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Abstract 
The control of the half-life of mRNA plays a central role 
in normal development and in disease progression. 
Several pathological conditions, such as breast cancer, 
correlate with deregulation of the half-life of mRNA en-
coding growth factors, oncogenes, cell cycle regulators 
and inflammatory cytokines that participate in cancer. 
Substantial stability means that a mRNA will be avail-
able for translation for a longer time, resulting in high 
levels of protein gene products, which may lead to pro-
longed responses that subsequently result in over-pro-
duction of cellular mediators that participate in cancer. 
The stability of these mRNA is regulated at the 3’UTR 
level by different mechanisms involving mRNA binding 
proteins, micro-RNA, long non-coding RNA and alterna-
tive polyadenylation. All these events are tightly inter-
connected to each other and lead to steady state levels 
of target mRNAs. Compelling evidence also suggests 
that both mRNA binding proteins and regulatory RNAs 

which participate to mRNA half-life regulation may be 
useful prognostic markers in breast cancers, pointing 
to a potential therapeutic approach to treatment of 
patients with these tumors. In this review, we summa-
rize the main mechanisms involved in the regulation of 
mRNA decay and discuss the possibility of its implica-
tion in breast cancer aggressiveness and the efficacy of 
targeted therapy.
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Core tip: This review article is dedicated to the under-
standing of the mechanisms involved in the regulation 
of mRNA half-life. mRNA relative stability is an impor-
tant way to rapidly increase or decrease the level of a 
given gene. This process is a much more rapid mecha-
nism compare to transcriptional regulation. Since many 
genes implicated in cancerous processes are regulated 
at the level of their half-life, the proteins and/or small 
non coding RNA implicated in this regulation may serve 
as relevant prognosis markers or predictive markers of 
the efficacy of chemotherapeutic agents.
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GENERAL INTRODUCTION TO mRNA 
STABILITY
In the last few decades, our knowledge of  the complex-
ity of  the regulation of  gene expression in eukaryotes 
has expanded considerably. Control of  regulation is 
exerted through several mechanisms that take place in 
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the nucleus or in the cytoplasm. In the past, the majority 
of  studies focused on transcription, but modulation of  
post-transcriptional events has gaining a lot of  interest 
and represents a rapid and plastic way of  regulating gene 
expression. In particular, regulation of  mRNA stability 
determines the spatial and temporal expression of  many 
genes and plays a fundamental role in determining the 
outcome of  gene expression[1,2].

Most mRNA regulatory elements involved in this pro-
cess are situated within the 5’ and 3’untranslated regions 
(UTRs), where they act as platforms for the assembly of  
protein complexes and other regulatory factors. Whereas 
the 5’UTR is primarily involved in controlling mRNA 
translation[3], the 3’UTR regulates multiple aspects of  
mRNA metabolism, including nuclear export, cytoplas-
mic localization, translational efficiency and mRNA sta-
bility[4].

Tight regulation of  mRNA stability is essential for 
cells to perform their normal functions. Substantial sta-
bility means that a mRNA will be available for translation 
for a longer time, resulting in high levels of  protein gene 
products. The lengths and structures of  the 3’UTR vary 
substantially and more than half  of  the mammalian genes 
produced by alternative splicing and alternative polyade-
nylation (APA) multiple the number of  mRNA isoforms 
that differ in their 3’ UTRs and therefore in regulatory 
sequences within their 3’ UTRs[5-7].

Modulation of  the mRNA half-life plays a central 
role in inflammatory diseases and various cancers[8-17]. 
Aberrant stabilization of  mRNAs may lead to prolonged 
responses that subsequently result in undesirable states, 
including over-production of  growth factors, oncogenes 
and other mediators that participate in cancer. The steady 
state levels of  mRNA-binding proteins and regulatory 
RNAs are often associated with invasion and aggressive-
ness[18,19]. 

