with 
cisplatin, bleomycin (radiomimetic antitumoral drug) 
and 5-fluorouracil (anti-metabolite drug) has also been 
used[89]. Other protocols have added paclitaxel to the 
traditional cisplatin regimen[90,91]. Combinations with 
methotrexate and docetaxel may be also used. The ad-
ministration of  the combination therapies can be curative 
or palliative[92].

Considering that these drugs can induce DNA dam-
age, one of  the important late-occurring complications 
from treatment of  the primary tumor is therapy-related 
secondary cancer that can result from the genotoxic 
activity of  the drugs on healthy cells[89,93]. Desai et al[94] 
showed that head and neck SCC patients were predis-
posed to chromosomal rearrangements by anticancer 
drug treatment, which may promote secondary tumori-
genesis. Furthermore, Minicucci et al[95] observed higher 
frequencies of  micronucleated lymphocytes in children 
with malignant tumors before therapy than in healthy 
children. The authors suggest that the presence of  malig-

stance, is characterized by mucosal ulceration in the oro-
esophageal and gastrointestinal tract, resulting in pain, 
dysphagia and diarrhea, depending on the dysfunction of  
the affected tissue[80]. Some authors have demonstrated 
that intestinal mucositis is the consequence of  a complex 
cascade of  biological events, rather than solely due to di-
rect clonogenic cell death of  the epithelial cells[81]. How-
ever, evidence suggests that EGF and its receptor do not 
have a critical role in prevention or repair of  fluorouracil 
CT-induced intestinal damage[82]. In addition to cell death 
events that are associated with the pathogenesis of  mu-
cositis, the activation of  a wide variety of  transcription 
factors, the production of  proinflammatory cytokines, 
matrix metalloproteinases, leukotrienes, and ceramide[81], 
caspase activation and the generation of  oxidative stress 
and ROS by chemotherapeutic agents or radiation appear 
to be primary events in most pathways leading to mucosi-
tis. ROS causes DNA damage and subsequent clonogenic 
cell death in the epithelial layer[81]. Of  the transcriptional 
factors that may be significant, nuclear factor κB (NF-
κB), which is activated by either RT or CT, has many of  
the characteristics that suggest it may be a key element in 
the genesis of  mucositis. Once activated, NF-κB leads to 
the up-regulation of  many genes, including those that re-
sult in the production of  the pro-inflammatory cytokines 
TNF-α , IL-1β and IL-6. This leads to tissue injury and 
apoptosis[81].

Moreover, evidence of  genetic mutations and the role 
of  single nucleotide polymorphisms (SNPs) have been 
shown to underlie the inter-individual differences in the 
adverse responses of  normal tissues to radiation[83-85]. 
Interindividual variations in radiotoxicity responses exist 
despite the uniform treatment protocols. It is speculated 
that normal genetic variations, particularly SNPs, may 
influence normal head and neck tissue radiotoxicity[78]. 
The first systematic review of  the association of  SNPs 
with the occurrence of  HNC radiotoxicity evaluated the 
association of  11 polymorphisms in 8 genes with acute 
radiotoxicity and 6 polymorphisms in 4 genes for late 
radiotoxicity[78]. The risk of  severe acute mucositis was 
associated with the G allele of  XRCC1 (1196 A > G) in 
patients treated with RT alone or CT. Severe acute dys-
phagia was associated with the T allele of  XRCC3 (722 

Figure 1  Micronucleated lymphocytes. Stained with 5% Giemsa (increased 
× 400).

Figure 2  Micronucleated buccal mucosa cells. Stained with feulgen/fast-
green (increased × 400).
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nant tumors may increase the frequency of  DNA damage 
in circulating lymphocytes. Other authors have shown 
that adjacent tumor tissues shared common genetic 
changes, and it appears that multiple tumors can arise 
from a single transforming event that spreads throughout 
the mucosa surface. On the other hand, some authors 
have demonstrated the presence of  a second tumor that 
is not clonally-related to the first, which supports the hy-
pothesis of  widespread genetic changes after exposure to 
carcinogen[96]. In this sense, Ronchetti et al[97] studied pa-
tients with HNC and found that the pattern of  microsat-
ellite changes observed in the primary cancer exhibited a 
completely different genetic arrangement than the second 
tumor, indicating an independent origin in about three-
quarters of  the cases.