We are only beginning to define the mechanisms 
coordinating the mRNA half-life and to understand its 
involvement in tumorigenesis. The fate of  a transcript 
is determined by the complex interplay of  cis-acting se-
quences within the 3’UTR of  the mRNA and trans-acting 
factors, such as RNA binding proteins (RBPs) and regu-
latory RNAs (microRNA (miRNA) and long non coding 
RNA (lncRNA)) that bind directly or indirectly to the cis-
acting elements and promote the deadenylation and deg-
radation of  the mRNA. 

In this review we will discuss the role played by all 
these factors on mRNA stability, focusing on breast can-
cer and the recent advances made in evaluating cancer 
aggressiveness and the efficacy of  targeted therapy. We 
will focus on the effect of  these key factors on only the 
mRNA half-life and not on the efficiency of  protein 
translation (for more comprehensive studies see[20-22]). We 
will also briefly discuss new topics such as shortening of  3’
UTR by alternative polyadenylation. 

A BRIEF OVERVIEW OF THE 
MECHANISMS INVOLVED IN THE 
REGULATION OF THE mRNA HALF-LIFE 
The stability of  common RNAs is regulated by a variety 
of  signals acting on specific sequences within the RNA, 
which are recognized by trans-acting factors such as 
mRNA binding proteins, miRNA and lncRNA. All these 
factors are post-transcriptional gene regulators that bind 
mRNA and can regulate both mRNA stability and trans-
lation. 

AU-rich sequences and mRNA binding proteins
The most conspicuous among the different cis-acting 
destabilizing elements identified so far are the AU-rich 
elements (AREs), located in the 3’UTR of  a variety of  
short-lived mRNAs such as those for cytokines and proto-
oncogenes[23,24]. Estimated to represent approximately 7% 
of  all transcripts, ARE-mRNAs (see public database at: 
http://rna.tbi.univie.ac.at/AREsite) encode a functionally 
diverse group of  proteins involved in the inflammatory and 
immune response, transcription, cell proliferation, RNA 
metabolism, development, and signaling[25,26]. This function-
al enrichment of  ARE-genes correlates with the observed 
rapid patterns of  mRNA decay, particularly of  those in-
volved in transcription and signaling[27]. These elements are 
recognized by trans-acting factors, such as mRNA-binding 
proteins that bind directly or indirectly to the cis-acting 
elements and promote the deadenylation and degradation 
of  the mRNA. These proteins may have opposite effects 
on mRNA stability. Some of  them, such as AU-rich ele-
ment RNA-binding protein 1 (AUF1), tristetraprolin (TTP) 
and KH-type splicing regulatory protein (KSRP), promote 
mRNA degradation, while others such as embryonic lethal 
abnormal vision (ELAV)-like protein 1 (HuR) and polyad-
enylate-binding protein-interacting protein 2 (PAIP2) act as 
mRNA stabilizing proteins[10,28,29]. 

Briefly, AUF1 binds with high affinity to RNA that 
contain ARE sequences such as MYC, FOS and GM-CSF 
mRNAs. In contrast, it does not bind with high affinity 
to RNA sequences that lack a ARE[30]. Over-expression 
of  AUF1 correlates with rapid degradation of  ARE-
containing mRNAs[31-33]. 

TTP (also named ZFP36) is characterized by two tan-
dem repeat zinc finger motifs through which it binds to 
AREs and mediates mRNA decay[34,35]. Some of  the well-
established targets of  TTP include TNF alpha mRNA[36], 
granulocyte/macrophage colony-stimulating factor (GM-
CSF)[37], cyclooxygenase 2[38], vascular endothelial growth 
factor (VEGF)[39], interleukin-1[40], interleukin-8[41,42] and 
the hypoxia-inducible factor-1 (HIF-1)[43]. HuR is a mem-
ber of  the ELAV family of  proteins found in mammalian 
cells. HuR selectively binds and stabilizes ARE-contain-
ing mRNAs of  proto-oncogenes, cell cycle regulators, 
cytokines and other early-response genes[44,45]. For a more 
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comprehensive review and detailed description of  RNA 
binding proteins see[10,28,30,46,47].

Regulatory non-coding RNA
RNAs have long been considered as an intermediate be-
tween DNA sequences and proteins that execute cellular 
functions. However, recent genome-wide analyses sug-
gest that protein-coding genes represent only 2% of  the 
human genome while there are at least thousands of  non-
coding RNAs (ncRNAs) transcribed from mammalian 
genomes. For many of  them, a clear role in regulation of  
gene expression has been demonstrated[48,49].

There are two major classes of  ncRNAs; the small 
ncRNA, such as miRNAs and lncRNAs. miRNA act by 
pairing to the mRNAs of  protein-coding genes to direct 
their repression, while lncRNAs show different mecha-
nism of  action, varying from chromatin remodeling, 
transcriptional responses and RNA processing[50,51].

miRNAs, a small class of  ncRNAs approximately 
18-25 nucleotides in length, are able to regulate gene 
expression at the post-transcriptional level, by binding 
to partially homologous sequences to the 3’UTR of  tar-
get mRNAs, and thereby causing a block in translation 
and/or mRNA degradation[52]. Although miRNAs were 
first identified in the early 1990s, it is only during the 
past decade that their potential has been more widely ex-
plored. Several studies have demonstrated that miRNAs 
are highly specific for developmental stages and that they 
play important roles in essential processes, such as dif-
ferentiation, cell proliferation, stress response and cell 
death[53,54]. Gene regulation by miRNAs is important for 
the onset and progression of  several human cancers[55-57].

Recent profiling studies have identified miRNAs that 
are aberrantly expressed in human cancers and miRNAs 
are now widely believed to play an essential role in many 
malignancies, acting as either tumor suppressors or onco-
genes. This classification is based on repression of  their 
target genes, which means that certain miRNA will be 
tumor suppressive if  its target gene is an oncogene or a 
tumor suppressor[58,59]. miRNA usually act by pairing to 
complementary sequences in their 3’UTR and promoting 
mRNA deadenylation or a translational block[20,60]. 

LncRNA are a new class of  ncRNA, with a length 
ranging from 200 bp to 100 kbp, which have recently 
caught a lot of  attention. The latest GENCODE proj-
ect has annotated 14880 lncRNAs from 9277 loci[61], 
but only a few of  them have been characterized. Studies 
demonstrated that lncRNAs play major biological roles 
in embryonic stem cell biology and cellular development 
and show developmental and tissue specific expression 
patterns[62-65]. LncRNA are involved in numerous biologi-
cal roles such as imprinting[66,67], epigenetic regulation[68], 
apoptosis and cell cycle control[69], transcription[49] and 
post-transcriptional regulation, splicing[70] and aging[71].

Therefore, aberrant lncRNA expression can cause 
various human diseases including cancer[69,72]. Currently, 
dozens of  lncRNAs have been identified to play critical 
roles in the development and progression of  cancer, act-

ing as potential onco- or tumor-suppressor RNAs[73,74]. 
The mechanisms of  action of  lncRNas are varied and 
include the creation of  secondary RNA structures, bind-
ing to DNA and RNA binding proteins, or hybridization 
with complementary sequences of  RNAs[75,76].

Accumulating evidence of  deregulated lncRNA ex-
pression in numerous cancer types suggests that this type 
of  regulation may open new avenues to identification of  
therapeutic targets for cancer[73,77]. For more a detail dis-
cussion on short and long RNA see also[59,78-80].

Alternative polyadenylation
Alternative polyadenylation (APA) is emerging as a wide-
spread mechanism used to control gene expression but 
the mechanisms/steps governing both global and gene-
specific APA are only starting to be deciphered. 