Cisplatin activity is based on the formation of  DNA 
adducts that block DNA replication and transcription[98]. 
These crosslinks represent about 90% of  the total DNA 
damage induced by this drug and are the major con-
tributing factor to its cytotoxic effects[99]. Carboplatin is 
another CT drug used for HNC. It belongs to the same 
group as cisplatin; thus, it is a platinum-based antineo-
plastic agent. However, when compared to cisplatin, a 
higher concentration of  carboplatin is required to reach 
equivalent DNA binding because it forms intrastrand 
DNA crosslinks at a slower rate, and the elimination of  
free platinum is 10-fold lower than cisplatin[100]. In rela-
tion to treatment with cisplatin, bleomycin and 5-fluoro-
uracil, some authors using the wing somatic mutation and 
recombination test (Smart) in Drosophila melanogaster 
(D. melanogaster) have shown that the combination of  
these drugs produced synergistic and antagonistic geno-
toxic effects depending on the concentrations used, and 
these studies suggest that secondary effects associated 
with their genotoxic effects could exist, emphasizing the 
importance of  long-term monitoring in these patients[101]. 
The anti-metabolite 5-fluorouracil was developed by Hei-
delberger et al[102] and is based on the observation that, 
during DNA synthesis, the uracil base was used more 

effectively by tumor cells than normal cells. 5-fluoracil 
is considered to be an S-phase active chemotherapeu-
tic agent and causes DNA damage, such as double and 
single-strand breaks[103]. The genotoxicity of  treatment 
with paclitaxel and cisplatin was also studied, as their ef-
fects are not restricted to malignant cells. Using the wing 
Smart method in D. melanogaster, the authors suggested 
that the combination of  paclitaxel and cisplatin did not 
appear to increase the risk of  secondary cancer develop-
ment; however, the aneugenic activity of  paclitaxel could 
be responsible for the reduced genotoxicity of  cispla-
tin[104]. Methotrexate blocks the formation of  tetrahy-
drofolic acid because of  its high affinity for dihydrofolic 
acid reductase and suppresses protein synthesis in the G1 
phase. Thus, high dose methotrexate could be possible 
in combination with leucovorin rescue, which prevents 
normal cells from being affected by the methotrexate-
induced folic acid deficiency[92].

Effects of  the genotype are also observed. In patients 
with prior HNC, 13-cis-retinoic acid (13-cRA) has been 
shown to prevent second primary tumors (SPT)[105]. How-
ever, other authors demonstrated that low dose 13-cRA 
treatment did not significantly reduce the occurrence of  
SPT. The results seem to be influenced by the genotype 
of  the patient. The GST-M1 genotype is an influential 
risk factor for the development of  SPTs in patients who 
were successfully treated for HNC, and the absence of  
the GST-T1 enzyme demonstrated a protective effect 
against SPT[106].

To avoid late effects of  systemic CT, targeted therapy 
has been also used for treating HNC patients. Bevaci-
zumab, an antiangiogenic monoclonal antibody that tar-
gets vascular endothelial growth factor[107]; transtuzumab, 
a monoclonal antibody that targets human epidermal 
growth factor receptor 2 (HER-2)[108]; lapatinib, a dual 
EGFR and HER-2 receptor tyrosine kinase inhibitor[109]; 
rapamycin, an mTOR inhibitor with antiproliferative ef-
fects[110]; sorafenib, an ERCC1 protein expression DNA 
repair inhibitor[111] are some of  the drugs currently used 
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Figure 3  Diagram summarizing the genetic variants associated with radiotoxicity. Extracted from Ghazali et al[78]. 
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in target therapy.
Among the chemoradiation-induced toxicities, mu-

cosal barrier injury has been well studied. In this sense, 
peripheral blood cells of  patients treated with carboplati-
num, paclitaxel and radiation demonstrated the potential 
impact of  the chemoradiation on healthy tissues. Of  po-
tential relevance to the development of  mucosal injury, it 
has been observed that Dkk-1, a specific Wnt inhibitor, is 
upregulated in the tumors[112]. Some authors suggest that 
the presence of  the Wnt inhibitor provides a mechanism 
for a reduction in epithelial proliferation, as studies have 
demonstrated that the presence of  Dkk-1 is associated 
with crypt loss in mice[113].

CONCLUSION
Nowadays, due to advances in cancer therapies, a signifi-
cant increase of  survival has been observed for cancer 
patients. Reduction of  the toxicogenetic and toxicoge-
nomic side effects has been one of  the major goals in the 
search for new anticancer drugs and therapy protocols.

Rapid innovations in RT have resulted in an urgent 
need for methods to predict cancer risks from RT, as di-
rect observation of  the late effects of  newer treatments 
will require patient follow-up for a decade or more[114]. 
Cancer RT involves the eradication of  the cancer cells 
while sparing the surrounding normal tissues. Currently, 
global tissue responses to RT appear to be directed to-
wards limiting the damage, inducing repair processes and 
restoring tissue homeostasis[115]. These newer treatments 
aim to reduce the amount of  healthy tissue exposed to 
high doses of  radiation, but this may occur by increasing 
the amount of  normal tissue exposed to lower doses of  
radiation[114]. Combined chemotherapeutic protocols have 
also been used aiming synergistic effects and decreased 
toxicity. Furthermore, the concurrent use of  chemo and 
RT has shown a substantially improvement of  survival 
over the past decades[7]. Alternative therapies, as well 
as target therapy have also been developed for treating 
HNC patients. Prevention of  second primary tumors is 
also a field of  research that has increased considerably, 
because of  its impact on long-term survival.
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