APA consist of  two steps, cleavage and polyadenyl-
ation of  RNAs, which are maturation events that cut 
and add an oligo(dA) tail to the 3’ end of  the nascent 
transcript. This processing protects mRNAs from degra-
dation and increases their stability. The specific cleavage 
position and the efficiency of  the process depend on the 
interaction between trans-acting polyadenylation factors 
and cis-elements present in the pre-mRNAs, such as the 
central sequence motif  AAUAAA, identified in the mid 
1970s and subsequently shown to require flanking, aux-
iliary elements for both 3’cleavage and polyadenylation 
pre-mRNA[2,81-83]. Previous studies have indicated that 
more than half  of  the human genes possess multiple 
polyadenylation sites[84], called APA, which may produce 
mRNA isoforms with different protein-coding regions or 
3’UTRs of  variable length (when APA occurs in the last 
exon). The differential recognition of  polyadenylation 
signals leads to long or short 3’UTR of  the transcripts. 
Usage of  alternative poly(A) sites influences the fate 
of  mRNAs in several ways, for example, by altering the 
availability of  RNA binding protein sites and miRNA 
binding sites. Usage of  APA and alterations in polyad-
enylation are beginning to be discovered and studied in 
human diseases[85,86] and it is now clear that APA has sev-
eral functional consequences in cancerogenesis. 

INTERACTIONS BETWEEN THESE 
MECHANISMS 
Our knowledge of  the complexity of  post-transcriptional 
regulation has expanded continuously and it is now clear 
that there is a strict connection between all the mecha-
nisms involved in determining mRNA half-life. Evidence 
collected so far show a growing number of  connections 
between miRNAs and RNA-binding proteins, underlying 
a new level of  complexity of  regulation of  gene expres-
sion[87,88]. As described above, miRNAs and RBPs are 
post-transcriptional gene regulators that bind mRNA and 
can regulate both mRNA stability and translation. 

Bioinformatic analyses showed that ARE motifs, 
normally recognized by RBPs, are over-represented in 
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an overview and update of  the dysfunction or alteration 
involved in the control of  the mRNA half-life. Therefore, 
a better understanding of  these mechanisms may help 
exploit the full potential of  mRNA stability with respect 
to cancer diagnosis, treatment, and therapeutics. 

RBPS IN BREAST CANCER
Modulation of  the mRNA half-life plays a central role in 
breast cancer. Evidence collected so far has demonstrated 
the important role for RNA binding proteins in regula-
tion of  the mRNA half-life of  several genes involved in 
cancer progression such as oncogenes, cytokines, and 
growth factors that are often involved in tumorigen-
esis[10,99,100]. In particular, TTP and HuR have often been 
shown to be deregulated in breast cancer and can be pro-
posed as prognostic markers. 

Several studies performed on breast cancer cell 
lines showed that TTP is deficient in breast cancer cells 
when compared with normal cell types, suggesting the 
involvement of  TTP as a tumor suppressor in breast can-
cer[101,102]. Similar results were confirmed by analysis of  
samples from breast cancer patients.

In 2009, a gene array data set of  251 breast tumors, 
showed a negative correlation between TTP mRNA 
levels and tumor grade, with more advanced tumors typi-
cally showing the weakest TTP expression[103]. Moreover, 
patients with intermediate or low tumor TTP mRNA 
levels were 2- to 3-fold more likely to die from recurrent 
breast cancer than patients whose tumors strongly ex-
pressed TTP, suggesting that suppressed TTP expression 
may represent a negative prognostic indicator in breast 
cancer. The same findings were confirmed by other stud-
ies, which also found that TTP expression is higher in 
normal breast tissue and benign lesions than in infiltrat-
ing carcinomas. Moreover a strong positive association 
of  TTP expression and mammary differentiation was 
identified in normal and tumor cells, with mammary dif-
ferentiation inducing expression of  TTP[104]. Loss of  TTP 
also enhances infiltration of  monocytes/macrophages 
into the tumors, which is typically associated with poor 
prognosis in breast cancer[105]. Recently, TTP has been 
showed to be involved in mammary differentiation both 
in normal and tumor cells, suggesting that this protein 
might play specific and relevant roles in the normal physi-
ology of  the gland[104]. Regarding HuR, a lot of  evidence 
showed a direct role in breast carcinogenesis. HuR seems 
to enhance breast cancer cell growth and invasion[106], 
even though the same group showed that breast cancer 
patients expressing high levels of  HuR had a favorable 
prognosis[107]. This finding contradicts two recent stud-
ies showing that cytoplasmic HuR expression is elevated 
in ductal in situ carcinomas, when associated with a high 
tumor grade[108], and a negative prognostic indicator for 
survival in patients with breast cancer[109]. Moreover, in 
breast cancer cell lines HuR specifically regulates the 
Forkhead box O (FoxO) transcription factor FOXO1, 
an important tumor suppressor involved in apoptosis, 

miRNA target sites of  transcripts and might antagonize 
or cooperate with miRNA-dependent gene regulation[89]. 
This in silico analysis provides support for other studies in 
which close interactions between ARE-BPs and miRNAs 
were found[88,90]. In fact, recent studies demonstrated co-
operative interactions between miRNA and ARE-BPs in 
the modulation of  gene expression. TTP and miR16, a 
miRNA containing a UAAAUAUU sequence that is com-
plementary to the ARE sequence, were shown to depend 
on each other to efficiently suppress the mRNA of  TNF 
alpha[88]. In other cases, ARE-BPs and miRNA compete 
for a binding site on the mRNA, thereby counteracting 
the functions of  each other. The binding of  HuR to the 
3’UTR of  the cationic amino acid transporter 1 (CAT1) 
mRNA prevents miR122-mediated repression of  CAT-1 
expression, thereby resulting in enhanced expression of  
the CAT-1 gene[91]. Other studies revealed that HuR sites 
are enriched near predicted miRNA sites in mRNAs and 
frequently overlap with them[92,93].

There are also other examples, miRNAs can regulate 
the expression of  RBPs, or the converse, where an RNA-
binding protein specifically regulates the expression of  a 
specific miRNA, and some of  them have been described 
in detail in a recent review[94].

Recently an interaction between the two major classes 
of  regulatory RNAs has been demonstrated: miRNA and 
lncRNA. It has long been assumed that miRNAs can only 
target protein-coding mRNAs in the cytoplasm. How-
ever, recent studies have revealed that miRNAs are also 
transported from the cytoplasm to the nucleus, where 
they function in a non-canonical manner to regulate ln-
cRNAs[95]. These results suggest that certain miRNAs 
might affect the expression level of  many genes through 
modulating the biogenesis and function of  lncRNAs[96]. 
Recently, a dynamic interplay between alternative polyad-
enylation and miRNA regulation has also been reported. 
Since APA often results in mRNA isoforms with differ-
ent 3’UTRs lengths, these isoforms of  an mRNA are dif-
ferentially regulated by miRNAs[97]. 

The connection between all the mechanisms involved 
in determining mRNA half-life underlies the great poten-
tial of  fine-tuning post-transcriptional control of  gene 
expression. A careful revision of  the literature has made 
us realize that alterations and dysfunction in all these 
mechanisms may be involved in breast cancer.

BREAST CANCER
Breast cancer is the leading cause of  cancer-related deaths 
among women and its incidence is increasing worldwide. 
This neoplasia is a multi-factorial disease in which several 
factors contribute to initiation of  the disease such as a 
genetic predisposition, chronic inflammation, exposure 
to toxic compounds, abundant stress factors, and others. 
The cumulative effects lead to a high incidence of  breast 
cancer in populations worldwide[98]. In the last few years 
post-transcriptional regulation has been demonstrated to 
play a major role in breast cancer. Below, we will provide 
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the cell cycle, DNA damage repair and oxidative stress. 
Recently, it was demonstrated that cytoplasmic HuR is 
associated with reduced survival in invasive breast cancer 
and can be used as an independent prognostic marker in 
breast cancer patients undergoing chemotherapy[110].

REGULATORY RNA IN BREAST CANCER
As described above, regulatory RNAs include miRNAs 
and lncRNA that play important gene-regulatory roles. 
While lncRNAs show different mechanisms of  action, 
miRNA act by pairing to the mRNAs of  protein-coding 
genes to direct their repression. In this way, they can 
decrease the translational efficiency and/or decreased 
mRNA levels of  gene targets[50]. Even though most of  
miRNA act by lowering mRNA levels[20], after review-
ing the vast amount of  literature on miRNAs, we found 
that most of  the published articles do not investigate the 
mechanisms by which the miRNA act. Most of  them 
reported the binding of  the miRNA to the 3’UTR of  
the gene or the effect obtained with a luciferase assay, 
without clarifying if  the miRNA affect the mRNA stabil-
ity or efficiency of  translation of  the target gene. Since 
the effect on the efficiency of  translation goes beyond 
this review, we will focus here on miRNA that affect the 
mRNA half-life and not the global number of  miRNA 
involved in breast cancer. This topic has been extensively 
covered by other reviews[111-114]. We will briefly discuss 
some examples of  miRNA demonstrated to directly 
affect mRNA stability. By acting on mRNA stability, 
miR125a and mir125b decrease the expression of  HER2 
and HER3, two genes crucial in breast carcinogenesis 
and c-RAF, another gene that plays a crucial role in can-
cer[115-117]. Another important miRNA is miR206, which 
targets ER alpha and represses both ER alpha mRNA 
and protein expression[118,119]. miR200 regulates epithelial-
mesenchymal transition (EMT) targeting Zfhx1b mRNA 
probably by mRNA deadenylation and destabilization[120] 
while miR506 is always involved in EMT by increasing 
the levels of  E-cadherin (CDH1)[121]. miR34 suppresses 
invasion and metastatic potential of  breast cancer cells by 
directly targeting Fos related antigen 1 (Fra1) by reducing 
both the mRNA and protein level[122]. miR31 decreases 
the mRNA levels of  many genes involved in breast can-
cer metastasis[123], while miR203 plays a crucial role in 
triple negative breast cancer by targeting baculoviral IAP 
repeat-containing protein 5 (BIRC5) and Lim and SH3 
domain protein 1 (LASP1) at the RNA level[124]. miR21 
is another miRNA that affects mRNA stability and is 
involved in decreasing mRNA levels of  Programmed cell 
death 4 (PDCD4)[125], while miR26b decreases Prostagland-
in-endoperoxide synthase-2 (PTGS2) levels in breast cancer[126] 
and miR124 affects the cd151 mRNA level[127]. 

It is interesting to note that some miRNA affect the 
mRNA half-life of  target genes by perturbing the levels 
of  RNA binding proteins. In 2009, miR29a was reported 
to suppress TTP in cancer cell lines[128]. The same miR-
NA is abundant in invasive breast cancer cells, where it 

increases stabilization and subsequent over-expression 
of  HuR. In this way the TTP: HuR ratio was perturbed 
and associated with cancer invasion[129]. Moreover, other 
miRNAs bind to AREs and, thus, interact with ARE-
binding proteins (ARE-BPs) to regulate transcript levels. 
miR3134 mediates an up to 4-8-fold increase in the levels 
of  SOX9, VEGFA, and EGFR, which contain ARE 
in their 3’UTR, and are also regulated by HuR. Both 
miR3134 and HuR act together in a general mechanism 
of  regulation of  gene expression, which enhances tran-
script stability[130]. 

Another example of  interactions is the one between 
miR125 and HuR. Guo et al[115] observed that the expres-
sion of  miR125a inversely correlated with HuR in several 
different breast carcinoma cell lines. They demonstrated 
that HuR was translationally repressed by miR125a. This 
result suggested that miR125a may function as a tumor 
suppressor for breast cancer, with HuR as a direct and 
functional target.

To date, the emerging literature on lncRNA includes 
only one example of  regulatory RNA that effect mRNA 
stability in breast cancer. Two studies reported the ef-
fect of  a lncRNA on the half-life of  the HIF-1 mRNA. 
HIF-1 is a heterodimeric transcription factor that regu-
lates the expression of  genes associated with adaptation 
to reduced oxygen pressure. HIF-1 is considered to be a 
reliable prognostic and diagnostic marker for an increas-
ing number of  cancers from various origins, including 
breast cancer[131]. A natural antisense of  HIF-1 transcript 
(aHIF) that is complementary to the 3’untranslated re-
gion of  the HIF-1 mRNA has been described in breast 
and renal carcinoma. The mechanism of  action is not 
clear but it seems that aHIF could expose AU rich ele-
ments present in the 3’ untranslated region of  the HIF-1 
mRNA and thus increase the rate of  degradation of  the 
HIF-1 mRNA[132]. aHIF has been proposed as a marker 
of  poor prognosis[133], but further studies are clearly nec-
essary.

ALTERNATIVE POLYADENYLATION IN 
BREAST CANCER
APA gives rise to mRNA isoforms with 3’UTR of  vari-
able length. There are few examples of  the usage of  
alternative poly(A) in breast cancer in control of  gene 
expression. One of  the best examples is the shortening 
of  the 3’UTR, which has been reported by Lembo  et 
al[134] to correlate with poor prognosis. These authors 
showed that shorter 3’UTR can contain less regulatory 
elements that are normally involved in mRNA decay, 
such as miRNA binding sites or ARE sequences. In this 
way, miRNA and RBPs may increase the degradation 
rate of  long isoforms of  the gene, altering the ratio be-
tween the long and short isoforms and causing a shift 
from the normal to cancerous state[134,135]. Recently, it has 
been reported that estrogens, which play a major role in 
breast cancer initiation and progression, can induce APA 
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in breast cancer cells. In particular, estradiol up-regulates 
the 3’UTR shortening of  CDC6, an essential regulator of  
DNA replication[136]. Further investigations are necessary 
to establish if  the expression ratio of  alternative 3’UTR 
can be a predictor of  survival in breast cancer patients.

PROGNOSTIC FACTORS AND TARGETED 
THERAPEUTICS 
In the last few years several studies have proposed evalu-
ating post-transcriptional regulation as a prognostic fac-
tor for breast cancer aggressiveness and for development 
of  targeted therapy. 

Regarding miRNA, Iorio and coauthors identified 
several miRNA associated with breast cancer, which 
points to their role in the development of  this neopla-
sia and to the impact on putative innovative therapeutic 
approaches[113]. Among the miRNA that have a direct 
impact on mRNA half-life of  genes involved in breast 
cancer, miR206 and miR125a and 125b are surely of  
great interest. These miRNA are involved in specific net-
works, such as in the HER family-driven or ER-mediated 
signaling, and could likely influence the response to che-
motherapy or to targeted therapies, such as trastuzumab, 
the monoclonal antibody directed against HER2, or anti-
estrogens, such as tamoxifen. Recently Hong L and coau-
thors investigated the role of  miR210 in predicting sur-
vival. A total of  511 cases of  breast cancer were examine 
in a global meta-analysis that showed that high expression 
levels of  miR210 predicted poor survival in patients with 
breast cancer[137], confirming previous results obtained 
with miR210[138].

Several miRNA involved in the regulation of  the 
mRNA half-life in breast cancer, such as miR200, miR26b 
miR21 miR34a are also modulated by estradiol[139], which 
plays a major role in a hormone-dependent cancers such 

as breast cancer.
Regarding RBPs, it is now generally assumed that loss 

of  TTP and gain of  HuR expression represent useful 
negative prognostic indicators in breast cancer. Moni-
toring mRNA or protein levels of  these RBPs is being 
discussed, but it seems that at least for TTP, monitoring 
protein levels would provide a better negative correlation 
with breast cancer invasiveness than quantifying tran-
script levels[101,104]. Recently, it has been suggested that the 
ratio between TTP and HuR be evaluated, since it is per-
turbed in invasive breast cancer patients, and to correlate 
it with cancer invasion[108,109,129,140,141]. Due to the pivotal 
role played by TTP and HuR in stabilizing mRNA of  
key factors and cytokines involved in carcinogenesis and 
subsequent cancer progression, their clinical implication 
and therapeutic potential in cancer have been thoroughly 
investigated and recently reviewed by Ross et al[46], Ebe-
rhardt et al[142], Srikantan et al[47] and Abdelmohsen et al[143].

Recently, Wang et al[110] investigated the predictive 
and prognostic value of  HuR expression in women with 
breast cancer who underwent neo-adjuvant chemo-
therapy followed by surgical resection. They evaluated 
the relationship between the HuR expression level and 
pathologic complete response (pCR), and found that 
cytoplasmic expression of  HuR was an independent 
prognostic marker in breast cancer patients undergoing 
chemotherapy[110].

Promising data have been obtained from the study 
of  regulatory lncRNA or alternative polyadenylation, but 
need further investigation and large-scale studies on co-
horts of  breast cancer patients.

It is of  interest to point out the genetic polymor-
phisms in TTP and HuR, which may represent prognostic 
factors for breast cancer. Since the two RBPs play a cen-
tral role in post-transcriptional control of  genes involved 
in breast cancer, some studies analyzed the frequency of  
germline polymorphisms in breast cancer patients com-
pared to healthy controls. A synonymous polymorphism 
in the TTP gene showed a statistically significant associa-
tion with a lack of  response to Herceptin/trastuzumab 
in HER2-positive breast cancer patients[101]. This poly-
morphism was associated with a decrease in translational 
efficiency. Moreover, another genetic variation in the 
promoter of  the gene drastically reduced the amount of  
TTP mRNA and was significantly associated with poor 
prognosis. No association between polymorphisms of  
the HuR gene and breast cancer have been found[144].

Several polymorphisms in miRNA have been de-
scribed but meta-analysis has shown that they can be 
used for prediction of  breast cancer risk in healthy popu-
lation but not as prognostic markers in breast cancer pa-
tients[145-148].

FINAL REMARKS
In recent years the importance of  post-transcriptional 
control in breast cancer has become recognized. This 
process involves several steps including mRNA degrada-
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Figure 1  The regulation of the mRNA half-life and targeted therapy in 
breast cancer. Modulation of mRNA half-life depends on the interaction and 
balance between RNA binding proteins, regulatory RNAs (miRNA and lncRNA) 
and alternative polyadenylation in the 3’UTR of genes.
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tion and translation. Here we have focused on the regula-
tion of  the RNA half-life in breast cancer, focusing on 
several mechanisms that control this process, all involving 
the 3’UTR of  genes: mRNA binding proteins, regulatory 
RNA such as short and long RNAs, alternative polyad-
enylation. All these mechanisms lead to a broad range of  
rates in gene decay. A diagram summarizing the involve-
ment of  different proteins in regulating the balance be-
tween stabilization and degradation of  mRNA is given in 
Figure 1. In this review, we have discussed how alteration 
of  mRNA stability mediated by all these mechanisms 
can contribute to the development of  breast cancer. The 
goal is to elucidate the molecular mechanisms involved in 
breast cancer and to identify molecules that are useful as 
bio-markers of  diagnosis or prognosis. 

Full knowledge of  this process may help to develop 
potential diagnostic and therapeutic strategies against 
tumor progression. The available data strongly suggest 
the use of  RBPs or miRNAs as markers of  diagnosis and 
prognosis, and eventually as new targets or tools in spe-
cific therapy. Table 1 shows the key players involved in 
control of  mRNA half-life in breast cancer as discussed 
in this review, documenting the functional importance 
in defining the aggressiveness of  breast cancer cells. A 
better understanding of  the pathways they modulate and 
how this dictates pathological processes will surely help 
to obtain a better understanding of  the pathogenesis of  
breast cancer and will in the future open doors for better 
classification, prognosis and direct treatment.
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